PATHOLOGICAL SCIENCE

L. Langmuir

(Colloquium at The Knolla Research Laboratory, December 18, 2953)
Tranacribed and edited by R. N. Hall

PREFACE

On Decamber 18, 1933, Dri. Kruing Langmuir gave a colloquium at the Research Laboratory that will long be remembered by those in his audience. The talk was concermed with what Langmuir called "the science of thinga that aren't so," and in it he gave a colorful account of aeveral examplea of a particular kind of pitfall into which ecientists may sometimes stumble.

Langmuir never published his investigations into the gubject of Pathological Science, A tape recording Was made of his speech, but this has been lost or erased. Recently, however, a microgroove diak tranBeription that was made from this tape was found among the Langmuir papers in the Library of Congreas. This disk recording is of poor quality, but most of what he gaid can be underatood with a little practice, and it constitutes the text of this report.
A. small amount of editing was felt to be desirble. Some abortive of repetitious gentences were eliminated. Figures fram corresponding publications were used to represent his blackboard aketches, and some references were added for the berefit of anyone wishing to undertake a further investigation of this subject. The disk recording has been tranacribed back onto tape, and a copy is on flle in the Whitaey LIbrary.

Gratitude is hereby expressed to the atalf of the Manuscript Diviaion of the Library of Congress for their cooperation in lending us the diak recording 80 we could obtain the beat possible copy of the Langmuir speech, and for providing access to other related Langmuir papers.

COLLOQUIUM ON PATHOLOGTCAL SCIENCE, by Irring Langmutr

This is recorded by lirving Langrouis on March 8. 1954 It is tranecribed from a kape recording, mection number.three, of the jecture on "Pathological Science" that I gave on December 88, 1953.

Davis-Bames Exfect ,
N-Eays $\$$
Mitogenstic Rays 6

Contents:
Page
Characteristic Symptoms of Pathological Science
Allison Effect
Extrasensory Perception
Flying Saucers 9

Question Period 11

Epilogue 11
Relo 12
References 13

Davis-Barnes Effect

The shing started In this way. On April the 23rd; 1929. Frofessor Bergen Davis from Columbia University came up and gave a colloquium in this Laboratory, in the old building, and it was very intereating. He told Dr. Whitney, and myself, and a few others something about what he was going to talk about beforehand and he was very enthusiastic about it and he got us interested in it, and well. Ihl show you right on this diagram what kind of thing happened (Fig. 1).

Fig. 1 Diagram of Iirst experimental tube. S, radioactive source; W, thin glase window; F, fliament; G, grid; R. lead to ailvered surface; A. second anode; M, magnetic field; C, copper seale; Y_{4}, and Z, zine sulfide acreens.

He produced a beam of alpha rays from polonium in a vecuum tube. Ho had a parabolic hot cathode electron emitter with a hole in the middle, and the alpha rays came through it and could be counted by seintillationg on a zinc sulfide serten with a microscope over here (Y and Z). The electrons were focused on this plate. co that for a distance there was

This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of:

The Black Vauit

The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government \& Military.

Discover the Truth at: httpi/www.theblackvault.com
a stream of electrons moving along with the alpha particies. Now you could accelerate the electrons and get them up to the velocity of the alpha particles. To get an electron to move with that velocity takes about 590 voliss so if you put 590 volts here, nccelerating the electrons, the electrons would travel along With the alphe particies and the idea of the experiment was that tif they moved along together at the fame velocity they might recombine so that the alpha particle would los one of ita charges, would ptek up an electron, so that instead of being a helium atom with two positive charges it would ony have one charge. Well, if an alpha particle with a double charge had one electron, st's like the Bohe theory of the hydrogen atom, and you know its energy levela. It's just like a hydrogen atom, with a Balmer series, and you can calculate the energy peceasary to knock off this election and 80 on

Well, what they found, Davis and Barmes, Was that if this velocity was made to be the game on that of the alpha particle there was a loss in the mumber of deflected particles. If there were no electrons. for example, and no magnetic fleld, all the alpha particles would be collected over here (X) and they had 'something of the order of 50 per minute which they counted over here. Now if you put on a magnetic field you could denect the alpha particles so they go down here $\{Z$). But tif they picked up an electron then they would oniy have hall the charge and therefore they would only be deflected hali as'much and they would not strike the aerven.

Now the results that they got. or ald they got at that time, were very extraordinary. They found that not only did these electrons combine with the alpha particles when the electron velocity was 390 volts, but also at a series of diserete differences of voltage. When the velocity of the electrond was less or more than that velocity by perfectly discrete amounts, then they could also combine. All the results seemed to show that about 80% of them combined. In other words, there was about an B0\& change in the current when the conditions were tight. Then they found that the velocity differences had to be exactly the velocities that you can calculate from the Bohr theory. In other words, If the electron coming along here happened to be going writh a velocity equal to the velocity that it wauld have if it was in a Bohr orbit, then it will be captured.

Of course, that makes a diffleulty fight away because In the Bohr theory when there is an electron coming in from infinity it has to give up hall its energy to setile into the Bohr orblt. Since it must conserve energy, if has to radiate out, and it radiates out an amount equal to the enofgy thiat it hal left in the orbit So, if the electron comea in with an amount of energy equal to the amount you are going to end up with, then you have to radiate an amount of energy equal to twice that, Which nobody had any evidence for. So there was a litle difficulty which nevor was quite resolved although there were two or three people including som in Germany who worked up theories to
mecount for how that might be. Sommerfeld. for example, in Germany. He worked up a ineory to wecount for how the electron could be captured if it had a velocity equal to whet it was going to have after it gettled down into the orbit.

Well. there were these discrete peaks, each one corresponding to one of the enerty levels in the Bohr theory of the helium atom, and nothing elac. Those were the only thinga they recorded, So you had these discrete peaks. Well. how wide were they? Well. they were one hundredih of a volt wide. in other words, you had to have 590 volte. That would pive you equal velocities but there were other peaks, and Ithink the next velocity would be about 325.1 volts. If you had that voltage, then you got beautiful capture. If you didn't, if you changed it by one hundredth of s yoltenothing. It would go right from sos down to nothing. It was eharp. They were onily able to meagure to a hundredth of a volt 80 it was an all-or-none effect. Well, beaides this poak at this point. there were ten or tweive different lines in the Balmer sertes, all of which could be detected, and all of which had an 804 dificiency. (See Fig 2.) They'dmost completely opptured all the electrons when you got exactly on the peak.

Fig. 2 Electron capture as a function of accelerating voltage. tCopy from Barnes. Phys. Rev. , 35, 217 (1830).

