Thrushy afternon

ANALYSIS OF THE SUBJECT-MACHINE RELATIONSHIP



This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of:



The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government & Military.

Discover the Truth at: http://www.theblackvault.com

TABLE OF CONTENTS

| 0ve | rview                                                   | - |
|-----|---------------------------------------------------------|---|
| Ï.  | Statistical Analysis of the Machine Experimental Data 1 |   |
|     | Forward-Bakcward State Transition Analysis              |   |
|     | Experimental Data Randomness Analysis                   |   |
|     | Best Strategy                                           |   |
| II. | Analysis of S2 Data Responses                           |   |
|     | Strategy of S2                                          |   |
|     | Total Color Choices                                     |   |
|     | State Transition Color Choice                           |   |
|     | Hit Analysis                                            |   |
|     | Learning from Trial to Trial                            |   |
|     | Learning Within a Trial                                 |   |
| III | . Miscellaneous                                         |   |
|     | General Trial Information                               |   |
|     | Machine States                                          |   |
|     | Plots of Passes                                         |   |
|     | Subject - Future Machine State Transition               |   |
|     | Distribution of Machine State Colors for Machine 2      |   |

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Page

|             |                                         |                                                                                                                                                                            | raye             |
|-------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|             | Figure 1.1.a<br>1.1.b<br>1.1.c<br>1.1.d | Distribution of Machine Yellows Over Trials<br>Distribution of Machine Greens Over Trials<br>Distribution of Blues Over Trials<br>Distribution of Machine Reds Over Trials | 6<br>7<br>8<br>9 |
| . · · ·     | Figure 1.2                              | Distribution of Machine Colors When Samples are<br>Taken Five at a Time                                                                                                    | 10               |
|             | Figure 1.3                              | Distribution of Machine Colors When Samples are<br>Taken 100 at a Time                                                                                                     | 11               |
|             | Figure 1.4                              | Distribution of Machine Reds When the Samples<br>are Taken 100 at a Time                                                                                                   | 12               |
|             | Figure 1.5                              | Machine Color Distribution for Machine 1 and<br>Machine 2 on a Trial to Trial Basis                                                                                        | 14               |
|             | Figure 2.1                              | S2 Color Choices                                                                                                                                                           | 17               |
|             | Figure 2.2                              | Plot of Number of Hits/Trial                                                                                                                                               | 22               |
| -<br>-<br>- | Figure 2.3                              | Frequence Plot of Number of Hits                                                                                                                                           | 22               |
|             | Figure 2.4                              | Cumulative Success Ratio of Subject (both machines used)                                                                                                                   | 23               |
| -           | Figure 2.5                              | Accumulative Probability of Succsss on Machine 1                                                                                                                           | 24               |
|             | Figure 2.6                              | Accumulative Probability of Success on Machine 2                                                                                                                           | 25               |
| •           | Figure 2.7                              | Hits vs Trial Number for Machine 2                                                                                                                                         | 27               |
|             | Figure 2.8                              | Total Number of Hits Within a Trial                                                                                                                                        | 29               |
| •           | Figure 3.1                              | Selected Parameter Totals Listed by Trial Number                                                                                                                           | 32               |
|             | Figure 3.2                              | Color States of Machine 1 During the Experiment                                                                                                                            | 34               |
| -           | Figure 3.3                              | Color States of Machine 2 During the Experiment                                                                                                                            | 35               |
|             | Figure 3.4                              | Total Number of Passes of a Trial                                                                                                                                          | 36               |
|             | Figure 3.5                              | Total Number of Passes Summed of Sample Number                                                                                                                             | 37               |
|             | Figure 3.6                              | Plot of Number of Hits per Trial and Number of<br>Passes per Trial                                                                                                         | 39               |

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Page

State Transitions From Subject Choice to Future Figure 3.7 Machine State 40 Figure 3.8 Distribution of Yellows for Machine 2 42 Figure 3.9 Distribution of Greens for Machine 2 42 Distribution of Blues for Machine 2 43 Figure 4.0 43 Figure 4.1 Distribution of Reds for Machine 2

Page

#### Overview

An apparent phenomenon which defies the theory of probability occurs when Subject 2 plays this experimental game. He significantly exceeds his probability of success, .25, by scoring over .29. The question that this report addresses is: Is there a statistical or logical reason why he did so well? The methodology used to attack this problem and the resulting conclusions are summarized below. This summary can also serve as an outline to this detailed report.

I. Statistical Analysis of the Machine Experimental Data

Pre-experiment data analysis discovered a non-random characteristic through the examination of forward-backward state transitions (i.e., Red-Blue, Blue-Red). However, the coefficient of correlation between the forward and backward states of .58 for the experimental data, .49 for Machine 1 data and .48 for Machine 2 data were considered low enough that this approach was dropped. Pre-experiment state transitions had a coefficient of correlation of .93.

The experimental data randomness analysis consisted of examining the distribution of color totals and the distribution of each color taken over various combinations and permutations of the data. No evidence of non-randomness was discovered.

II. Analysis of the Subjects' Data Responses

The subject's responses were analyzed with the emphasis on the discovery of his strategy or the unveiling of a trend which would give him a statistical advantage. The possibilities investigated produces no solid reason <u>how</u> he was able to be so successful. However, in one case there is a strong indication <u>why</u> he was able to succeed. It appears that he was learning the states of Machine 2. The details of this are in Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4 the remainder of the report.

**Miscellaneous** 

The report contains a section entitled "Miscellaneous" for the purpose of displaying detailed data which wasn't directly required by the above more general analysis. Details such as how many successful choices in the color red during the 50th trial were there, or what was the relationship of the number of passes to the number of successes.

The terminology used is as follows: the term "trial" refers to the string of machine states and corresponding choices from the time the subject begins until he makes 25 non-passing choices. A sample is a machine state and/or subject choice (including passes). There are (25 + # passes/trial) samples in each trial.

I. Statistical Analysis of the Machine Experimental Data Forward-backward State Transition Analysis

In a previous memorandum (Memo ORD 2240-75, 12 June 1975 to the question of randomness with the emphasis on state transitions as an indication of non-randomness was addressed. The data used in the investigation consisted of pre-experiment trials. The purpose of this section is to do a similar investigation using the actual data which occurred during S2's experiment.

