ANALYSIS OF THE SUBJECT-MACHINE RELATIONSHIP

This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of:

The Black Vauit

The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government \& Military.

Discover the Truth at: httpi/www.theblackvault.com

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
TABLE OF CONTENTS
Page
Overview
I. Statistical Analysis of the Machine Experimental Data 1
Forward-Bakcward State Transition Analysis 1
Experimental Data Randomness Analysis 4
Best Strategy 15
II. Analysis of S2 Data Responses 16
Strategy of S2 16
Total Color Choices 16
State Transition Color Choice 19
Hit Analysis 21
Learning from Trial to Trial 21
Learning Within a Trial 20
III. Miscellaneous 30
General Trial Information 31
Machine States 31
Plots of Passes 31
Subject - Future Machine State Transition 40
Distribution of Machine State Colors for Machine 2 41
Page
Figure 1.1.a Distribution of Machine Yellows Over Trials 6
1.1.b Distribution of Machine Greens Over Trials 7
1.1.c Distribution of Blues Over Trials 8
1.1.d Distribution of Machine Reds Over Trials 9
Figure 1.2 Distribution of Machine Colors When Samples are Taken Five at a Time 10
Figure 1.3 Distribution of Machine Colors When Samples are Taken 100 at a Time 11
Figure 1.4 Distribution of Machine Reds When the Samples are Taken 100 at a Time 12
Figure 1.5 Machine Color Distribution for Machine 1 and Machine 2 on a Trial to Trial. Basis 14
Figure 2.1 S2 Color Choices 17
Figure 2.2 Plot of Number of Hits/Trial 22
Figure 2.3 Frequence Plot of Number of Hits 22
Figure 2.4 Cumulative Success Ratio of Subject (both machines used) 23
Figure 2.5 Accumulative Probability of Succsss on Machine 1 24
Figure 2.6 Accumulative Probability of Success on Machine 2 25
Figure 2.7 Hits vs Trial Number for Machine 2 27
Figure 2.8 Total Number of Hits Within a Trial 29
Figure 3.1 Selected Parameter Totals Listed by Trial Number 32
Figure 3.2 Color States of Machine 1 During the Experiment 34
Figure 3.3 Color States of Machine 2 During the Experiment 35
Figure 3.4 Total Number of Passes of a Trial 36
Figure 3.5 Total Number of Passes Summed of Sample Number 37
Figure 3.6 Plot of Number of Hits per Trial and Number of Passes per Trial 39
Figure 3.7 State Transitions From Subject Choice to Future Machine State 40
Figure 3.8 Distribution of Yellows for Machine 2 42
Figure 3.9 Distribution of Greens for Machine 2 42
Figure 4.0 Distribution of Blues for Machine 2 43
Figure 4.1 Distribution of Reds for Machine 2 43

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Overview
An apparent phenomenon which defies the theory of probability occurs when Subject 2 plays this experimental game. He significantly exceeds his probability of success, .25, by scoring over .29. The question that this report addresses is: Is there a statistical or logical reason why he did so well? The methodology used to attack this problem and the resulting conclusions are summarized below. This summary can also serve as an outline to this detailed report.
I. Statistical Analysis of the Machine Experimental Data

Pre-experiment data analysis discovered a non-random characteristic through the examination of forward-backward state transitions (i.e., Red-Blue, Blue-Red). However, the coefficient of correlation between the forward and backward states of .58 for the experimental data, . 49 for Machine 1 data and .48 for Machine 2 data were considered low enough that this approach was dropped. Pre-experiment state transitions had a coefficient of correlation of . 93.

The experimental data randomness analysis consisted of examining the distribution of color totals and the distribution of each color taken over various combinations and permutations of the data. No evidence of non-randomness was discovered.
II. Analysis of the Subjects' Data Responses

The subject's responses were analyzed with the emphasis on the discovery of his strategy or the unveiling of a trend which would give him a statistical advantage. The possibilities investigated produces no solid reason how he was able to be so successful. However, in one case there is a strong indication why he was able to succeed. It appears that he was learning the states of Machine 2. The details of this are in Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
the remainder of the report.
Miscellaneous
The report contains a section entitled "Miscellaneous" for the purpose of displaying detailed data which wasn't directly required by the above more general analysis. Details such as how many successfuit choices in the color red during the 50 th trial were there, or what was the relationship of the number of passes to the number of successes.

The terminology used is as follows: the term "trial" refers to the string of machine states and corresponding choices from the time the subject begins until he makes 25 non-passing choices. A sample is a machine state and/or subject choice (including passes). There are (25 + \# passes/trial) samples in each trial.
I. Statistical Analysis of the Machine Experimental Data

Forward-backward State Transition Analysis
In a previous memorandum (Memo ORD 2240-75, 12 June 1975 to the question of randomness with the emphasis on state transitions as an indication of non-randomness was addressed. The data used in the investigation consisted of pre-experiment trials. The purpose of this section is to do a similar investigation using the actual data which occurred during S2's experiment.

Table 1 presents all possible transition frequencies. All transitions should have equal probability.