Well, in the discussion, we questioned how. experimentally, you could examine the whole spectrum; because ench count, you see, takes a long tirne. There wen a long series of alpha perticle counts, that took two madnutes at atime, and you had to do it ten or fifteen timea and you had to adjust the voltage to a hundredth of a volt. If you have to go through eteps of a hundredth of a volt each and to coverall the range from 330 up to 900 volts. yould heve quite a job. (Laughter) Well. they eaid thet thoy didn't do it quite that way. They had found by some preliminary work that they did check with the Bohr orbit velocities 80 they knew where to look for thern They found them sometimes not exsetly where they expected them but they axplored around in that naighborthood and the result was that they got them with exiraordimary proctaton So high, in lact, that they wert aure they'd be able to check the Rydberg conotant more aceurately
than it can be dose by studying the hydrogen spectrum, Which is something like one in 10°. At any rate, "they bad no inhibitions at all as to the accuracy which could be obtained by this method especialily since they were measuring these voltages within a hundredth of a volt.

Anybody who looke at the setup would be a ditule doubtful about whether the electrons had velocities that were fixed and definite within 1/100 of a volt because this is not exactly \& homogeneous field The distance was only about 5 mm in which they were moving along together.

Well, in his talk, a few other things came out that were very interestigg. One was that the percent* age of capture way always aroundi 80%. The curves would eome along like this as a function of voltage (Fig. 2). The curve would come along at about 80\% and there would be a marp peak up here and another sherp peak here and, well, all the peaks were about the aame belgbt.

Well, we asked, how did this depend upon ourrent densty? "That's'very interesting," he said, "It doesn't depentiat all upon current density. ${ }^{\text {® }}$

We asked, "How much could you change the temperature of the cathode here ${ }^{7 *}$

Well," he said, "that'm the queer thing about it. You can change it all the way down to room temperature. " (Laughter)
"Well, " I said, "then you wouldn't have any electrons."
"Oh, yes," he sald, "if you check the Hichardson equation and caleulate, you'll find that you get elsetrons even at room temperature and those are the ones that are captured.
"Well," I said, "there wouldn't be enough to com" bine with all the alpha particles and, besidee that, the alpha particles are onily there for a ahort time as they pass through and the electrons are a long way apart at such low eursent densities, at 10^{-20} amperea or an " (Laughter)

He andd, Thit zeemed \mathbf{H} ke quite agreat diffleulity. But," he maid, "you see it isn't so bad because we now know that the electrons are waves. So the electron doesn't bave to be there at all in order to combine with momething. Only the wavea have to be there and they can be of low intenaity and the quantum theory eauses all the electrons to plie in at just-the Mght place where they are needed. ". So be saw on difficulty. And so it went

Well, Dr. Whitary 21 ke . and these were experiments, veri careful expertmentr, described in great detall, and the results seemed to be very interegtiag from a theoretical potnt of view. So Dr. Whitney suggested that he would like to eee thene experiments repeated with a geiger
counter Instead of counting seintillations, and C. W. Hewlett. who was here working on geiger counters, had a setup and it was proposed that wo would give him one of these, maybe at a cost of aeveral thougand dollart or wo for the whole equipment, so that ho could get better data. But I was a little more cautious. I said to Dr. Whitney that bofore we actually give it to him and just turn it over to him. It would be well to go down and take a look at these experiments and see what they really mean. Well. Hewlett was very much interested and I was interested so only about two days later, after this colloquium, we went down to New York. We went to Davis's Laboratory at Columbla University, and we found that they were very glad to see us, very proud to show us alli thetr resuits, 80 we atarted in early in the morning.

We sat in the dark room for half an hour to get our eyes adapted to the darkness so that we could count scintillations. I said, first I would like to see these scintillations with the field on and with the field ofl. So I looked in and I counted about 50 or 60. Hewlett counted 70, and I counted aomewhat lower. On the other hand, we both agreed substantially. What we found was this. These acintillations were quite bright with your eyes adapted, and there was no trouble at all about counting them, when these alpha particles struck the screen They came along at a rate of about 1 per second. When you put on a magnetic field and defiected them out, the count came down to about 17, which was a pretty high percentage. about 25 background. Barnes was bitting with us, and he said that's probably radioactive contamination of the ocreen. Then, Barnes counted and bo got 230 on the first count and about 200 on the next, and when he put on the fleld it went down to sbout 25. Well, Hewlett and I didn't know what that meary but we couldn't aee 230. Later. We undergtood the reason.

I had seen, and we discussed a little at that point, that the eyeplece was such that a E you looked through, you got some fleshes of light which I took to be flashes that were just outside the field of fiew that would give a diffuse glow that would be perceptible. And you could count them as eventa, They clearly were not particles that struck the ecreen where you saw it, but nevertheless. they seemed to give a diffuse glow and they came at diserote intervals and you could count those if you wanted. Well. Hewlett counted those too and I didn't. That accounted for sime difference. Well, we dida't bother to check into this. and we went on.

Well. I don't want to opend too much time on this experimeat. I have a 22 -page letter that I wrote about these things and I have a lot of notes, The gist of it was this. There was a long table at which Barnes Fas sitting, 2na he had another table over here where he had an assistant of his named Hull who sat here looking at a big seale voltmeter. or potentionieter really, but it had a seale that went from one to a. thousand volts and on that scale that wert Irom one to a thousand, he read hundredths of a wolt, (Laughter) He thought he might be able to do al little better than
that. At any rete. you could interpolete and put down figuret, you know. Now the room wat dark except for a uttio light here on which you could read the acele on that meter. And it was darly exoept for the dial of a clock and he courated seintilations for two minut

He said he elways counted for two minuter. Actually, I had a wtop watch and I checked him up. They sometime were as low as one minute and fen seconds and aometimes one minute and fifty-five seconds but he counted them all as two minutes, and yet the regulta were of high accuracy!

Weil, we made various augestions. One was to tarm oft the voltage entirely. Well, then Barnes got some low valuea around 20 or 30 , or eometimes as high as 30. Then to get the conditions on a peak he edjusted the voltage to two hundred and -2 , well eome of those resdings are interesting; 325. 01. That's the figure I put down end there he got only a reading of 52 , whereas before when he was on the peak, he got about 230. He didn't like that very much so he tried changing this to . 02; a chenge of one bundredth of a polt And there he got 48. Then he went in between. (Laughter) Titey fell off, you nea, co he tried 325, 015 and then be got 107. So that was a peak.

Well a Uttle later. I whispered to Elull who was over here adjusting the voltage, holding it constant. I euggested to htra to make it one tenth of a volt diflarent Barnen didn's know this and he got 96 , Well. When I suggeated this change to Hull, you could see tramediately that he was amized. He sadd, "Why; that's too big a change. That will put it way off the peak, " That was elmost ane tenth of a volt, you see. later I auggested taking a whols volt. (Laughter)

Then we had lunch We gat for hall an hour in the dark room no ze not to spoll our ayes and then we bad some readinge at zero volta and then we went back to 325. 03. We changed by one hundredth of a volt and there he got 110. And now he got two or three readings at 110.