Table 1 presents all possible transition frequencies. All transitions should have equal probability.

|               | YE        | LLOW         | GREEN        |           | BLUE   | RED |
|---------------|-----------|--------------|--------------|-----------|--------|-----|
| YELLOW        |           | 204          | 199          |           | 199    | 216 |
| GREEN         |           | 192          | 218          |           | 222    | 207 |
| BLUE          |           | 211          | 206          |           | 228    | 222 |
| RED           |           | 209          | 206          |           | 223    | 221 |
| Restructuring | into a tw | vo-by-six ta | able as in R | ef 1 prod | luces: |     |
|               | Y/G       | Y/B          | Y/R          | G/B       | G/R    | B/R |
| FORWARD       | 199       | 199          | 216          | 222       | 207    | 222 |
| BACKWARD      | 192       | 211          | 209          | 206       | 206    | 223 |

The conclusion based on pre-experimental data was that these state-pairs show a very strong relationship between forward and backward transition frequencies (coefficient of correlation =.93). However, computing the coefficient of correlation,  $p_{s2}$  actual data = .58, it becomes apparent that the degree of dependence is slightly reduced. Therefore the dependence of forward to backward states can no longer be considered as a strong indicator of non-randomness.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

SG1I

The data used in the above discussion consisted of trials from both machine 1 and machine 2. Since non-randomness, made apparent by the state transitions, clearly existed for pre-experimental data, the investigation of the experimental data continued to include a search for this trend in the individual machines. The transitions (including identity) are as follows: <u>Machine 1</u>

|                  | YELLOW | GREEN | BLUE | RED |
|------------------|--------|-------|------|-----|
| YELLOW           | 96     | 79    | 88   | 92  |
| GREEN            | 85     | 87    | 86   | 88  |
| BLUE             | 85     | 82    | 90   | 87  |
| RED              | 91     | 91    | 83   | 92  |
| <u>Machine 2</u> |        |       |      |     |
| ند               | YELLOW | GREEN | BLUE | RED |
| YELLOW           | 108    | 120   | 111  | 124 |
| GREEN            | 107    | 131   | 136  | 119 |
| BLUE             | 126    | 124   | 138  | 135 |
| RED              | 118    | 115   | 140  | 129 |

Computing the two coefficients of correlation,

$$p_{machine 1} = .4934$$
  
s2 data

and

$$\rho$$
 machine 2 = .4838  
s2 data

it is obvious that the forward and backward transitions are even less dependent than in the combined case. Thus ended the search for non-randomness through state transition.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

As a by-product the following table is produced for general information.

|                   |                 |              |              |             |               | -          |
|-------------------|-----------------|--------------|--------------|-------------|---------------|------------|
|                   | BOTH MA<br>Mean | CHINES<br>SD | MACH<br>MEAN | INE 1<br>SD | MACHI<br>MEAN | NE 2<br>SD |
| FORWARD           | 210.8           | 10.7         | 86.6         | 4.27        | 124           | 9.74       |
| BACKWARD          | 207.8           | 9.00         | 86.2         | .3.92       | 121           | 11.25      |
| TOTAL DATA POINTS | 34              | 83           | 1            | 446         | 20            | )37        |
| COEFF OF COV      | . 58            | 43           | .4           | 934         | .48           | 38         |

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4 Experimental Data Randomness Analysis

The machine data used during the S2 experiment has been combined, summarized and/or permuted in an attempt to establish evidence or randomness or nonrandomness. If an obvious indication of non-randomness would have evolved with this task would be simplified because it would have become a closed form problem (i.e., the solution would be - the data has non-random characteristics). However, what has resulted is that various forms of the data have been examined with all indicating that the data is random.

3191

3650

Tables, plots and commentary are presented in this section to demonstrate randomness and in some cases just to provide general information concerning the machines data.

The distribution of the colors collectively and for each machine is as follows:

|           | <br>Yellow | Green   | Blue | Red |     | Total | Mean   |
|-----------|------------|---------|------|-----|-----|-------|--------|
| Machine 1 | 365        | 353     | 356  | 372 |     | 1446  | 361.5  |
| Machine 2 | 475        | <br>505 | 538  | 519 | · . | 2037  | 509.25 |
| TOTAL     | 840        | 858     | 891  | 891 |     | 3483  | 870.75 |

Machine 1 was not used in as many trials as machine 2 (44 trials to 56 for machine 2), thus the difference in totals. The standard deviation of binomial distribution with n=3483 and p=1/4 is 25.56 which would imply that each separate number is reasonably close to the mean.

Accepting the distribution of the totals consider the distribution of the colors throughout the experiment. The popluations used for this investigation consisted of the first 25 samples of each trial (100 trials total). This population is acceptable since the distribution of its totals was reasonable and since the performance of S2 was approximately the same (success-29.61%) for this subset.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

The following three approaches comprise the strategy used to attack the question of color distribution.

- Each trial (abbreviated to 25 samples) as analyzed separate interval.
   Obviously this will indicate any bias within each trial.
- The data (2500 samples) is divided into intervals of five samples each. This will indicate unusual repetitions either within the interval or interval-by-interval.
- 3. The data is reformatted into 25 intervals of 100 samples, where the nth interval consists of the nth sample in each trial.

The results of approach 1 is shown in Figures 1.1.a, 1.1.b, 1.1.c, and 1.1.d.

The binomial distribution for this strategy (n=25 p=1/4) is mean 6.25 and the variance 4.69. The plots indicate randomness throughout the 100 trials.

The results of approach 2 are similar to approach 1 and are shown in the four tables in Figure 1.2. The plots indicated randomness but are not shown because of monotomy. The binomial distribution mean is 1.25 and the variance .94.

The binomial distribution mean and variance for approach 3 is 25 and 18.75 respectively (Figure 1.3). A plot of the data (Figure 1.4) for the "RED" case because of the concern for the higher variance and ranges. The 13th sample seems to have an unusually high frequency of "RED" (44%). However in general this investigation has not produced a significant non-random characteristic.