	YELLOW	GREEN	BLUE	RED
YELLOW	204	199	199	216
GREEN	192	218	222	207
BLUE	211	206	228	222
RED	209	206	223	221

Restructuring into a two-by-six table as in Ref 1 produces:

	Y/G	Y / B	Y / R	G / B	G / R	B / R
FORWARD	199	199	216	222	207	222
BACKWARD	192	211	209	206	206	223

The conclusion based on pre-experimental data was that these state-pairs show a very strong relationship between forward and backward transition frequencies (coefficient of correlation $=.93$). However, computing the coefficient of correlation, $p_{s 2}$ actual data $=.58$, it becomes apparent that the degree of dependence is slightly reduced. Therefore the dependence of forward to backward states can no longer be considered as a strong indicator of non-randomness.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
The data used in the above discussion consisted of trials from both machine 1 and machine 2. Since non-randomness, made apparent by the state transitions, clearly existed for pre-experimental data, the investigation of the experimental data continued to include a search for this trend in the individual machines. The transitions (including identity) are as follows: Machine 1

	YELLOW	GREEN	BLUE	RED
YELLOW	96	79	88	92
GREEN	85	87	86	88
BLUE	85	82	90	87
RED	91	91	83	92

Machine 2

	YELLOW	GREEN	BLUE	RED
YELLOW	108	120	111	124
GREEN	107	131	136	119
BLUE	126	124	138	135
RED	118	115	140	129

Computing the two coefficients of correlation,

```
\rhomachine 1 =.4934
    s2 data
```

and

```
\rho: machine 2 =.4838
```

it is obvious that the forward and backward transitions are even less dependent than in the combined case. Thus ended the search for non-randomness through state transition.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
As a by-product the following table is produced for general information.

	$\begin{aligned} & \text { BOTH MACHINES } \\ & \text { MEAN SD } \end{aligned}$		$\begin{array}{ll} \text { MACHINE } & 1 \\ \text { MEAN } & \text { SD } \end{array}$		MACHINE MEAN	$\begin{aligned} & 2 \\ & \text { SD } \end{aligned}$
FORWARD	210.8	10.7	86.6	4.27	124	9.74
BACKWARD	207.8	9.00	86.2	3.92	121	11.25
TOTAL DATA POINTS	3483		1446		2037	
COEFF OF COV	. 5843		. 4934		. 4838	

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Experimental Data Randomness Analysis
The machine data used during the $S 2$ experiment has been combined, summarized and/or permuted in an attempt to establish evidence or randomness or nonrandomness. If an obvious indication of non-randomness would have evolved this task would be simplified because it would have become a closed form problem (i.e., the solution would be - the data has non-random characteristics). However, what has resulted is that various forms of the data have been examined with all indicating that the data is random.

Tables, plots and commentary are presented in this section to demonstrate randomness and in some cases just to provide general information concerning the machines data.

The distribution of the colors collectively and for each machine is as follows:

	Yellow	Green	Blue	Red	Total	Mean
Machine 1	365	353	356	372	1446	361.5
Machine 2	475	505	538	519	2037	509.25
TOTAL	840	858	891	891	3483	870.75

Machine 1 was not used in as many trials as machine 2 (44 trials to 56 for machine 2), thus the difference in totals. The standard deviation of binomial distribution with $n=3483$ and $p=1 / 4$ is 25.56 which would imply that each separate number is reasonably close to the mean.

Accepting the distribution of the totals consider the distribution of the colors throughout the experiment. The popluations used for this investigation consisted of the first 25 samples of each trial (100 trials total). This population is acceptable since the distribution of its totals was reasonable and since the performance of S2 was approximately the same (succes s-29.61\%) for this subset.

The following three approaches comprise the strategy used to attack the question of color distribution.

1. Each trial (abbreviated to 25 samples) as analyzed separate interval. Obviously this will indicate any bias within each trial.
2. The data (2500 samples) is divided into intervals of five samples each. This will indicate unusual repetitions either within the interval or interval-by-interval.
3. The data is reformatted into 25 intervals of 100 samples, where the nth interval consists of the nth sample in each trial.

The results of approach 1 is shown in Figures 1.1.a, 1.1.b, 1.1.c, and 1.1.d.

The binomial distribution for this strategy ($n=25 p=1 / 4$) is mean 6.25 and the variance 4.69. The plots indicate randomness throughout the 100 trials.

The results of approach 2 are similar to approach 1 and are shown in the four tables in Figure 1.2. The plots indicated randomness but are not shown because of monotomy. The binomial distribution mean is 1.25 and the variance . 94.

The binomial distribution mean and variance for approach 3 is 25 and 18.75 respectively (Figure 1.3). A plot of the data (Figure 1.4) for the "RED" case because of the concern for the higher variance and ranges. The 13th sample seems to have an unusually high frequency of "RED" (44\%). However in general this investigation has not produced a significant non-random characteristic.

sample size	100
maximum	12
minimum	3
range	9
mean	6.23
variance	4.239494949
standard deviation	2.059003387
mean deviation	1.6314
median	6
mode	6

Trial Number

Figure 1.1.a Distribution of Machine Yellows Over Trials

sample size	100
maximum	12
minimum	0
range	12
mean	6.13
variance	5.851616162
standard deviation	2.419011402
mean deviation	1.9404
median	6
mode	57