And then I played a dirty trick I wrote out on a eard of paper 10 differeat sequences of V and $0 . I$ meant to put on a certain voltage and then take it off again. Later I reallzed that that wasn't quite right becauge when Hull took off the voltage, he sat beck in hia chair--there was nothing to regulate at zero, so he didn't Well, of course, Bernes saw him when: ever he sut beck in his chaif. Although. the light wasi't very bright, the could ace whether he wea sitzing beck in his cr-alt or not so he know the voltage Wagn't on and the result was that he gote correopondIng result. So later " mhiopered, nDon't let him know that you're not readi. fo" and I anked him to change the roltage from 325 down to 320 go he'd have a omething to regulate and I maid, "Regulate it juat an carefully as if you went witting on a peak " go he played the part from that ime on, and from that time on Berrea' readinga hid nothiag whatevor to do with the
voltages that were applied. Whether the voltage was et one value or another didn't make the alightest difforence. Arter that he took twelve readings, of which about half of them were right and the other half were Wrong, which was about what you would expect out of two sets of velues.

1 endd, "You're through You're not messuring anything at all. You never bave measured anything at all"
"Well," he sald, "the tube wat gasay. (Lnughter) The temperature has changed and therefore the nickel plated must have deformed themalves so that the electrodes are no longer lined up properly."

NWell, " I said, "isn't this the tube in which Davis said he got the earne results when the fllament wat turned off completely?
"Oh, yea," he eaid. "but we siwaya made blanks to check ourselves, with and without the voltage on"

He tmmediately--without giving any thought to it--he immediately had an excure. He had a reason for not paying any attenition to any wrong reaults. It' just was built into him. He just had worked that way all along and always would. There is no question but what he is honest; he belleved these things, absolutely.

Hewlett stayed there and continued to work with him for quite a walle and I went in and talked it over with Davis and he was simply dumblounded, He couldn't belleve a word of it. He sajd, "It absolutely can't be," he said. "Look at the way we found those peaks before we knew anything sbout the Bohz theory. We took those values and calculated them up and they checked exactly. Later on, after wo got confirmation, in order so nave tima, to see whether the peaks wert there we would calculate ahead of time." He was so aure from the whole history of the thing that fit wes utierly imporabible that there never had been any measurements at all that he just wouldn't belleve it.

Well, he had just read a paper before the Research Laboratory at Schenectady, and he was going to fead the paper the following Saturday before the National Academy of Sciences; which he did, and gave the whole paper. And be wrote me that he-was going to do 80 on the 24 th, I wrote to him on the day after I got back Our letters crossed in the malls and'he said that he had been thinking over the verious thinge that I had told him, and his confldence wasn't shaken, so te went ahead and presented the paper before the National Academy of Sciences.

Then I wrote him a 22-pege letter giving all our data and showing really that the whole approach to the thing wea wrongi that he was courting halluctmations, which I find is common among people who Work with aciatillations if they count for too long. Barmes counted for ain hours a day and is never fatigued ham. Of course it didnli fatigue him, baeauge it was all made up out of his head. (Laughter) He
told us that you mustn't count the bright particles. He had a beautiful reason for why you muatn't pay any witemion to the bifght flashes. When Hewlett tried to eheck his dare he said. "Why, you must be counting those bright flashes. Those things are only due.to radioactive contamination or something else. "He had a reason for rejecting the very essence of the thing that whe important So I wrote all this down in this letter and I got no response, no enoouragerrent. For a long time Davis wouldn't have anything to do with it He wept to Europe for a six months leave of absence, came back later, and I took up the matter with him agajn (1)

In the meanticne, I sent a copy of the letter that I had written to Davis to Bohr asking him to hold it confidentisl but to pess it on to various people who would be trying to repeat these experiments. To Professor Sommerfeid and other people and it headed off a lot of experimental work that would have gone ori. And from that time on, nobody ever made another experiment arcept one man in England who didn't know about the Jetter that I had written to Bohr. (2) And he was not able to confirm any of st. Well, a year and a half later, in 1031, there was just a ahort iittle article in the Physical Review in which they fay that they haven't been able to reproduce the effect.(3) "The reaults reported in the earlier paper depended upon observations made by counting scimillations Fisually. The scintillations produced by alpha particlea on a zing oulfide screen are a threahold phenomenon, it is possible that the number of counts may be influenced by external auggestion or autonuggestion to the observer," and later in that paper they said that they had not been able to check any of the older data. And they didn't even say that the tube wee gasy. (Laughter)

To me, the thing is extremely interesting, that men: perfectly honest, enthusiastic over their work. can so completely fool themselves. Now what was It about that work that made it so eaby for them to do that? Well, I began thinking of other thingg. I had seen R. W. Wood and told him about this phenomenon because he's a good experimenter and doesn't make guch mistakes himaelf very often, if at all. And he told me about the N-rays that he had an experience with back in 1904 So I looked up the data on the N-Taye. $(4,5$)

N-rays

In 1903. Blondlot. who was a woll-thought-of French setentat, member of the Academy of Sciencea, was experimenting with x-rtyy at almost everybody was in those days. The effect that he observed was samething of this eort. I won't give, the whole of it. I'll just give a few outetanding points. Fe found that if jou have a hot wire, a platinum. wire, or a Nermat filament or arything that's heated very hot inside an iron tube and you have a window cut in it and you have a piece of aluminum about $1 / 8$ of an tach thiok on it, that some fays come out through that aluminum window. Oh^{O}, it can be es much an two or three inchea
thick and go through aluminum, theae rays can, but not through iron. The rays that come out of thite little window fall on a falntly $\dot{\text { flimminated object. so }}$ that you can just barely see it. You must sit in a dark room for a long time and he used a calctum sulfide sereen which can be tilumanated with light and gave out a very faint glow which could be seen in a dark room. Or he used a source of light from a lamp shining through a pinhole and maybe through another pinhole so as to get a calnt light on a white surface that was just barely visible.

Now he found thet if you turn this lamp. on so that theer rays that come out of this little sluminum slit would fall on this piece of paper that you are looking at, you could see it much better. Oh much better, and therefore you could tell whether the rays would go through or not. He aald later that a great deal of skill is needed. He said you mustn't ever look at the source. You don't look directly at it. He anid that would tire your eyea. Look away from it, and he said pretty soon you'll see it, or you don't see it. depending on whether the N -raya are shining on this piece of paper. In that way, you can detect whether or not the N-rays are acting.

Well, he found that N -rays could be gtored up in things. For example, you covild take a brick. He found that N-rays would go through black paper and would go through alumimum. So he took some black paper and wrapped a brick up in it and put it out in the street and let the sun ghine through the black paper into the brick and then he found that the brick world store N-rays and give off the N-rays even with the black paper on it. Hee would bring it into the laboratory and you then hold that near the piece of paper that you're looking at, faintly Illuminated, and you can bee it much more accurately. Much better, if the N-rays are there, but not if it's too far away. Then. he would have very faint strips of phosphorescent paint and would let a beam of N-rays from two slita come over and he would find exactly where thin thing intensified ita beam.

Well, you'd think he'd make tuch experiments as this. To ase if with ten bricks you got a atronger effect than Jou did with one. No, not at all. He dida't get any gtronger effect. It didn't do any good to inorease the Inteneity of the lighe. You had to depend upon whether you could set it or whether you couldn't see it. And there, the N-ray were very fmportant.