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

| sample size                                                                                                      | 100          |
|------------------------------------------------------------------------------------------------------------------|--------------|
| maximum                                                                                                          | 12           |
| minimum                                                                                                          | 3            |
| range                                                                                                            | 9            |
| mean                                                                                                             | 6.23         |
| variance                                                                                                         | 4.239,494949 |
| standard deviation                                                                                               | 2.059003387  |
| mean deviation                                                                                                   | 1.6314       |
| median                                                                                                           | 6            |
| mode                                                                                                             | 6            |
| and the second |              |

15M M

Number of Yellow

per Trial

.

| M          |        |                    | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |          |
|------------|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| M          |        | <b>O</b> 1. 4 1. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | · 1      |
| М          |        |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{O}_{\mathbf{C}}$ |          |
| 1 OM       |        |                    | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                         |          |
| M O        | 0.0    | ÷                  | ( in the second s | ) (                       | )        |
| M O        | 0 0    | 0                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                       | 0 0 0    |
| MOO        | 0      | 0.00 0             | 0 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                         | 0 0      |
| O C OM     | 000 0  | 000 0              | · () · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0_0                       | 00 000   |
| -5MO O O O | O 0 00 | 0 0                | 0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>O</b> (                | <b>)</b> |
| M O        | 000    | 0 0 0 0            | 3 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 00 0                    | 0_0      |
| MO         | 0 0    | 0                  | • • • O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                       | 0        |
| M          | e      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | -        |
| M          |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |          |
| OM M       | M M    | M M                | M N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A M                       | M M      |
| 0          | 20     | 40                 | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                        | 100      |

Trial Number

Figure 1.1.a Distribution of Machine Yellows Over Trials

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

| 27 F               |             |
|--------------------|-------------|
| sample size        | 100         |
| maximum            | 12          |
| minimum            | 0           |
| range              | 12          |
| mean               | 6.13        |
| variance           | 5.851616162 |
| standard deviation | 2.419011402 |
| mean deviation     | 1.9404      |
| median             | 6           |
| mode               | 5 7         |
|                    |             |

|        |         |          | e e su |       | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |     |        |           |
|--------|---------|----------|--------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|-----|--------|-----------|
|        |         | 15M<br>M |                                            |       |                                                                                                                 |     |        |           |
|        |         | м        |                                            |       |                                                                                                                 |     |        |           |
|        |         | M        |                                            |       |                                                                                                                 |     | 0      |           |
| , -    |         | М        |                                            | 0.    |                                                                                                                 |     | 0      |           |
|        |         | IOM      |                                            |       | 0                                                                                                               |     |        | 0.0       |
| Number |         | MO       | 0 0 0                                      | 0     | 00                                                                                                              | 0   | 0 00 - |           |
| of     |         | MO       | 0                                          | C     | 0 0 0                                                                                                           | )0  | C      | 00 *      |
| Green  | 14.00   | M O      | 0 00                                       | 0 0   | 0                                                                                                               | 0.0 | 0 0    | 000 0 0 0 |
| per    |         | MOOO     |                                            | 00    | 00                                                                                                              |     | 000    | OO .      |
| Trial  | -1      | 5M 0 0   | 0 0000                                     | 00    |                                                                                                                 | 0 0 | 0 0    | 0 0 0 0   |
|        | ·. ,    | MO (     | <b>)</b>                                   | 0 0   | · (                                                                                                             | 0 0 | 0      | 0         |
|        |         | M        | 0                                          | 0     |                                                                                                                 | 0   |        | 0 0 0 0   |
|        |         | M (      | 0 0                                        |       |                                                                                                                 | 00  | 0      |           |
|        | · · · · | M        |                                            | 0     |                                                                                                                 |     | 0      |           |
|        |         | OM M     | M                                          | M O M | M                                                                                                               | M   | M M    | M M       |
|        |         | 0        | 20                                         | 40    |                                                                                                                 | 60  | 80     | 100       |

Trial Number

Figure 1.1.b Distribution of Machine Greens Over Trials Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

| sample size        | 100         |
|--------------------|-------------|
| maximum            | 11          |
| minimum            | 1           |
| range              | 10          |
| mean               | 6.21        |
| variance           | 5.218080808 |
| standard deviation | 2.284311889 |
| mean deviation     | 1.8194      |
| median             | 6           |
| mode               | 6           |
|                    |             |

| • |                                      |             | 15 <u>м</u><br>М                      |        |                       |   |              |             |   |                           |        |                   |                     |                          |
|---|--------------------------------------|-------------|---------------------------------------|--------|-----------------------|---|--------------|-------------|---|---------------------------|--------|-------------------|---------------------|--------------------------|
|   | · · · · ·                            |             | M<br>M<br>M                           | 0 0    | •                     |   |              |             |   |                           |        |                   |                     |                          |
|   | Number<br>of<br>Blue<br>Per<br>Trial |             | IOM O<br>M<br>M<br>M<br>M<br>5M<br>MO |        | 0<br>00<br>00<br>0000 |   |              | 0_0<br>0000 |   | 00<br>0<br>0<br>0<br>0000 | 0 0    | 000<br>000<br>000 | )<br>00 0<br>0<br>0 | 0<br>0<br>00<br>00<br>00 |
|   |                                      | ., e **<br> | MO<br>MO<br>OM<br>O                   | O<br>M | M<br>20               | М | 0<br>M<br>40 | О<br>М      | 0 | M<br>50                   | O<br>M | 0 ()<br>M<br>80   | ОМ                  | M<br>100                 |