Trial Number

Figure 1.1.b Distribution of Machine Greens Over Trials

sample size	100
maximum	11
minimum	1
range	10
mean	6.21
variance	5.218080808
standard deviation	2.284311889
mean deviation	1.8194
median	6
mode	6

sample size	100
maximum	12
minimum	1
range	11
mean	6.43
variance	4.631414141
standard deviation	2.152072058
mean deviation	1.7158
median	6
mode	6

sample size 500
maximum
5
minimum 0
range 5
mean 1.246
variance
0.9594028056
standard deviation
0.9794910952
mean deviation
median
mode
0.784848

1
1

Distribution of Green sample size 500
maximum
minimum
range
mean
. 226
variance
0.9969178357
standard deviation
0.9984577285
mean deviation.
median
0.804512

1
mode

Distribution of Blue dstat grp:<3: sample size	bou
maximum	4
minimum	U
range	4
mean	1.242
variance	0.9513501014
standard deviation	0.9184429985
mean deviation	0.192192
median	1
mode	1

Distribution of Red	
sample size	500
maximum	5
minimum	0
range	5
mean	1.286
variance	1.026256513
standard deviation	1.013043194
mean deviation	0.823216
median	1
mode	1


```
    maximum 31
    minimum
        19
    range 12
    mean 24.92
    variance 10.57666667
    standard deviation 3.252178757
    mean deviation 2.6304
    median 24
    mode }2
```

Green Distribution
sample size 25
maximum 35
minimum $\quad 15$
range 20
mean 24.52
variance 24.59333333
standard deviation 4.959166597
mean deviation 3.9392
median 25
mode 2225
Blue Distribution
sample size 25
maximum $\quad 34$
minimum $\quad 19$
range 15
mean 24.84
variance. 14.47333333
standard deviation 3.804383437
mean deviation 2.9664
median 25
mode 26
Red Distribution
sample size 25
maximum . 44
minimum 16
range 28
mean 25.72
variance 26.71
standard deviation 5.168171824
mean deviation 3.3664
median 25
mode 25

Figure 1.3 Distribution of Machine Colors When Samples are Taken 100 at a Time (One From Each Trial)
Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
Number
of
Reds

Sample Number

Figure 1.4 Distribution of Machine "Reds" when the Samples are taken 100 at a time (one from each trial)

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
Approach 1 has been repeated for Machine 1 and Machine 2 separately to check for abnormalities. The binomial distribution mean and variance are as follows:

	Trials	Mean	Variance
Machine 1	44	11	8.25
Machine 2	56	14	10.5

Machine 1
'Yellow

Machine 2
 cribution for Machine 1 and Machine 2 on a Trial

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Best Strategy

Based on the above analysis what is the best strategy to pursue? No good strategy is available based on the randomness of the data. The best possible strategy based on the above transition matrices is:

1. If the subject can't distinguish between machine then press blue when blue appears, else pass.
2. If the subject can distinguish them on Machine 1, press yellow when yellow occurs, and on Machine 2 press blue when red occurs.

For all its worth, of the existing data the following success would result $-26 \%, 26 \%$, and 27%.

Analysis of S2 Data Responses
The attempt here is to discover a reason for 52 's success at responding. The investigation was unable to give a definitive reason for his success. Although no strategies were uncovered there was in one case a indication that the subject was learning.

Two major approaches have been taken in this investigation. They are as follows:

1. Strategy of S 2 - Was there any trends in the way he guessed? Did he respond based on the previous state of the machine?
2. Hit analysis - Did the subjects' hits (correct choices) increase within a run; did it increase from run to run (i.e., was he learning?)

Strategy of S2
For general information and future reference the first figure (Figure 2.1) presented is the actual choices. One item of curiosity from this is that when he passes, he tends to do it in strings. This characteristic of course wasn't pursued because of its insignificance to this report; however, observations like that are pointed out throughout the report as possible importance to those in the field.

Total Color Choices
The distribution of S 2 's color choice totals are shown below.

Approved For Release 2003／04／18 ：CIA－RDP96－00787R000200150011－4

```
021 023201021500%020300530
02031213030805300001023%2
O0z1 0%0%0S120马E1 प320E12%
023S3100203E013020002031%
3030030010202031818030102
3305051303030003202103103
023030503020501132020530
0%20305030302112030301303
030%082022303011513021020
301010210301320%01300301S
0313023313503102013103231
0216z103103103%E031030250
#0马0203102080180120302028
30302z3013030203010330203
300030302503130313031500
302%13050E10ES130101S020Z
30%0%0307300105077230p707348%703077z
```



```
0$0230107370%7737301720307177707207370
02130307773070ES02303070722730702
```



```
07737773077,3170773770372,5105273073030373
37301377773073玉77807707S07707073007077778こ03
```



```
0131S20E1\Xi12031077307173077F7FE031
```



```
00Е730770马7727777731077737777773777777773132133013070
317%777777777777170710,77777730137777073703132777777030777737013
З7770777701777777770207373177777303031031031020
```



```
0377777777779770103777777077707777777773013131302250320
```



```
077777701010E08010230705750E70730777P77713
```



```
30こ07777131%7031305130E10370137P7777777777770
310373210130121023102701 B7%31
31313023130122013023730177702
130%373730130132077777377777777707313021071
1373103737S17%0E1772F317713177777777703%%170
13237013077072313102127773713173777373
313777777777773770.31310E1S7177777717077731727120713
01已3ア0737731777317372017E0S070721701S0
07397S11370131070107TE01S77032770口70
3こ1317032331303203723032123
13737071030310%7203113071005E3773
10307710237371307307230282303730
E030320231313302こ12121331
23077701E73212000303352130300
```