Now, a little later, he found that many kinde of things gave oft N-raye. A human being gave off N-rays, for example. If someore else came into the room, then you probably could see it. He also found that if comeone made a loud noise that would apoll the elfect. You had to be silent. Heat, however, fincreased the effect, radiant heat, Yot that wasn't N-raje iteelt. N -rays were not heat because heat wouldn't go through aluminum. Now ho found a very intereating thing about it wan that if you take the briok that's giving off \mathbb{N}-rays and hold it elose to your head it goes
through your akull and it allows you to wee the paper better．Or jou cat hold the brick near the paper． thet＇s all right 200.

Now he found that there were some other things that were ilke negative N－raje．He called them N^{1-} rays．The effect of the N－rays to to decrease the viafibility of a faintly illuminated silt．That worke too，but only if the angle of incidence in right．If you look at it tangentially you fird that the thing ir－ creases the intenaity when you look at it from this point of view．It deareases if you look at it normally and it increages if you look at it tangentially．All of which is very finteresting．And he publlaned many papers on th．One right after the other and other people did too，confirming Blondiot＇s reaults．And there were lots of papera published and at one time ebout hall of them that were confliming the regults of Blondiot．You ace，N－rays ought to be tmportant because x－rays were known to be importam and alpha rays were，and N－crays were somewhere in be－ twecen 00 N－rays muat be very important．（Laughter）

Wey．R．W．Wood heard bbut these experin ments－～everyboty did more or lees．So R．W．Wood Went over there and at that time Blondlot had a priam， quite a large prigio of aluminump with a 60° angle and he had a Nernst clament with a litile silt about 2 min wide．There were two silts， 2 mm wide each． This beam fell on the prosma and was refracted and he meanured the refractive index to three aignificant figures．He found that te wasn＇t monochromatic， that there were several differant components to the N－rays and he fornd diflerent refractive indicea for esch of these componente．He could measure three or four different refractive indices each to two or three aigntileant figares，and he wan repeating nome of these and showing how accurately they were re＊ peatable，ahowing to to R．W．Wood in this dark room．

Well，atter this had gone on for quite a while， and Wood found that he was checking these results very accurately，measuring the position of the Ittile plece of paper within a tenth of a millimeter although． the slits were 2 mm wide，and Wood asked him about that He said，＂Eow？How aould you，irom just the optice of the thing．With alita two millimeters wice， how do you get a beam so．flre that you can detect its position within a tenth of a millimeter？＂

Blondiot said，＂rhat＇s one of the fascinating thinga about the N －rays They don＇t follow the or－ dinary lawe of ectance that you ordinarily think of．＂ Ele said，＂You have to consider theese things all by themselven．They are very interesting，but you have to discover the laws that fovern khem．＂

Well．in the menpricas，the 200 b being very dark，Wood asked him to repent some of these mea－ surements which he wat ondy 100 glad to do．But in the meantime，R．W．Wood put the prism in his pocket and the results checked perfectly with what he had before．（Laughter）Well．Wood rather cruelly published that $(6,7)$ And that was the and of Blondiot．

Nobody mecounte for by what methoda he could reproduce those results to a terth of a minumeter． Wood said that he ofemed to bo able to do it but no－ body understanda that．Nobody underatanda lots of things．But some of the Germans came out lafer－ Pringaheim was one of them－－game out with an ex－ tremely interesting atory．They had tried to repent some of Blondlot＇s expertments and had tound this． One of the expertments wae to have a very falith source of Hight on a berect of paper and to make eure that you are seelng the sereen of paper you hold your hand up like thia and move it back mind forth．And if you can see your hand move back and forth then you know it is illumipated．One of the experiments that Blondiot made was that the experiment was made much better If you had some N－rays falling on the plece of paper． Pringaheim was repeating these in Germany and he found that if you didn＇t know where the paper was． Whether it was bere or here（in front or behind your hand），it worked just as well．That 1s，you could see your hand just as well if you beld it back of the paper as if you held it in front of tt ．Which is the natural thing，because thia is a threshold phenomenoh And a threshold phenomenoin meane that you don＇t know， you really don＇t know，whether you are geeing it or not But if you have your hand there，well．of course． you see jour hand because you know your hand＇s there， and that＇s fust enough to win you over to where you know that you see it．But you know it just as well it the paper happens to be in front of your＇hame instead of in back of your hand，becauge you don＇t know where the paper is but you do know where your hand in． （Laughter）

Mitogenetic Pays

Wall，jet＇s go on About 1923，there was a whole gemes of papers by Gurwitach and others．There were hundreds of them published on mitogenetic rays．${ }^{(8)}$ There are still a few of them being publiahed．I don＇t know how many of you have ever＇heard of mitogenetic rayn．They are rays that are given off by growing planta．living things，and they were proved．accord－ ing to Gurwitach，that they were aomething that would go through quate but not through giaga．They aeemed to be some sort of ultraviolet light．

The way they stucied these weat thit．You had some onion roots－oonions growing in the dark or in the light and the roots wril grow itraight down．Now If you had another onion root nearby，and this onion root was growing down through a tube or something， going atraight down，and another onion root oame nearby，thia would develop ato that there were more celle on one oide than the other．One of the teste they had made at first whe theit thie root would berid away．And as it grew thic would change in direction Which was evdience that something had traveled from one onfon root to the other．And if you had a plece of quarit in between it would do it，but if you put glase in between it wouldn＇t So this radiation would not go through giags but it would go through quartz．

Well，it started in that way．Then everything
gave off mitogenetio rays, mything that remotely had anything to do with iving thinge. And then they started to use photoelectric celle to chack it and whatever they did they practically always found that if you got the conditions just alght, you could just detect it and . prove it. But if you looked over those photographic plates that showed this ultraviolet light you found that the amount of light was not much bigger than the natural particles of the photographic plate 80 that people could have different opinions as to whether it did or didn't show this effect and the result what that less than half of the people who tried to repent these experiments got any conficmation of $1 t$; and so it went. Weil, i'll go on before I get too far along.

Characteristic Symptoma of Pathological Science

The characteristics of this Davis-Earnes experiment and the N-rays and the mitogenetic rays, they have things in common. These are cases where there is wo dishonesty involved but where people are tricked into false resulte by a lack of understanding zbout what human beinge can do to themselvea in the way of being led astray by aubjective effecta, wishful thinking or threahold foteractions. Theae are examples of pathological ycience. These ace things that attracted a great deal of attention Unually hundreds of papers have been published upon them. Sometines they have lasted for fifteen or twenty yenre and then they gradually die away.

Now, the characteristic rules are these (aee Table It:

TABLE I

Symptoms of Fathological Science:

1. The maximum effect that is observed is produced by a causative agent of barely detectable intensity. and the magritude of the effect is aubstantinlly independert of the intengity of the cause.
2. The effect is of a magnitude that memains close to tha Hunlt of detectability; or, many measuremantm are necesenry because of the very low statistical aigniffcance of the reaults.
3. Clatits of great aceurscy.
4. Fantantic theories contraty to experience.
5. Criticiams are met by ad hoc excusea thought up on the apur of the moment.
6. Ratio of supporters to critics rises up to somewhere near 50% and then falls gradually to oblivion.