Trial Number

Approveringer Beiease 2003 44/18 ut GlAR RDP 96 200787 200 150011-4

| sample size        | 100                           |
|--------------------|-------------------------------|
| maximum            | 12                            |
| minimum            | 1                             |
| range              | 11                            |
| mean               | 6 42                          |
| variance           | 0 • 45<br>1 6 2 1 4 1 4 1 4 1 |
| standard deviation | 4.031414141                   |
| Mean deviation     | 2.152072058                   |
| median             | 1./158                        |
| mode               | 0                             |
| mode               | 0                             |

|              | 15M  |                | e di t |                                                                                                                 |         |         |       |               |
|--------------|------|----------------|--------|-----------------------------------------------------------------------------------------------------------------|---------|---------|-------|---------------|
|              | М    |                |        | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |         |         |       |               |
|              | M    |                |        |                                                                                                                 |         |         |       | 0             |
|              | М    |                |        |                                                                                                                 | · · ·   |         |       | . 0           |
|              | MO   |                |        | 0                                                                                                               |         | · 0     |       |               |
| Number       | 1.0M | 00             | )      | 0                                                                                                               | 0       |         |       | • •           |
| of           | M    | 00 00          |        | 0                                                                                                               | 0       |         |       | J ()          |
| Red          | M    | 000            | ·      | 00                                                                                                              | 0       | 0.0     | 000   | 0             |
| Per          | MO   | 0              | . (    | 0000 (                                                                                                          | 0 00 0  | 0       | 0 0 0 | $\frac{1}{2}$ |
| Trial        | М    |                | 0000   | <b>(</b>                                                                                                        | ) 0 0 0 | 00 00   | 00 00 |               |
| 1 <b>-</b> 1 | 5M   | 00             |        | 00                                                                                                              | 0 0     | ) 0 0 0 |       |               |
|              | M C  | ан салана<br>) | 0      | 0 0                                                                                                             | 0 0     | 0       | 0     | U U           |
|              | М    | 0              | 0      | 0 0                                                                                                             | 0       |         | 0     |               |
|              | М    |                |        |                                                                                                                 | 0       |         |       | A 1           |
|              | M    | •              |        |                                                                                                                 |         |         |       | ~))<br>х ¥    |
|              | ОМ   | М              | М      | M M                                                                                                             | М       | Ma M    | M     | M M           |
|              | 0    | ·              | 20     | 40                                                                                                              | Ċ       | 50      | 80    | . 100         |

Trial Number

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

| sample size        | 500          |
|--------------------|--------------|
| maximum            | 5            |
| minimum            | • <b>0</b>   |
| range              | 5            |
| mean               | 1.246        |
| variance           | 0.9594028056 |
| standard deviation | 0.9794910952 |
| mean deviation     | 0.784848     |
| median             | 1 N N        |
| mode               | <b>t</b>     |
|                    |              |

| Distribution of Green |                                                      |
|-----------------------|------------------------------------------------------|
| sample size           | 500                                                  |
| maximum               | 5                                                    |
| minimum               | 0                                                    |
| range                 | 5                                                    |
| mean                  | 1.220                                                |
| variance              | 0.9969178397                                         |
| standard deviation    | 0.9984577285                                         |
| mean deviation        | 0.804512                                             |
| median                |                                                      |
| mode                  | i i <u>i se </u> |

Distribution of Blue dstat grp;<3: 500 sample size 4 maximum U minimum 4 range 1.242 mean 0.95/3507014 variance 0.9/84429985 standard deviation 0.192192 mean deviation median mode

| Distribution of Red | A second seco |
|---------------------|-----------------------------------------------------------------------------------------------------------------|
| sample size         | 500                                                                                                             |
| maximum             | 5                                                                                                               |
| minimum             | 0                                                                                                               |
| range               | 5                                                                                                               |
| mean                | 1.286                                                                                                           |
| variance            | 1.026256513                                                                                                     |
| standard deviation  | 1.013043194                                                                                                     |
| mean deviation      | 0.823216                                                                                                        |
| median              | 1                                                                                                               |
| mode                |                                                                                                                 |

Figure 1. Approved Horine 10003/04/08101A-RDAP6 2007828000200180014 the at a Time

| maximum            | 31          |
|--------------------|-------------|
| minimum            | 19          |
| range              | 12          |
| mean               | 24.92       |
| variance           | 10.57666667 |
| standard deviation | 3.252178757 |
| mean deviation     | 2.6304      |
| median             | 24          |
| mode               | 24          |
|                    |             |

## Green Distribution

| sample size        | 25          |
|--------------------|-------------|
| maximum            | 35          |
| minimum            | 15          |
| range              | 20          |
| mean               | 24.52       |
| variance           | 24.59333333 |
| standard deviation | 4.959166597 |
| mean deviation     | 3.9392      |
| median             | 25          |
| mode               | 22 25       |
|                    |             |

#### Blue Distribution

| sample size      | 25             |
|------------------|----------------|
| maximum          | 34             |
| minimum          | 19             |
| range            | 15             |
| mean             | 24.84          |
| variance         | 14.47333333    |
| standard deviati | on 3.804383437 |
| mean deviation   | 2.9664         |
| median           | 25             |
| mode             | 26             |

| 25          |
|-------------|
| 44          |
| 16          |
| 28          |
| 25.72       |
| 26.71       |
| 5.168171824 |
| 3.3664      |
| 25          |
| 25          |
|             |

Figure 1.3 Distribution of Machine Colors When Samples are Taken 100 at a Time

(One From Each Trial)

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-

Π





Figure 1.4 Distribution of Machine "Reds" when the Samples are taken 100 at a time (one from each trial)

Approach 1 has been repeated for Machine 1 and Machine 2 separately to check for abnormalities. The binomial distribution mean and variance are as follows:

|           | Trials | Mean | Variance |
|-----------|--------|------|----------|
| Machine 1 | 44     | 11   | 8.25     |
| Machine 2 | 56     | 14   | 10.5     |

| Machine 1                                                                                                                | Yellow                                                                                      | Machine 2                                                                                                                |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25<br>16<br>7<br>9<br>11.4<br>7.75<br>2.783882181<br>2.224<br>12<br>12                      | sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25<br>19<br>7<br>12<br>13.52<br>7.51<br>2.740437921<br>2.176<br>14<br>15         |
|                                                                                                                          | waga y                                                                                      |                                                                                                                          |                                                                                  |
| sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | Green<br>25<br>17<br>4<br>13<br>10.68<br>9.726666667<br>3.118760438<br>2.3584<br>11         | sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25<br>24<br>8<br>16<br>13.84<br>12.72333333<br>3.56697818<br>2.7808<br>13<br>13  |
|                                                                                                                          |                                                                                             |                                                                                                                          |                                                                                  |
| sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | Blue<br>25<br>15<br>3<br>12<br>10.32<br>7.7266666667<br>2.779688232<br>2.3072<br>11<br>8 12 | sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25<br>25<br>10<br>15<br>14.12<br>8.943333333<br>2.990540642<br>1.984<br>14<br>15 |
| sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25 Red<br>19<br>4<br>15<br>11.6<br>10.5<br>3.240370349<br>2.4<br>12<br>12                   | sample size<br>maximum<br>minimum<br>range<br>mean<br>variance<br>standard deviation<br>mean deviation<br>median<br>mode | 25<br>21<br>11<br>10<br>14.52<br>10.01<br>3.163853404<br>2.6624<br>13<br>11 13   |

Figure 1. APPRCENCE For Role 35 2003/04/18: CIA-RDP96-00787R000200150011-4 To Trial Basis (14)

#### Best Strategy

Based on the above analysis what is the best strategy to pursue? No good strategy is available based on the randomness of the data. The best possible strategy based on the above transition matrices is:

- If the subject can't distinguish between machine then press blue when blue appears, else pass.
- If the subject can distinguish them on Machine 1, press yellow when yellow occurs, and on Machine 2 press blue when red occurs.