Vigure 2．1 Subject 2 Color Choices for First Fifty Trials（O－yellow，1－green，
2－blue，3－red，7－pass）
Approved For Release 2003／04／18 ：CIA－RDP96－00787R000200150011－4


```
& 20703123070231703030330133703
30170102031730730300330313713
01007777373707303777173777273377310770777130777373773
20707370731777370077037370002731777707077777073777777377773
01730330320370330327013703013
303717033207303073773013023737203
0373737303373032173233377173733707371
23707377313033333703773773707173777377373270
13107303737730103333370737313707700
33373707730730373333130373370707770733
033037737703337337777077777327777301027337333
030303720000377373377707737733030332
33032133270323233130121330
10701101301101313030230123
300703300723730030371777137777033002
0313373737030003200030001003
302332131000001371303703037770
77201771007703072370313731013777377177777303
337171017711371300217333733030733
30717373717077130117303707301373370071
03303203020071027107377121270703
03231327320373023770331110077700
33173707371071317331331730117207073
271313107327033277731177130323303
3000373300033003710303071330
301270013333013077737077373303377770770
0303703037073732311370710732001773
377.33070072000770300373130003002
132002000300303770300731723370
30707207020773307033030303777377737377073
07077730703700377777707731707330307307077770737373
00707737377003073730777777707377777737773770300077773333
1301037132010717301002720073723
3101310317001300001730073020
03777720070773100770707373007200730700700
30300007100000232113002002
3031301301320130231033003
2301203130120310311303120
3013023103173713073032300131
3013013013201302101302303
130231032303713273031030130
3010310310773230313073021331
3103130317377013730013300337777113
31301030310330307377070037717003
023130332013700137230201330
0217373103101303700073027777310373
137073107103702373132710331073703
331300301707301070700371073700713
```

Figure 2.1 (Continued) $S 2$ Color Choices for Last 50 Trials
Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

	Yellow	Green	Blue	Red
Total Times Chosen	881	411	237	971
$\%$ of Total	35%	16.5%	9.5%	39%

The first inclination is to try and determine how his strategy of choosing so many yellows and reds benefitted him. Examine the following table:

	Yellow	Green	Blue	Red
Total Number of Hits	255	127	50	292
$\%$ of Total Hits	35%	17%	8%	40%
$\%$ of Success in Color	29%	31%	25%	30%

(Hits - Correct Choices)
As can be seen his results with blue are significantly lower than the others. However, assuming the probability of success to be $.25^{/}$and using the binomial distribution the expected value $=69$ and the standard deviation $=7$. The inference from this is that the 60 Blue hits are not a statistical abnormality. However, it is curious that he did so much worse on his lowest preference. State Transition Color Choice

This investigation consists of examining the states of the machine verses the choice on the next sample of the subject (i.e., if the machine shows "red" does the subject consistently choose one color on the next turn). Consider the following table:

S	Yellow	106	119	69	314	210	26%
U	Green	177	25	69	316	252	30%
J	Blue	241	99	27	198	302	35%
E	Red	322	157	65	97	218	25%
T							

$$
r=, 30
$$

The subject obviously avoids repeats (i.e., he assumes the machine won't repeat a color) which, based on the machine data analysis, isn't a strategy which would give him a statistical advantage. Previous analysis showed that identity transitions are approximately equally probable as nonidentity. Notice also that he passes 35% of the time after seeing a blue.

The same state transitions are shown below separated by machine.

M	Yellow	48	49	25	150	83
C	Green	62	13	35	153	83
H I	Biue	105	36	10	78	115
N	Red	133	72	30	58	64
1				\downarrow		
M	Yellow	58	70	44	164	127
A C	Green	115	12	34	163	169
H	Blue	136	63	17	120	187
$\begin{aligned} & N \\ & \mathrm{E} \\ & 2 \end{aligned}$	Red	189	85	35	39	154

The negative state transition (i.e., relationship of the subject color choice to the machine state on the next sample) is considered too bizarre of a concept to be presented in this section. Results of that investigation is found in the section entitled "miscellaneous"

Hit Analysis
This section is significantly more important than the randomization analysis of the machine data. The reason is that if he is not learning from the machine or he is not taking advantage of biases then the discovery of such non-randomness is of little value to the overall analysis. Learning from Trial to Trial

The question of whether the subject learned from trial to trial can best be answered by examining the following three plots. The first is the number of hits vs. the trial number, the second is a frequency distribution of the number of trials vs. number of hits, the third is the accumulated probability vs. the trial number.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Trial Number
Figure 2.2 Plot of number of hits/trial

Figure 2.3 Frequency plot of Number of Hits

Trial Number

Figure 2.4 Cumulative Success Ratio of Subject (both machines used)

Trial Number
Note: V-Points at which he switches machines

Figure 2.6 Accumulative Probability of Success on Machine 2

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

The first plot (Figure 2.2) demonstrates the randomness of the number of hits while the second plot (Figure 2.3) demonstrates the frequency distribution takes on a "normal" appearance. The accumulative probability plots, at first glance, indicates that the subject was in a learning mode for the first five trials. A closer examination of the data indicates that this can occur naturally as part of the statistical distribution.