The mandmum affect that is observed is produced by A cangative igent of barely delectable intenaity. For oxample, you might thinit that if one onion toot would affeet another due to ultraviolet light, you'd think
that by putting on an uitraviolet mource of light you could get it to work better. On nol OH NO! If had to be just the amount of intensity that'品 givon off by an onton root. Ten onion rootw wouldn't do any better than one and it doesn't maka any difterence about the distance of the sourcti. It doesn't follow any inverge aquare law or anything as simple as that, and so on In other words, the effect is independent of the intensity of the cause. That was true in the mistogenotio rays, and it wae true in the N-rays. Ten bricks didn't have any more effect than one. It had to be of Jow intensity. We know why it had to be of low intensity: so that you could fool yourgelf so easily. Otherwise, it wouldn't work Davis-Barnes worked just as well when the thament was turned off. They counted scintillations.

Another cheracteristic thing about them all is that, these observations are near the threshold of visibility of the eyes. Any other sense, I auppose, would work as well. Or many meizsurements are necessary, many measurements because of very low gtatistical sipnificance of the resulise in the mitogenetic rays particularly, it akgeted out by ceeing something that was bent Later on they would take a hundred onion roots and expose them to something and they would get the avorage position of all of them to see whether tho averege had been affected a litile bit by an apprectable amount. Or statiatical measurements of a very small effect which by taking large numbers were thought to be aigalficant. Now the trouble with that is this. There is a habit with most people, that when measurements of low signifcance are taken they find means of rejecting data. They are right at the threshold value and there are many reasons why you can diacard data. Davis and Earnes were doing that right along If things were doubtful at all why they would discard them or not discard them depending on whether of not they fit the theory. They didn't know thait, but thet's the way it worked out.

There are claims of great accuracy. 'Barnes ws golng to get the Rydberg constant mare accurately than the apectroscopiste could. Great sensitivity or great apecificity, we'll come acroas that particulari: in the Allison effect.

Fantagtio theories contrary to experience. In $\$$ Bohr theory, the whole ide of an ejectron being cap tured by an alphe particle when the alpha particlea aren't there just because the waves are there doesn' make a very sensible theory.

Criticiame are met by ad hoc excugee thought ul on the spur of the momert. They alwaye had an antwer--alwayg.

The ratio of the supportera to the ofritice riges up somewhere near 50¢ and then falle graduany to oblivion The oritics can't reproduce the effects. Only the supporters oould do that. In the end, nothi, Was alvaged. Why should there be? There isn't anything there. There never wes. Thnt's
characteristic of the effect．Well，IIl go quickly on to eorne of the other things．

Alligon Effect

The Allison effect is one of the mont extraor－ dinary of all（9）It atarted in 1927．There were hun－ dreds of papers published in the Ameriean Physical Society．the Phyajcal Review，the Joumal of the American Chemical Society－－hundreds of papers． Why，they discovered ifve or six different elements that were listed in the Digcoveries of the Year．There were new elements discovered－Alabamine，Vir－ ginium，whole series of elementa and isotopes were discoyered by Allison

The effect was very eimple．There is the Faraday effect by which a beam of polarized light passing through a ilquid which is in a mignetic field is rotated－－the plane of polarization is sotated by a jongitudinal magnetic fleld．Now that idea has been known for a long time and it has a great deal of im－ portane in connection with light shuttere．At any rate，you can let 2 ght through or not depending upon the magatic field．Now the oxpertionent of Allison＇s Was this（Fige 3ג They had a glass cell and a coil of wire around it $\left\langle B_{1}, B_{1}\right\rangle$ and you have wires coming up here，a Leeher system．Here you have a epark gap，so a flash of light comes through here and goep through a Nicel persm over here axd another one over here，and you adjust this one with a Hguid Iike water or carton dieulide or aomething like that in the cell so that there was a steady light over here． If you have a beam of light and you polarize it and then you trami on a magnetic tield，why you bee that jou could rotate the plane of polarization There will be an tncrease in the brightaesa of the light when you put a magnetic field on here．Now they wanted to find the time delay，how long it takes．So they had a spark and the asme field that produced the opark in－ duced a current through the coil，and by sliding this wire nlong the trolley of the Lecher system，they could cause a compeasating delny．The sensivity of this thing was so great that they could detect differ－ ences of about 3×10^{-10} geconda．By looking in here

Fig 3 Diagram of apparatus and comsections．［Copy from F．Allison Fhys．Rev．．30， 68 （1927），Fig．1f
they could see these nashes of light．the light from the apniks，and they tried to decide as they changed the position of this trolley whether it got brighter or dimmer and they set it for a minimum，and meanured the position of the irolley．They putinhere－in this glase tube－－they puf a water solution and added some ealt to it．And they found that the time lag was changed，so that they got a change in the time lag de－ pending upon the presence of salts．

Now they firat Yound－－very quickly－－that if you put in a thing like ethyl alcohol that you got one char－ acteristic time lag，and with acetic acid another one， quite different．But if you had ethyl acetate you got the sum of the two．You got two peaks．So that you－ could analyze ethyl acetate and find the acetic acid and the ethyl alcohol．Then they began to atudy salt solutions and they found that only the metal elements counted but they didn＇t act as an ion That is，all potassium ions weren＇t the same，but potassium nitrate and potasaium chioride and potassium sulfate all had quite characteristic difterent polnks，that were a characteristic of the compound．It was only the positive lon that counted and yet the negative tons had a modifying effect．But you couldn＇t detect the negative lons directly．

Now they began to gee how gengitive it wae． Weil，they found that any intenaity more than about 10^{-5} molar solution would always produce the max－ imum effect，and you＇d think that that would be kind of diacouraging from the apalyticel point of view，but no，not at all．And yon could make quantitative mes－ eurements to about three significant tigures by di－ luting the solutions down to a point where the effect disappeared．Apparently，it disappeared guite sharply when you got down to about 10^{-6} or $3,42 \times 10^{-4} \mathrm{in}$ concentration，ot something of that sort and then the effect would disappear．Otherwise，you would get it．so that you could detect the limit within this extraordinary degree of accuracy．

Well．they found that thinge were entirely dif－ ferent，even in these very dilute solutions，in podium nitrate from what it was with sodjum chloride． Neverthelese，it was a characteristic which depezded upon the coropound even though the compound was disassociated into lons at those concemtrations． That didn＇t make any difference but it was fact that was experimentally proven．They then went on to lind that the isotopes all stick tight out like Bore thumbs with great regularity．In the case of lead， they found sixteen isotopes．These ibotopas were quite regularly spaced so that you could get 16 different positions and you could assign numbere to those to that you can dientify them and tell which they are．Unfortunately，you couidn＇t get the con－ centration quantitatively，even the dilution method didn＇t work quite right because they weren＇t all equaily aensitive．You could get them relatively but oniy mpproximately．Well，it became important as a means of detecting elements that hadn＇t yet been disoovered，Hke Alabamine and elements that ary now known，and filling out the periodic table：All the
elements in the periodic table were nuled out that way and published．