For all its worth, of the existing data the following success would result - 26%, 26%, and 27%.

Analysis of S2 Data Responses

The attempt here is to discover a reason for S2's success at responding. The investigation was unable to give a definitive reason for his success. Although no strategies were uncovered there was in one case a indication that the subject was learning.

Two major approaches have been taken in this investigation. They are as follows:

- Strategy of S2 Was there any trends in the way he guessed? Did he respond based on the previous state of the machine? 1.
- 2. Hit analysis - Did the subjects' hits (correct choices) increase within a run; did it increase from run to run (i.e., was he learning?)

#### Strategy of S2

For general information and future reference the first figure (Figure 2.1) presented is the actual choices. One item of curiosity from this is that when he passes, he tends to do it in strings. This characteristic of course wasn't pursued because of its insignificance to this report; however, observations like that are pointed out throughout the report as possible importance to those in the field.

#### Total Color Choices

The distribution of S2's color choice totals are shown below.

Figure 2.1 Subject 2 Color Choices for First Fifty Trials (0-yellow, 1-green,

2-blue, 3-red, 7-pass)

Figure 2.1 (Continued) S2 Color Choices for Last 50 Trials

|                    | Yellow | Green | Blue | Red |
|--------------------|--------|-------|------|-----|
| Total Times Chosen | - 881  | 411   | 237  | 971 |
| % of Total         | 35%    | 16.5% | 9.5% | 39% |

The first inclination is to try and determine how his strategy of choosing so many yellows and reds benefitted him. Examine the following table:

|                       | Yellow                | Green              | Blue     | Red |
|-----------------------|-----------------------|--------------------|----------|-----|
| Total Number of Hits  | 255                   | 127                | 60<br>50 | 292 |
| % of Total Hits       | 35%                   | 17%                | 8%       | 40% |
| % of Success in Color | 29%<br>(Hits - Correc | 31%<br>ct Choices) | 25%      | 30% |

As can be seen his results with blue are significantly lower than the others. However, assuming the probability of success to be .25 and using the binomial distribution the expected value =69 and the standard deviation = 7. The inference from this is that the 60 Blue hits are not a statistical abnormality. However, it is curious that he did so much worse on his lowest preference. <u>State Transition Color Choice</u>

This investigation consists of examining the states of the machine verses the choice on the next sample of the subject (i.e., if the machine shows "red" does the subject consistently choose one color on the next turn). Consider the following table:

| MACH   | Yellow | Mach<br>Green | ine<br>Blue | Red | Pass | % Pass |
|--------|--------|---------------|-------------|-----|------|--------|
| Yellow | 106    | 119           | 69          | 314 | 210  | 26%    |
| Green  | 177    | 25            | 69          | 316 | 252  | 30%    |
| Blue   | 241    | 99            | 27          | 198 | 302  | 35%    |
| Red    | 322    | 157           | 65          | 97  | 218  | 25%    |
|        |        | N= ,30        |             |     |      |        |

S U B J E C

т

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

The subject obviously avoids repeats (i.e., he assumes the machine won't repeat a color) which, based on the machine data analysis, isn't a strategy which would give him a statistical advantage. Previous analysis showed that identify transitions are approximately equally probable as nonidentity. Notice also that he passes 35% of the time after seeing a blue.

| The Sume | State transfer | ons are shown | Deron Separ | acca by mac |      |  |
|----------|----------------|---------------|-------------|-------------|------|--|
|          | Yellow         | Green         | Blue        | Red         | Pass |  |
| Yellow   | 48             | 49            | 25          | 150         | 83   |  |
| Green    | 62             | 13            | 35          | 153         | 83   |  |
| Blue     | 105            | 36            | 10          | 78          | 115  |  |
| Red      | 133            | 72            | 30          | 58          | 64   |  |

70

12

63

85

58

115

136

189

42.94

44

34

17

35

164

163

120

39

127

169

187

154

M A C H I

> N E 1

M A

С

州

I

N E 2 Yellow

Green

Blue

Red

The same state transitions are shown below separated by machine

The negative state transition (i.e., relationship of the subject color choice to the machine state on the <u>next</u> sample) is considered too bizarre of a concept to be presented in this section. Results of that investigation is found in the section entitled "miscellaneous"

This section is significantly more important than the randomization analysis of the machine data. The reason is that if he is not learning from the machine or he is not taking advantage of biases then the discovery of such non-randomness is of little value to the overall analysis.

#### Learning from Trial to Trial

The question of whether the subject learned from trial to trial can best be answered by examining the following three plots. The first is the number of hits vs. the trial number, the second is a frequency distribution of the number of trials vs. number of hits, the third is the accumulated probability vs. the trial number.