The first three number of hits points are 7, 5, and 6 considering the first 75 points as the population with probability of success $=.2936$ (the final probability) then the expected value is 22 (using binomial distribution) and the variance is 15.55 ($\mathrm{S}, \mathrm{D}=3.9$). As a normal deviation from the meàn (i.e., using normal distribution approximation $P(x<18)=.13$.

Although the observed learning can be rationalized as a natural statistical deviation it warranted further investigation. The plots of the accumulative probability of success for machine 1 and machine 2 are presented in Figure 2.5 and Figure 2.6. The plot for machine 1 (Figure 2.5) is a typical sinesodial decreasing amplitude convergent curve. The plot for machine 2 however, is very suspicious in terms of learning. The major peaks of the curve (at approximately trial $10,23,40$ and 56) are increasing which implies his probability of success is continuing to increase instead of converging on one point. Another interesting pointsis that the points at which he switches onto machine 2 are 1,9 , and 36 .

Also of concern is the sharp upward turn during the last 8 samples. The hits totals for this period, starting at sample 49 is $10,10,811,6$, 8,7 , and 11 for a total of 71 hits out of a possible 200 for a probability of success of .36. Once again using the binomial distribution and using the probability of success of .29 (the cumulative probability up to the 49th point) the expected mean is 58 and the standard deviation 6.42. Using the

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Figure 2.7 Plot of Number of Hits on Machine 1

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4
normal approximation the probability $P(X 71)=.02$ of such an occurrence is quite low.

Although there are only 56 data points in this population and the apparent abnormalities are statistically possible (with low probability) this investigation concludes that the subject's learning for this case must be flagged as a real possibility. Figure 2.7 (Number of hits on Machine 1) has been added to provide clarity. It appears that the subject just didn't have "low hit" days toward the end.

Learning within a Trial

The question of learning within a trial or run has been investigated by summing the number of hits of the Ith sample for the run. The results are somewhat distorted because of the inequitable distribution of passes. The lower numbered samples have significantly more hits because of this. $Z_{5} 5$ A plot of the number of hits per sample vs. sample number is shown in Figure $\mathcal{Z . 7}$.

Notice that the first sample has a value of 34 hits. This means that everytime he ists down for a new 25 sample trial he hits 34% of the time on his first try. With this in mind along with the rest of the data points, it is obvious that the subject doesn't learn throughout the trial.

Sample Number

Figure 2.8 Total Number of Hits Within a Trial

Miscellaneous
Numerous arrays of data have been examined for the purpose of obtaining some insight into the data. Some of the data is being printed herein so that the data can be examined more closely if desired.

This first table is presented for use as a quick reference.
\(\left.$$
\begin{array}{cccc} & \begin{array}{c}\text { Last } \\
\text { Trial }\end{array} & \begin{array}{c}\text { Number } \\
\text { of } \\
\text { Tracks }\end{array} & \begin{array}{c}\text { Machine } \\
\text { Used }\end{array}
$$

1 \& 8 \& 16 \& 8\end{array}\right]\)| |
| :---: |
| 2 |

The following displays are presented below with little commentary.
I. General trial summary (Figure 3.1). Each trial (25 choices) is listed with the following information,
A. Machine used (1 or 2)
B. Total number of machine states in each color (i.e., 6 yellow, 6 green) for each trial.
C. Total number of subject choices for each color for each trial.
D. Total number of hits for each trial.
E. Total number of passes for each trial.
F. Breakdown of hits by color.
II. Machine data for machine 1 and machine 2 separately (Figures 3.2, 3.3)

Just by examining these displays it may be possible to glean meaningful information. For example, machine 1 was used for the first 8 trials during which the first state of each trial was a yellow or red. If the first sample of each trial is most memorable, perhaps this is responsible for the subject's obvious preference of yellow and red (see Section 2 - Analysis of S2 Data Responses).
III. Plots of the number of passes made.
A. Number of passes vs. trial number (i.e., trial is 25 or more samples) (Figure 3.4)
.B. Number of passes vs. sample number (Figure 3.5)
mach mach mach mach sub sub sub sub numb num hit hit hit hit