But a Ittie later，in 1945 or 46．I was at the University of California．Owen Latimer who is now Head of the Chemisiry Department there－－not Owen Latimer，Wendell Lathoer－had had a bet with G．N． Lewis（in 1932）．He aidd，＂There＇s something tunny about this Allison effect bow they can detect isotopes．＂ He had known eomebody who had been down with Allison and who had been very much impressed by the effect and he said to Lewis，＂I think I＇ll go down and see Allinon，to Alabsina，and see what there is in it．I＇d luke to use some of these methods．${ }^{\circ}$

Now people bad begun to talk about apectroscopic evidence that there might be traces of hydrogen of atomic weight three II wasn＇t apoken of an tritium at that time but hydrogen of atomic weight three that might exist in emall amoupts．There was a ditile spectroscoplo evidence for it and Latimer asid，＂Well． this might be a way of ftading it．I＇d like to be able to find it＂So he went andiscent three weeks at Alabama with Allison and before he went he talked is over with G．N．Lewls about what he thought the prospecta were and Lewia said，＂Illl bet you ten dollars you＇ll tind that there＇s nothing in it＂And 80 they had this bet on He went down there and he came back．He set up the apparatus and made it work 50 well that G．Ni．Lewis paid him the ten dollara， （Leugheer）Ele then diacovered tritium and he pub－ lished an article in the Physical Review．（10）Justa little short note saying that using Allison＇s method he had detected the laotope of hydrogen of atomic weight three．And he made some nort of eatimate as to dits concentration

Well．nothing more was heard about it I saw him then seven or eight years after that．I had written these things up before，about this Allison effect，and I told him about this point of view and how the Allison effect fits all these characteristics．Well， I know at that time et one of the meetings of abe Ameriean Chemical Society there was great discuseion as to whether to socept papers on the Allison effect． There they dectdod No，they would not necept any more papers on the Allison effect；and I guess the Physical Review did toa At any rate，the American Chemical Society dectied that they would not accept eny more mamuscripts on the Alligon effect How－ ever，afteg，they had adopted that as a firm policy． they did accept one more a year or two later because here was a case where all the people in the facuty here had ohosen twenty or thirty different solutions that they had made up and they had labeled thera all eecretly and they had taken every procaution to make sure that nobody knew what was in these solutions． and they had given them to Allison and he had ueed his method on them and he had gotton them all right， although meng of them ware at concentretion of 10^{-6} and 80 on，molas．That was sufficiently defi－ nite－－good experimental methods－and it was accepted for publication by the American Chemical Society but thet was the last．（11）You＇d think that would be
the beginning，not the end．
Anyway，Latimer meid，＂You know，I don＇t know what was wrong with mo at that timo，＂He uaid， ＂After I publiohed that paper I never aould reptat the experiments again I haven＇t the least idea why．＂
＂But，＂he sutd．＂rhose results were woaderful，I showed them to G．N．Lawis and we both agreed that it wae all right．They were clean cut I checked myself every way I knew how to．I don＇t know what else I could have done，but jater on I just couldn＇t ever do it egain＂＂

I don＇t know what it ia．That＇s the kind of thing－ that happens in all of these：All the people who had anything to do with these things find that when you get through with them－－you can＇t account for Bergen Davis akying that they didn＇t calculate those thinge from the Bohr theory，that they were found by eme－ plrical methods without any idea of the theory．＇Barnes made the experimente，brought them in to Davis，and Davis calculated them up and discovered all of a gudden that they fit the Bohx theory．Ee baid Barnes didn＇t have anything to do with that．Wen．take it or leave it，how did he do it？It＇s up to you to decide． I can＇t aecounif for it．All I know IE that there was nothing salvaged at the end，and therefore none of it Wag ever right，and Barnes never did see a peak． You can＇t have a thing halfway right

Extrasensory Perception

Well，there＇a Rhino，I spent a day with Rhine at Duke Uaiversity at the mesting of the Ame rican Chemical Society，probably about 1934．Rhine had published a book and I＇ll just tell you a few thinga． First of all，I went in and told Rhins these thangs． I told him the whole atory．I aald these things （Table I）are the characteristics of those things that are＇t sa．They are all characteristics of your thing too．（Laughter）He agid，＂I wiah you＇d publish that I＇d love to have you publish it．That would stir up an awful lot of interest，＂He said，＂I＇d have more gradutite students．We ought to have more graduate students．This thing in no important that we ahould have more people realize its importance．Thif should be one of the biggest departmente in the univarity．＂

Well．I won＇t tell you the whole atory with phine， because I talked with him all，day．He usesi cards which you guess at by turning over．You have extra－ sensory perception You have 25 earde and you deal them out lace down，of one person looks at them． and the other person on the other side of the acreen looks at them and you read his mind．The other thing in for nobody to know what the cards are，in which eage they are turined over without anybody looking at them．You record thein and then you look them up and wee ti they chook and that＇s telepathy，of cleirvoyance rather．Telepathy is when you can read another peraon＇s mind．

Now a later form of the thing would be for you to decide now and write down what the carda are going
to be when they are shufiled tomorrow. That works too. (I,aughter)

All of these thinge are nice examples where the magnitude of the effect is entirely independent of magnitude of the cause. That is. the expectments Forked fust as well where the shuming da to be done tomoriow an when it was done somo time ago it doesn't meko any difference in the realita, There is no appreciable difference between clairvoyance and telepathy. Although, if you try to think of the mechanisms of the two, it should be quite different. In order to get the carda to telegraph you all the information that's in them as to how they are erranged, and 80 on, when they are stacked up on top of each other and to have it given in the right sequence, it is Father difficuit to think of a mechanigm. On the otber band. it is conceivable that there may be come sort of mechariam in the brain that might zend out some sort of unknown messages that could be picked up by some other brain. That's a different order of magnitude. : A different order of difficulty. But they were all the same from Rhine's polm of view.

Well, now, the ifttie things that I have ere these. There are many more I could give you ghine paid being in quite a phillogophicdl mood, "It's funny how the mind tries to trick yous" He sald. "People don't like these experiments. I've had mullions of these cases where the average ia about 7 out of 25. . Xou'd expect $\$$ out of 25 to come fight by chance and on the grand everage they come out, oh, out of minlions, or hundreds of millions of asaes, they average around 7. Well. to get 7 out of 25 would be a common anough occurrence but if you take a large number and jou get 7, well you doubt the statistica.or the statisticel application of, above all, what I think of and I want to give you reasons for thinking. is the rejection of 2 amall percentage of the data.

I'll go firyt, before I get into what Rhine asid, and may thier Davsd Langmuir, a nephew of mine. Tho was in the Atomie Energy Commission, when he Was with the Radio Corporation of America a few yeare \&go, he and a group of other young men thought they would like to check up Rhine 's work so they got some cards and they apein many evenings together finding how these cards turned up and they got well above 5. They began to get quite excited about it and they kept 0n, and they kept on, and they were atght on the point of writigg Rbine about the thing. And they kept on a little longer and things began to fall off, and fall off a ittile more, and they fell aff a little more. And after many, many, many daye, they fell down to an average of hive--grapd average- so they didnit wite to Rhtine, Now if Ruine had recelved, thitinformation that this reputable body of men had gome ahead and gotton a value of 8 or 8 or 10 after so mary griala, why te would have putititi. his book How much of that sort of thing, when you are fed friformation of that aort by people who are. . interested--how are you going to weigh the thinga that are published to the book?