|                                        |              |                              |             |                                                                                                                                                                                                                                     |                |          | ~~ ~~ ~~       | 70000      |                           |                                         |                                          |
|----------------------------------------|--------------|------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------|------------|---------------------------|-----------------------------------------|------------------------------------------|
|                                        | Approv       | ed For Re                    | elease 2    | 2003/04                                                                                                                                                                                                                             | /18 · CI       | A-RDP    | 96-0078        | 7R0002     | 2001500                   | 11-4                                    | a start a start of the second second     |
|                                        | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        | tri .        |                              |             |                                                                                                                                                                                                                                     |                |          |                | ·          |                           |                                         |                                          |
|                                        | M            |                              |             | 0 0                                                                                                                                                                                                                                 |                |          |                |            |                           |                                         |                                          |
|                                        | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         | 0 0                                      |
|                                        | 1 OM         |                              |             |                                                                                                                                                                                                                                     |                |          |                |            | <b>□</b> - • <b>□</b> - • | - · · · [                               | ]                                        |
| Numbon                                 | M            |                              |             |                                                                                                                                                                                                                                     | 00             |          | 1.             |            |                           |                                         |                                          |
| of                                     | M            |                              |             | _0                                                                                                                                                                                                                                  |                |          | 0000           |            |                           | O                                       |                                          |
| Hite                                   | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
| 11165                                  | M.           | ם ם                          |             | -                                                                                                                                                                                                                                   |                | 000 C    | 100            | . <u> </u> |                           | 1.00                                    |                                          |
|                                        | 5 m          |                              | U jU        | · []                                                                                                                                                                                                                                | יין            |          |                |            |                           |                                         |                                          |
| · ·                                    | PI<br>M      |                              |             |                                                                                                                                                                                                                                     | U.             |          | · 1_           |            |                           |                                         |                                          |
|                                        | - Ph<br>M    | п                            | 1           |                                                                                                                                                                                                                                     |                | ÷        |                | L L        |                           |                                         |                                          |
|                                        | in te        |                              | . 1         |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        | ń.M          | м                            | M           | М                                                                                                                                                                                                                                   | м              | ht -     | м              | M          | 11                        | М                                       | м                                        |
| -                                      | 0            |                              | ່ວດ         |                                                                                                                                                                                                                                     | 40             |          | 60             |            | 80                        | ••                                      | 100                                      |
|                                        |              |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           | e tar e                                 |                                          |
| *                                      |              |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        |              |                              |             | Iri                                                                                                                                                                                                                                 | al Nun         | iber     |                |            |                           |                                         |                                          |
| •                                      |              | Figur                        | 022         |                                                                                                                                                                                                                                     | of num         | hor of   | f hite         | (trial     |                           |                                         |                                          |
|                                        |              | riyur                        | C L.L       | 1100                                                                                                                                                                                                                                | OT HUN         |          | 1 1165/        | uriar      |                           | a                                       | -<br>-                                   |
|                                        | 25M          |                              |             |                                                                                                                                                                                                                                     |                |          |                |            | 2                         |                                         | n an |
| •                                      | M            |                              |             | · ·                                                                                                                                                                                                                                 |                | •        |                | •          |                           |                                         |                                          |
|                                        | M            |                              | 8 J.        | 🛛                                                                                                                                                                                                                                   |                |          | a a 11         |            |                           |                                         |                                          |
|                                        | M            | 211.<br>                     |             |                                                                                                                                                                                                                                     | a standar i st |          |                |            |                           |                                         |                                          |
|                                        | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            | · ÷                       |                                         |                                          |
|                                        | - 2011<br>M  |                              | <b>m</b>    |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        | (')<br>- tat |                              | <u></u> . Ц | •                                                                                                                                                                                                                                   |                |          | al, diat.<br>M |            | 11 - 12 - 12<br>11        |                                         |                                          |
|                                        | - 11<br>14   |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        | M            |                              |             | · .                                                                                                                                                                                                                                 |                |          |                |            |                           | · .                                     | e de la                                  |
|                                        | 15M          |                              |             |                                                                                                                                                                                                                                     | • 1            |          |                |            |                           |                                         |                                          |
|                                        | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
| Frequency                              | M            |                              |             |                                                                                                                                                                                                                                     |                |          | 1 A            |            |                           |                                         |                                          |
| of                                     | Μ            |                              |             | · · · ·                                                                                                                                                                                                                             |                | •        |                |            |                           |                                         |                                          |
| Hits                                   | М            | · .                          |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
| per                                    | 10M          |                              | 1 e         |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
| Trial                                  | M            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
|                                        | i Mi         |                              |             |                                                                                                                                                                                                                                     | ·<br>·         |          |                | •          |                           |                                         |                                          |
|                                        | 1"1<br>Fe    |                              | <b>n</b> .  |                                                                                                                                                                                                                                     |                |          |                |            |                           | 1 A A A A A A A A A A A A A A A A A A A |                                          |
|                                        | EM           |                              | L ·         |                                                                                                                                                                                                                                     | п              |          |                |            |                           |                                         |                                          |
|                                        | UTL<br>M     |                              |             |                                                                                                                                                                                                                                     | ш.             |          |                |            |                           |                                         |                                          |
|                                        | м            |                              |             |                                                                                                                                                                                                                                     |                |          |                |            | • •                       |                                         |                                          |
|                                        | M            |                              |             | ÷                                                                                                                                                                                                                                   | · · · · -      |          |                |            |                           |                                         |                                          |
|                                        | M            | ۵                            |             |                                                                                                                                                                                                                                     |                |          |                |            |                           |                                         |                                          |
| ананананананананананананананананананан | 011          | D M                          | M           | М                                                                                                                                                                                                                                   | M              | ΜD       |                | OMD        |                           | DWD                                     |                                          |
| · .                                    | 0            | angan<br>Kabupatén Kabupatén | 5           | i de la composición d<br>El composición de la c | 10             | ter staa | 15             |            | 20                        |                                         | 25                                       |
|                                        |              |                              | 0 0 °       | -                                                                                                                                                                                                                                   | -              |          |                | <b>.</b>   |                           |                                         |                                          |





Trial Number

Figure 2.4 Cumulative Success Ratio of Subject (both machines used)

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4



Trial Number



Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4







Figure 2.6 Accumulative Probability of Success on Machine 2

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

The first plot (Figure 2.2) demonstrates the randomness of the number of hits while the second plot (Figure 2.3) demonstrates the frequency distribution takes on a "normal" appearance. The accumulative probability plots, at first glance, indicates that the subject was in a learning mode for the first five trials. A closer examination of the data indicates that this can occur naturally as part of the statistical distribution.

The first three number of hits points are 7, 5, and 6 considering the first 75 points as the population with probability of success = .2936 (the final probability) then the expected value is 22 (using binomial distribution) and the variance is 15.55 (S.D=3.9). As a normal deviation from the mean (i.e., using normal distribution approximation P(x<18)=.13.