trial	mach_{2}	ye 11	${ }_{6}^{\text {gren }}$	blue	red 11	yel	${ }_{3}^{\text {grn }}$	blu	red	${ }_{7}$	pas	yel	grn	blu	red
2	2	5	9	4	7	10	3	4	8	5	0	2	1	0	2
3	2	7	8	6	4	7	4	6	8	6	0	2	2	1	1
4	2	7	4	10	4	10	3	4	8	8	0	4	1	2	1
- 5	2	5	6	11	3	11	4	0	10	5	0	2	1	0	2
6	2	8	5	3	9	10	3	2	10	10	0	3	1	0	6
7	2	3	7	7	8	11	1	3	10	8	0	2	0	2	4
8	2	6	7	3	9	11	2	2	10	9	0	4	1	0	4
9	1	9	6	2	8	10	3	5	7	7	0	4	0	0	3
10	1	5	5	8	7	9	6	1	9	9	0	3	3	0	3
11	1	6	4	7	8	- 6	6	3	10	2	0	0	0	0	2
12	1	7	2	7	9	9	5	3	8	6	0	4	0	0	2
13	1	5	7	4	9	10	3	2	10	12	0	3	2	1	6
14	1	4	5	11	5	10	2	2	11	8	0	2	1	2	3
15	1	6	9	5	5	10	3	1	11	9	0	3	2	0	4
16	1	6	2	7	10	8	5	4	8	5	0	2	0	0	3
17	2	10.	12	7	7	12	2	1	10	7	11	4	0	0	3
18	2	4	9	9	11	10	2	2	11	8	8	1	1	1	5
19	2	8	9	10	11	11	3	2	9	6	13	3	0	1	2
20	2	7	13	5	8	11	1	4	9	7	8	3	1	1	2
21	2	9	8	9	9	10	5	1	9	9	10	3	2	0	4
22	2	13	12	9	9	8	2	2	13	5	18	0	0	1	4
23	2	9	9	15	12	11	1	2	11	7	20	2	0	1	4
24	2	10	9	11	9	8	3	2	12	8	14	3	2	0	3
25	2	3	11	7	8	8	5	5	7	2	4	1	0	1	0
26	2	10	4	10	10	8	6	4	7	9	9	4	0	2	3
27	2	11	6	15	9	11	1	0	13	12	16	6	1	0	5
28	2	5	6	10	11	10	5	2	8	7	7	2	1	1	3
29	2	7	16	16	14	8	4	3	10	8	28	1	2	1	4
30	2	16	19	18	12	8	6	1	10	8	40	3	3	0	2
31	2	10	10	9	19	10	5	1	9	9	23	2	1	1	5
32	2	12	9	19	12	8	7	3	7	2	27	2	0	0	0
33	2	11	14	20	10	9	4	2	10	5	30	2	1	1	1
34	2	10	4	10	8	9	5	3	8	12	13	5	2	1	4
35	2	9	7	11	15	12	4	3	6	7	17	3	0	2	2
36	2	14	17	19	22	9	4	1	11	7	47	2	1	0	4
37	2	5	16	13	11	9	5	2	9	6	20	0	4	0	2
38	2	5	7	8	9	7	8	2	8	7	4	1	3	0	3
39	2	7	7	9	6	6	6	3	10	9	4	1	3	1	4
40	2	$\because 11$	13	10	10	7	6	2	10	9	19	2	4	0	3
41	2	10	14	9	12	4	8	2	11	4	20	1	1	0	2
42	2	11	11	7	9	4	7	3	11	9	13	2	3	0	4
43	2	15	13	14	11	4	9	3	9	5	28	0	4	0	1
44	2	10	9	11	8	8	6	4	7	11	13	4	1	4	2
45	1	12	9	7	8	10	6	2	7	8	11	5	1	1	1
46	1	5	6	9	7	4	4	6	11	6	2	0	0	2	4
47	1	9	10	10	4	8	6	2	9	6	8	3	2	0	1
48	1	9	10	7	6	8	3	4	10	6	7	2	1	1	2
49	1	7	10	6	2	4	6	6	9	7	0	0	5	1	1
50	1	9	12	1	7	9	3	4	9	6	4	3	0	0	3

Approved For Release 2003/04/18: CfA-RDP96-00787R000200150011-4

rial	mach	mach yell	mach	mach blue	mach	sub yel	sub grn	sub blu	sub red	numb	num	hit	hit		hit
51	1	6	5	10	8	${ }_{6}$	${ }_{5}^{9 r n}$	6	red	hits 9	pas	yel	$\xrightarrow{\text { arn }}$	blu	red
52	1	7	15	11	9	8	5	1	11	8	17	3	2	0	3
53	1	11	5	7	6	9	3	3	10	6	4	3	1	1	I
54	1	6	4	7	12	9	5	1	10	9	4	2	2	0	5
55	1	13	14	12	14	8	4	1	12	7	28	0	2	0	5
56	1	12	14	19	14	12	2	2	9	6	34	3	0	1	2
57	1	8	2	11	8	9	3	2	11	8	4	3	0	1	4
58	1	6	4	11	12	8	2	3	12	6	8	1	0	1	4
59	1	11	5	. 15	6	4	3	2	16	8	12	2	1	1	4
60	1	11	11	11	11	5	2	2	16	8	19	3	0	1	4
61	1	10	8	9	8	8	4	0	13	8	10	0	1	0	7
02	1	13	6	9	10	7	1	0	17	7	13	3	0	0	4
63	1	10	18	10	7	6	1	2	16.	4	20	2	0	0	2
64	1	10	11	6	9	10	0	2	13	8	11	4	0	0	4
65	1	7	9	2	8	4	4	5	12	8	1	1	1	1	5
66	1	3	12	4	7	8	9	2	6	8	1	3	4	0	1
67	1	8	10	10	8	11	2	2	10	8	11	3	1	0	4
68	1	10	4	5	9	13	2	1	9	7	3	4	0	0	3
69	1	10	8	4	8	10	4	2	9	9	5	4	1	0	4
70	1	9	6	12	17	8	6	2	9	4	19	0	2	0	2
71	1	11	7	7	8	5	7	1	12	7	8	2	1	0	4
12	1	7	9	13	9	8	7	0	10	3	13	1	1	0	1
73	1	11	6	5	10	10	4	5	6	9	7	4	1	2	2
74	1	4	12	8	8	8	4	4	9	6	7	0	2	1	3
75	1	9	11	7	8	5	8	1	11	7	10	1	3	0	3
76	1	8	14	5	6	4	6	4	11	10	8	2	4	1	3
77	1	11	3	8	6	12	2	0	11	9	3	7	0	0	2
18	1	9	9	10	11	9	3	1	12	6	14	3	0	0	3
79	1	7	8	7	12	9	4	2	10	7	9	2	2	0	3
80	1	8	6	10	8	14	1	2	8	8	7	4	0	1	3
81	2	13	4	8	5	12	2	3	8	10	5	7	1	0	2
82	2	6	14	10	11	11	0	2	12	8	16	2	0	1	5
83	2	7	10	17	16	13	1	0	11	8	25	3	0	0	5
84	2	14	12	16	14	12	0	0	13	7	31	3	0	0	4
85	2	7	7	10	7	9	6	4	6	6	6	2	2	1	1
86	2	11	7	4	6	12	6	1	6	7	3	5	1	0	
37	2	13	13	9	6	17	1	2	5	8	16	5	1	2	0
88	2	6	3	8	9	14	3	4	4	7	1	4	1	1	1
89	2	6	5	8	6	-8	5	2	10	6	0	2	1	1	2
90	2	7	7	4	7	7	7	4	7	6	0	1	3	1	1
91	2	9	10	7	2	7	6	2	10	6	3	4	1	1	0
92	2	4	6	10	5	8	6	3	8	6	0	1	3	1	1
93	2	6	7	7	7	7	5	3	10	10	2	3	2	1	4
94	2	5	6	4	13	7	6	2	10	10	3	3	1	1	5
95	2	7	5	10	11	7	6	0	12	8	8	2	1	0	5
96	2	7	9	7	9	11	4	0	10	11	7	5	1	0	5
$\bigcirc 7$	2	8	8	6	5	8	4	4	9	6	2	2	1	1	2
98	2	7	12	10	5	9	5	2	9	8	9	3	3	0	2
99	2	8	9	8	8	7	6	2	10	7	8	2	2	0	3
100	2	9	5	9	10	12	5	0	8	11	8	5	3	0	3