Now an iliustration of how it works is this. He told me that, "People don't like me," he alaid "I took a lot of carde and aesied them up in anvelopea and I put a code mumber on the outside. and I didn't trust anybody to know that sode. Nobody! "
(A section of the apeech is miasing at thia point. It evidently deacribed some teats that gave acores below 5.) M. . . the idea of having thit thing sealed up in the eards st though I didn't trust them, and therefore to apite me they imade it purposely low, "
"Well," I said, "tbat's interesting--iateresting a lot, because you alid that you'd published a aummary of all of the date that you:had. And it comes out to be 7. It is now within your power to take a larger percentege including those circta that are wealed up in those envelopes which oould bring the whole thing back down to fire. Would you do that? ${ }^{m}$

[^0]I exid, "Are you goling to count them, are you going to reverse the aign and count them, of count them as eredita?"
"No. No," he satc.
I asid, "What have you done with them? Are they in your book?"
"No."
*Why, I thought you aatd that all your vilues were in your book, Why haven't you put those in?"
"Well," he aaid, "I haven's had time to work them up."

WWell. you know all the reoults, you told me the rosulta, "
"Well," he said, "I don't give the resulta out until I've had time to digest them."

1 asid, "How many of these thinga have yout" He showed me filing cabluets-n whole sow of them. Majbe hundreda of thousands of cards. Hic has a olling enbinet that contained nothing but these thinge that were done in mealed up anvelopes. And they were the ones that gave the.averege of tive.
.Well. we'hl let it stand at that A year or so later, he publiahed a pew volume of his book. In that, there's a chapter on the senled up cards in the
eavelopes and they all come up to around seven And nothing is siaid about the fact that for a long time they oame down below five. You see, he know, if they cone beiow five, he knows that isn't hair to the public to misrepresemt this thing by including those things that prove just as much a positive result as though they came above. It's just a trick of the mind that these people do to try to spite you and of courae it wouldn't be fair to poblieh (12)

Flytag Saucers

I'm not going to talk about hying baunera wery much except just thia. A fyying aaucer is not exactly acience, although sorne acientific people have witten things about them. I was a member of Gemeral Schwartz's (?) Advisory Committee arter the war, and we held some very secret meetings in Wabhington in which there was a thing called project SIGN. I think it's e-i-g-n. Anyway, it was hushed up. it was hardly even taliked about and it wet the flying saucer stuff, gathering the evidence, and weighing and evaluating the date on hyying asucers. And he said, "You know, it's very serious, it really looks as though there is something there." Well, I told him afterwards--I told him this atory here. I aald that it meems to me from what I know about flying saucers they look like this sort of thing. Well, any" way. it ended up by two men being brought to Schenectady with a bolled down group of about twenty or thitty best cases from humdreds and hundreds that they knew all about, I didp't writt them all, I said to pick out about thirty or forty of the beat cases, and bring them to Schaneotady, and we'll apend a couple of day going over them, and he did.

Mont of them were Venus seen in the evening through a murky atmosphere. Venus can be seen in the middle of the day af you know where to look for it. Almost any olear bright day enpecially when Vonus is at its brightest, end sometimes it's caused almost panic. It har caused tratfic congestion in New York City when Vemus is seen in the evening near some of the buillings around Timee Square and people thought it was a comet about to collide with the earth, or somebody from Mars. or something of that sort: That was a long time aga. That was thirty or forty years aga Verus atill causea flying eavcere:

Well, they only had one photograph or two photographs taken by one man. It looked to me $14 k$ a piece of tar paper when Ifret anw it and the two photographa showed the thing in entirely different phapes. I asked for more details about it. What was the weathes at the time? Well, they didn't know but they'd look it up, And they got out some papers and there it was. It is. 9 taken about fifteen or twenty minute efter a vic at thunderstorm out in Ohio. Well, what's more matural than some piece of tar paper picked up by a little mindature twister and baing carried a few the wand feet up into the clouda and it wat coming dowry that's all. So what could it be? "But it was going at an enormove apeed" Ot oourse the man who gav :A didn't have the veguest liea of
how tar way it was. That's the trouble. If you see something that's up in the aky. a light or any kind of an object. you haven't the vaguent iden or how big it is. You can guess a nything you like about the opeed, You ask people how big the moon is. Some asy it is as big as your fist, or as big as a baseball. Some any as big es a house. Well, how big is it really? You can't tell by looking at it. How can you tell how bige flying saucer is? Well, anyway. alter I went through these things I didn't find a eingle one that made any sense at all. There wan nothing consiatent about them. Thay were all things that auffered from these facts. They were all aubjective. They wereall near a threshold. You don't know what the threshold is exactiy in detecting the veloeity of an object that you see up in the sky, where you don't know whether it's a thousand feet or ten thousand feet or a hundred thousand feet up. But they all fitted in with this general pattern, momely, that there doesitt seem to be any evidence that there is anything in them. And, anyway. thesemen ware convinced and they ended project SIGN. And leter the whole thing was declassified and the thing was written up by the gaturday Evening Post abour four or tive years ago. At any rate, that seemed to be the ond of it But, of course. the rewspepers wouldn't let a thing like thet die. (Laughter) it keeps coming up again, and again, and agajn, and the oid story keeps coming back again. It always has. It's probably hundreds of years old a מyway.

Well. I think that's about all. If there are any queations. I'd be happy to say more.

Queation Perfod

(W, C. White)

People may want to go now because it's quarter after five khough I'm aure Dr. Langmuir would be glad to discuse this some more.

I was going to add another one to these characteristics. Isn't the desire for publioity another of the characterlatics?
A. Well, it is in Rhine's case. There is no question about that Rhine, I think, thinks he'm honest. but I know perfectly well that he-evverything he eays, he talk= about the importance of getting more atudents, and the importance of having the people in his own univeraity underatend the importance of this thing and 80 on And then the fact that no man in hie aenses could diecard data the way th did those thinge sealed up in the cerds. Sol don't hold a very high value on his work Now the other peopla, I don't have the slighte doubt but what these men are really hosest. They are sincere. They loved publicity; Allison, of course, loved to publish about new elements one after the other. These were published by the American Chemleal Society, and Lesimer liked to publish his little artiele on trifium, the firat
discovery of tritium So Ithink that has some－ thing to do with it．but I don＇t think that that＇s the driving force．I think the diving force is quite a nommal scientific desire to make die－ coveriea and to understand things．Davia and Barnes wore finding＇thinge and it was wonderful whlle it lasted．