Although the observed learning can be rationalized as a natural statistical deviation it warranted further investigation. The plots of the accumulative probability of success for machine 1 and machine 2 are presented in Figure 2.5 and Figure 2.6. The plot for machine 1 (Figure 2.5) is a typical sinesodial decreasing amplitude convergent curve. The plot for machine 2 however, is very suspicious in terms of learning. The major peaks of the curve (at approximately trial 10, 23, 40 and 56) are increasing which implies his probability of success is continuing to increase instead of converging on one point. Another interesting point5 is that the points at which he switches onto machine 2 are 1, 9, and 36.

Also of concern is the sharp upward turn during the last 8 samples. The hits totals for this period, starting at sample 49 is 10, 10, 8 11, 6, 8, 7, and 11 for a total of 71 hits out of a possible 200 for a probability of success of .36. Once again using the binomial distribution and using the probability of success of .29 (the cumulative probability up to the 49th point) the expected mean is 58 and the standard deviation 6.42. Using the

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4



Number of Hits

Trial

Figure 2.7 Plot of Number of Hits on Machine 1

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4 normal approximation the probability P(X 71)=.02 of such an occurrence is quite low.

Although there are only 56 data points in this population and the apparent abnormalities are statistically possible (with low probability) this investigation concludes that the subject's learning for this case must be flagged as a real possibility. Figure 2.7 (Number of hits on Machine 1) has been added to provide clarity. It appears that the subject just didn't have "low hit" days toward the end.

#### Learning within a Trial

The question of learning within a trial or run has been investigated by summing the number of hits of the Ith sample for the run. The results are somewhat distorted because of the inequitable distribution of passes. The lower numbered samples have significantly more hits because of this. 2,5? A plot of the number of hits per sample vs. sample number is shown in Figure 2.7.

Notice that the first sample has a value of 34 hits. This means that everytime he ists down for a new 25 sample trial he hits 34% of the time on his first try. With this in mind along with the rest of the data points, it is obvious that the subject doesn't learn throughout the trial.

|          |     | •     |              |                             |          | 1 A A A A A A A A A A A A A A A A A A A |        |            |                                                |    |
|----------|-----|-------|--------------|-----------------------------|----------|-----------------------------------------|--------|------------|------------------------------------------------|----|
|          |     |       |              |                             | :        |                                         |        |            |                                                |    |
|          |     | 4 O M |              | 1                           |          |                                         |        |            |                                                | •  |
|          |     | M     |              |                             |          |                                         |        | 12         |                                                |    |
|          |     | М     |              |                             |          |                                         |        |            |                                                |    |
|          | -   | MO    |              |                             |          |                                         |        |            |                                                |    |
| •        |     | М     | 1 - A        |                             |          |                                         |        |            |                                                |    |
|          |     | 30M   | ~            | 0                           |          |                                         |        |            |                                                |    |
|          |     | M ·   | 0            | $\mathbf{v} \in \mathbf{A}$ |          | 2 · ·                                   |        |            |                                                | •  |
|          |     |       | 0 00         | ) <sub>-</sub> ()           |          |                                         |        | 1. K.      |                                                |    |
|          | . * | MU    | 0 00<br>000: | 0.00                        | <b>Y</b> |                                         |        |            | · ·                                            |    |
| Alum han |     | ວດມ   |              | 0 00                        |          |                                         |        |            |                                                |    |
| Number   |     | Z O M | 00           | ່ດັ້                        | 0.0      |                                         |        |            |                                                |    |
|          |     | M     | 0            | -                           | 0        |                                         |        |            |                                                |    |
| 11165    |     | М     |              | ÷                           | 0        | 0                                       |        |            |                                                |    |
|          |     | M     |              |                             |          |                                         |        |            | · .                                            |    |
|          |     | 1 O M |              |                             | 000      |                                         |        |            |                                                |    |
|          | . 1 | М     |              |                             | 0        | 0                                       |        |            |                                                | :• |
|          |     | M     |              |                             |          |                                         |        | 1          |                                                |    |
|          | ·.  | М     |              |                             |          | 00.000                                  | 00 0   | )<br>00 00 |                                                |    |
|          |     | M     |              | м                           | хr       | х                                       | - 00 V | 000000     | $\frac{1}{10000000000000000000000000000000000$ | 0  |
|          | •   | OM    | M            | M<br>20                     | ĮM.      | M.<br>40                                | , MO   | 60         |                                                | Ö  |
|          |     | . 0   |              | -20                         |          | 40                                      |        | <b>~</b> ~ | ~                                              |    |

Sample Number

Figure 2.8 Total Number of Hits Within a Trial

## Miscellaneous

Numerous arrays of data have been examined for the purpose of obtaining some insight into the data. Some of the data is being printed herein so that the data can be examined more closely if desired.

This first table is presented for use as a quick reference.

| Day | Last<br>Trial | Number<br>of<br>Tracks | Machine<br>Used |
|-----|---------------|------------------------|-----------------|
| 1   | 8             | 8                      | 2               |
| 2   | 16            | 8                      | 1               |
| 3   | 24            | 8                      | 2               |
| 4   | 36            | 12                     | 2               |
| 5   | 44            | 8                      | 2               |
| 6   | 52            | 8                      | 1               |
| 7   | 56            | 4                      | 2 . <b>1</b>    |
| 8   | 64            | 8                      | 1               |
| 9   | 68            | 4                      | 1               |
| 10  | 72            | 4                      | 1               |
| 11  | 76            | 4                      | 1               |
| 12  | 80            | 4                      | 1               |
| 13  | 84            | 4                      | 2               |
| 14  | 88            | 4                      | 2               |
| 15  | 100           | 12                     | 2               |
|     |               |                        |                 |

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

The following displays are presented below with little commentary.