Approved For Release 2003／04／18 ：CIA－RDP96－00787R000200150011－4


```
0113100111035250023023500
```



```
2203311021 02E23353351E000
3002E025223100345303%12已
35120230013%153152513n1
```



```
1ここ11S1110300132こ1300%120
```



```
0112已313こ001S1033002E1202S000130131
1302Ez130102S1SzE212已130302
```



```
きご1E1001E10こ1こ010100131
1111135010103%1018003103S1010
```



```
10S1121ES0S30S11102ES125E1102E11012S13210
```



```
0311102E30E00001211B%11EES111S112321101001E1
0\Xi03111310211013010z%122051Ez%32010%
1313801131001301313305010z
1015%13z132%2E%2111110113
33020110%012032131231212E10020203113
```



```
101130032E013%1200350301020121
```



```
112马S302200120030%0310041231210%%
```



```
1012こ0313E0135013%13z0010n20023%
31こ0ここ110%E0G111S%S111S11E2013
310こ13511E20131312010%1311030%%000
E%011112E%G0111110z1000211z0130z
0000z3S0E34z00ES21000Ez11,
```


3000213505002313531131

```
3`ez130Approved for ReRase 2003/04/18 : CIA-RDP96-00787R000200150011-4
0%081112ev0ns=ure01112101
02e0es%1100ezee0s13z00こ12
32301zeseevezon+0011121E
0325130003012313150evs112
012113152e33ESe310E11623S
```



```
1113100E012e30301303101Ee00113012E01
```



```
01325已3113e0en1 02E30e012535E1531131020
```



```
00ES21Eこ1303050001218013521E15230E1
110102011350203120こ031E002053100132111325e0
```



```
2e0e\15%5325e1021111%11012211
E200e113005005300020es125ze0ese13s
```



```
3121103ES3Eこ13300312123232100
```



```
2e130E6231330e3e0310212012300212
123000000105011020sez0ece0se0s
```



```
1305ee010130253125302tEeze0101E
032S532110010001012102501080
113000ESG11100105001Ee111212ez01321302000
200203553512820E1123025052
110E30ESE5E131EEE0310E050
E10301000%355212110310132
10110E1zg0E1E0011E0111200E0S
0こSEE1E11EEESE0G2%18101E0
033231031E11110\0e0ES01Eezz
119023055%559230211119255500
```



```
31303012土e013es1E1133e01100ge01E
21ez0s%12g00210001010131321
```



```
1113052こうこ123001022002S0s0112こ113
```

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Trial Number

Figure 3.4 Total number of passes summed over a trial

Figure 3.5 Total number of passes summed over sample number
C. Number of passes and the number of hits vs. the trail number on one plot. Investigation of the hits/passes relationship was dropped when the coefficient of correlation between the two was computed at -. 114

Trial Number

0 - passes per trial
P - hits per trial

Figure 3.6 Plot of number of hits per trial and number of passes per trial
IV. Tables of state transitions which reflect the influence of the subject on the machine. For color choices of the subject the table shows the number of colors the machine has on the next sample. For example on the first table, when the subject picked yellow, on the next sample 197 times the machine state was yellow.