Q．（Luebhatskyh I just wanted to point out that pox－ haps the nextert comment on tem four was made at the Univarsity of California when this business was diseussed．at the Research Conference there in tbout 1930 or 32．Prolessor Birge naid that this effect was just Alision wonderland．（Laughter） （Langmulr）：Did you ever hear Latimer talk about is？
（Nebhafaky）Well，Latimer was pushing it and you＇ve got to allow for Latimer＇a pervonsiveness． There were people on the faculty that I＇ra sure never believed it．
（Lengmuir）But it wed fungy that G．N．Lewis would believe it．
（Liebhalskyt：Well．you know that there is a very close personal relationship petween Latimer and Lewis．
（Lengmuir）I underztand that Lewis got back his ten dollars．（Laughter）

Q．How would an analysis like thia apply to religious experiences？

A．Well，the method of approach to religious questions－al lot of people think you don＇t want to have any evidence，you want faith；and if that＇s your atatiude why I don＇t think this thing applies． But if ame religious performer of a certain belief tries to argue with me，my reactions would be very much like this．

Q．In eetting up these criterin，you miny in a way ilmit the posaibilities of scientific inveatigation It occurred to me that suppoae something happened in the heavens－－gome antronomical event－－that nobody had ever seen before．Something that bappena once in a million yearn．Really．Imean， supposing that you could tell．It would fit the tame criterion，wouldn＇t it？

A．No，I don＇t want to depend on any one of these． I＇ve been reading the life of Pasteur．Pasteur had the idea of germe．Everybody thought that he was a fool－－thought there couldn＇t be eny sense to the tubject．It took a long time beforo germs were belleved．Prople beliaved in spon－位geous generation of new formin of ufe．They happened spontaneously not by the inifoduction of apores from the outalde but apontaneously $=-$ and Pasteur had to fight that The teat of time is the thing that ultimately ahecke this thing． In the end，something is alvaged．You can＇t
do that while the thing is growing，while the thing is being discussed，but in the end you do know that the Aufison affect is gone．It never would be anything．And that＇s what I mean about these other thing ．We＇ve watted long enough now．This whole pattern of things fits together with the sdea that you＇re at a threahold． You＇re right at the point where thinga are very difflcult to see－－that＇s what I want to bring out． Now，in Pasteur＇s experimente，when he killed anthrax in animals，he got 25 right out of 25. The aheep all died or they didn＇t die There Fas no threshold value about it，People who didn＇t know anything about it might have thought so，but when they saw one experforent they were convinced．

One more question－
Q．These criteria that you put down would apply very，well to the theory of relativity with mean－ surements of pery amaly fractions of a degree of arce in the neighborhood of a bright diak of the sun

A．Yea，well now take an example I＇ve often thought of．There are lots of scientific instances．They go through the same sort of atage．For instance． in Lave and Brage＇s theory of $x=r a y s$ being electromagnetic waves，When the lirst reports came out you had to keep an absolutely open mind about them．You didn＇t know but what this was just another case of wishful thinking．But how long did it take？Within three or four years they were making preciaion measurements of the wavelengths of x－reys－every，very few years． Now，that＇s just what doean＇t happen in these things．So you have to wait a little time for these things to prove themselves but I don＇t think that you will find that there＇a anything more than a superficial resemblance．Take the first experiments of the wave theory of electrons． The first evidence was very poor，and more people had to be brought in，but to me the 1 m－ portant thing was not how it looked at the time but the quickness with which those regults were reacolved as contrasted to these things that hang fire and hang fire．Now the Davis－Barrtes effect and the N－rays were quenched suddenly；but most of these other things go on，and on．and on，and on
（White）I believe that this is the latest lasting colloquium we＇ve ever had that I remember． It wae a great privilege to have such a apesker． We thank you，Dr．Lengmuis．

EPILOGUE（R．N，HaU）
Pathologieal science ls by no means a thing of the past．In fact，a number of examples can be found among current literature，and it is reasonable to auppose that the incidence of this kind of＂science＂ will increase at lemat linearly with the increase in

sclentific activity．

Professor Allison has retired，but in a recent letter he wrote that his tnvestigations of the Allison Effect have suffered long interruptions but were never abandoned，and he spends aummers and oc－ casional weekends working on it with atudents at Aubura Uoiveraity．The effect is alao being inveati－ gated under a contract with the Air Forco Aero Pro． pulsion Laboratory at the Uriversity of Dayton（90）

Flying gavedrs are still very much with us．As Langmuir said，＂OX oourse，the newspapers woulds＇t let a thing like that die．＂How right he wes！

REFERENCES

1．Eight months after the visit of Langmuir and Fewlett to Columbia and this exchange of letters， Barnez submitted a paper on the Davis－Barmes effect and it was published as＂The Capture of Electrons by Alpha－Particlen，＂Phyb．Rev．．35， 217 （1930）．

2．H．C．Webster，Natur＊，126． 352 （1930）
3．B．Davis and A．E．Barne日，Phys．Rev．．37， 1368 （1931）．

4 R．Elondlot，The N－Rays，Longmana，Green and Co．，Landon（1905）

5．J．G．McKendrick，Nature，72． 195 （1905）．
6．F．W．Wood，Nature， 70 （1004）；R．W．Wood， Physik 2．．5． 789 （1904）．

T．W．Senbrook，Doctor Wood，Harcourt．Brace， and Ca（1941），Chap． 17.

8．For a review and bibllography，see Hollander and Claus，J．Opt．Soc．Ari．．25，270－286 （1935）．

9．The following references on the Allison Effect make interesting reading：（a）F．Allison and E．S．Murphy，J．Am．Chem．Soc．，52， 3798 （1990）（b）F．Aulson Ind．Eng．Chem． 4. g（1932）．（c）S．S．Cooper and T．R．Ball， $\mathbf{J}_{\text {．}}$ Chers．Ed． 18 ． 210 （1938）；alao pp． 228 and 326．（d）M．Jeppesen and π ．M．Bell．Phyi． Rev．．47， 546 （1935）．（e）．H．F．Mudrum end B，M．Schmidt，Air Force Aero Prop．Lab． AFAPL－TR－66－52（May 1056）．

10．W．M．Latimer and F．A．Young．Phya．Rev．44， 890 （1933）．

11．This may bave referred to the paper by J，L． McGhee and M．Lawrenr，J．AmL Chem．Soc，， 54． 105 （1932）．which contains the atatement． TIn December 1930 one of us（McGhee）handed out by number to Prof．Allian twolve（to tim） unknowns which were tested by hlm and cheeked
by two espigtanta 100 percent correctly in three hourb．${ }^{\text {n }}$ See also．I．R．Ball．Phyg．Rev．，47， 548 （1035）．Who describes additional teste in Which unknowns were identifled．

12．Some more tecent diacuesion of Rhine＇s work is to be found in：（a）G．R．Price，ScL．122， 359 （1955），and replien on Janumry 8，1956，（b）M． Gaydner，Fads and Fallacies in the Name of Science，Dover（1957）．

[^0]: "Of course not," he ataid. "That would be dishossat."
 "Why would it be dishonest 7
 "The low acores are fuat an significant an the high ones, aren't thoy? They proved that there's something thera just as much, and therefore it wouldn't be fair, "