MACHINE STATES ON FOLLOWING SAMPLE					
	Yellow	Green	Blue	Red	
Yellow	88	77	87	95	
Green	38	46	39	47	Machine 1
Blue	27	28	24	24	
Red	120	105	99	112	
Pass	84	83	98	81	
Yellow	109	124	128	141	
Green	58	47	58	66	Machine 2
Blue	25	32	42	30	
Red	121	125	136	102	
Pass	146	162	161	168	
Yellow	197	201	215	236	
Green	96	93	97	113	Both Machines
Blue	52	60	66	54	
Red	241	230	235	214	
Pass	230	245	259	249	

Figure 3.7 State Transitions from Subject Choice to Future Machine State
V. Because of the possibility that the subject was learning the state of machine 2 the distribution of the colors are plotted in Figures 3.8, 3.9, 4.0, and 4.1. The only states used are those in which the subject didn't pass. Therefore there is a total of 25 for each trial.

Number of Green

10.0M
0

0
$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
7.5 M

MO 000 0 0 0 0 0 0 0
M
MO 0 0 0 0 0 0

$\begin{array}{lllllllll}M & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
M
$\begin{array}{llllll}M & 0 & 0 & 0 & 0\end{array}$ 2.5 M
M O

Trial
Figure 3.8 Distribution of Yellow for Machine 2

M

Figure 4.0 Distribution of Biue for Machine 2

$12.5 M$									
M									
MO			0	()			0		
M									
10.0 M									
M									
M	000	00	00	00	- 0			0	
M									
M	00		0		0	0		0	
7.5M									
M ${ }^{\text {(}}$		000			0000	0	0		0
M									
M			01		00				0
M									
5.0M	00		00	0	000		0		
M									
M $0 \quad 0$									
M									
M	0					0			
2. 5 M									
M			0)			0		
M,									
M									
M									
0.0 M	M		M	M	. M		4		M
0			20		40				60

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4 Figure 4.1 Distribution of Red for Machine 2

Test	Description	Scoring					
	Approved For Retease 2003104/18:-CIA-RDP96-00787			S3	54	S5	S6
Halstead Category Test	Nonverbal test requiring abstraction of conceptual relationships. Score: Total errors.	7	14	33	26	6	28
Tactual Performance Test	Requires placement of 10 geometrically shaped blocks in their correct locations on a formboard while blindfolded. Separate RT, LT, and bimanual trials. Score: Total time (min.).	16.4	11.8	7.7	7.7	11.4	6.9
Speech Perception Test	Discrimination of non-word speech sounds. Score: Total errors.	4	2	0	2	5	3
Seashore Rhythm Test	Discrimination of nonverbal rhythms. Score: Number correct.	27	25	28	29	26	29
Finger Tapping Test	Measure of finger oscillation rate for $10-\mathrm{sec}$. period, both RT and LT hand trials. Score: No. taps/10 sec.	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 53 / 50 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 53 / 49 \end{aligned}$	$\begin{aligned} & \text { RT/LT } \\ & 48 / 47 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 54 / 53 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 47 / 47 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 48 / 43 \end{aligned}$
$\begin{aligned} & \text { Trail Making Test } \\ & \text { (Part A) } \end{aligned}$	$\text { Requires connecting numbered circles in order from } 1 \text { to } 25 .$ Paper and pencil task. Score: Total times (sec)	40	16	18	19	30	27
Trail Making Test (Part B)	Requires connecting alphabetic and numbered circles by alternating $\mathrm{l} \rightarrow \mathrm{A} \rightarrow 2 \rightarrow \mathrm{~B}$, etc. Score: Total time (sec)	56	50	55	50	54	53
Knox Cube Test	Measure of attention span and immediate visual memory. Score: Number correct.	13	14	13	16	17	17
Raven Progressive Matrices	Nonverbal intelligence test involving spatial matrices. Score: Number correct.	39	53	49	55	60	54
Verbal Concept Attainment Test	Requires abstraction of verbal conceptual relationships. Score: Number correct.	22	24	27	23	21	24
Buschke Memory Test	Requires learning a 20 -word list in a maximum of 12 trials with repetition of words omitted after each trial. Score: Max. no. words correctly remembered; List: no. words consistently remembered	$\begin{aligned} & \text { Total: } \\ & \text { 14/20 } \\ & \text { List: } \\ & 8 / 20 \end{aligned}$	$\begin{aligned} & 17 / 20 \\ & 14 / 20 \end{aligned}$	$\begin{aligned} & 18 / 20 \\ & 11 / 20 \end{aligned}$	$\begin{aligned} & 19 / 20 \\ & 16 / 20 \end{aligned}$		$\begin{gathered} 20 / 20 \\ 16 / 20 \\ \text { (s) }(7 \text { trials }) \end{gathered}$
Grooved Pegboard Test	Requires insertion of 25 pegs in their holes in a pegboard. Both RT and LT hand trials. Score: Total time (sec).	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 76 / 74 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 69 / 70 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 58 / 67 \end{aligned}$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 59 / 67 \end{aligned}$	RT/LT ($72 / 70$	$\begin{aligned} & \mathrm{RT} / \mathrm{LT} \\ & 48 / 50 \end{aligned}$
Spatial Relations Subtest of the PMA.	Requires mental rotation and identification of figures rotated in 2 dimensions. Score: no. correct - no. errors.	-	-	-		60	52
Gottschaldt Hidden Figures Test	Requires tracing outline of simple figure hidden ithin 1ines of more complexAppgeved Fgr Redease 2R003h(4h18. : ©dAr-BDP.96-00787R	02001	f10.	-	v.good	outst.	outst.