- I. General trial summary (Figure 3.1). Each trial (25 choices) is listed with the following information.
  - A. Machine used (1 or 2)
  - B. Total number of machine states in each color (i.e., 6 yellow,6 green ....) for each trial.
  - C. Total number of subject choices for each color for each trial.
  - D. Total number of hits for each trial.
  - E. Total number of passes for each trial.
  - F. Breakdown of hits by color.
- II. Machine data for machine 1 and machine 2 separately (Figures 3.2, 3.3) Just by examining these displays it may be possible to glean meaningful information. For example, machine 1 was used for the first 8 trials during which the first state of each trial was a yellow or red. If the first sample of each trial is most memorable, perhaps this is responsible for the subject's obvious preference of yellow and red (see Section 2 - Analysis of S2 Data Responses).
- III. Plots of the number of passes made.
  - A. Number of passes vs. trial number (i.e., trial is 25 or more samples) (Figure 3.4)
  - B. Number of passes vs. sample number (Figure 3.5)

31

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4 Figure 3.1 Selected Parameter Totals Listed by Trial Number

| rial<br>52534556789012345678901234567789012345678901234567890123456778901234567789012345677890123456778997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mach 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mach<br>yell<br>6<br>7<br>11<br>6<br>13<br>12<br>8<br>6<br>11<br>10<br>13<br>10<br>10<br>7<br>8<br>10<br>10<br>7<br>8<br>10<br>10<br>9<br>11<br>7<br>11<br>4<br>9<br>8<br>11<br>9<br>7<br>8<br>13<br>6<br>7<br>9<br>4<br>6<br>5<br>7<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mach<br>gren<br>5<br>15<br>5<br>4<br>14<br>14<br>2<br>4<br>5<br>1<br>1<br>8<br>6<br>8<br>1<br>9<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>4<br>3<br>9<br>8<br>6<br>4<br>4<br>10<br>12<br>7<br>7<br>13<br>3<br>5<br>7<br>10<br>6<br>7<br>9<br>6<br>2<br>11<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>12<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>13<br>5<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>10<br>7<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>13<br>3<br>5<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>4<br>8<br>6<br>7<br>9<br>6<br>12<br>11<br>14<br>3<br>5<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>7<br>13<br>3<br>5<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>6<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                        |
| mach<br>blue<br>10<br>11<br>7<br>12<br>19<br>11<br>15<br>11<br>9<br>9<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>12<br>7<br>13<br>5<br>8<br>7<br>5<br>8<br>10<br>7<br>10<br>8<br>10<br>7<br>10<br>8<br>10<br>7<br>10<br>8<br>10<br>7<br>10<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>7<br>7<br>12<br>19<br>11<br>11<br>15<br>11<br>9<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>7<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>10<br>5<br>4<br>10<br>7<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>10<br>7<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>10<br>7<br>10<br>6<br>2<br>4<br>10<br>5<br>4<br>10<br>7<br>10<br>6<br>7<br>10<br>7<br>10<br>8<br>10<br>7<br>10<br>7<br>10<br>7<br>10<br>7<br>10<br>7<br>10                                                                                                                                                    |
| mach<br>red<br>9<br>6<br>12<br>14<br>14<br>8<br>12<br>6<br>11<br>8<br>10<br>7<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>6<br>12<br>14<br>14<br>8<br>12<br>6<br>11<br>8<br>10<br>7<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>9<br>8<br>7<br>8<br>7 |
| sub<br>ye1<br>6<br>8<br>9<br>9<br>8<br>12<br>9<br>8<br>4<br>5<br>8<br>7<br>6<br>10<br>4<br>8<br>11<br>3<br>10<br>8<br>5<br>8<br>10<br>8<br>5<br>4<br>12<br>9<br>9<br>4<br>12<br>11<br>3<br>12<br>9<br>8<br>4<br>5<br>8<br>7<br>6<br>10<br>4<br>8<br>12<br>9<br>9<br>8<br>4<br>5<br>8<br>7<br>6<br>10<br>4<br>8<br>12<br>9<br>9<br>8<br>4<br>5<br>8<br>7<br>6<br>10<br>4<br>5<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8<br>10<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| sub<br>95354232324110492246774486234120106613576656644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| sub<br>blu<br>61311223220022522122105414012232004124242332004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sub<br>red<br>11<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>12<br>9<br>11<br>12<br>10<br>10<br>12<br>9<br>11<br>12<br>10<br>10<br>12<br>9<br>11<br>12<br>10<br>10<br>12<br>9<br>11<br>12<br>10<br>10<br>12<br>9<br>9<br>9<br>9<br>12<br>10<br>6<br>9<br>11<br>11<br>12<br>6<br>9<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>12<br>10<br>11<br>11<br>12<br>10<br>11<br>11<br>12<br>10<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>12<br>10<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>11<br>11<br>11<br>12<br>10<br>11<br>11<br>12<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>12<br>10<br>10<br>11<br>11<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10     |
| numb<br>hits<br>9<br>8<br>6<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>7<br>9<br>4<br>7<br>3<br>9<br>6<br>7<br>10<br>9<br>6<br>7<br>8<br>0<br>8<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>8<br>7<br>6<br>6<br>8<br>8<br>8<br>8<br>7<br>9<br>4<br>7<br>3<br>9<br>6<br>7<br>10<br>9<br>6<br>7<br>6<br>8<br>6<br>9<br>7<br>6<br>8<br>6<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>6<br>8<br>6<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>7<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>7<br>8<br>6<br>7<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>7<br>9<br>7<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>7<br>7<br>8<br>6<br>7<br>8<br>6<br>7<br>8<br>7<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| num<br>pas<br>4<br>17<br>4<br>8<br>34<br>4<br>8<br>20<br>11<br>11<br>3<br>5<br>9<br>8<br>37<br>7<br>10<br>8<br>34<br>9<br>7<br>5<br>6<br>5<br>16<br>5<br>16<br>30<br>2<br>38<br>7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| hit<br>yel<br>23320331230324133440214012732472332554214133252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hit grn 2 21 2200010100001410121112340020100021111313211111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hit<br>blu<br>30100010000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| hid 23155244447424514342412333233325541101210145552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Approved For Release 2003/04/18: CIA-RDP96-00787R000200150011-4 Figure 3.2 Color states of machine 1 during the experiment (0-yellow, 1 green, 2 blue, 3 red)

> Approved For Release 2003/04/18: CIA-RDP96-00787R000200150011-4 Figure 3.3 Color states of machine 2 during the experiment (0 yellow, 1 green, 2 blue, 3 red)

|          |          | e de la companya de l<br>La companya de la comp |                    |               |                                |            |
|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--------------------------------|------------|
|          | 50M      |                                                                                                                                                                                                                                     |                    |               |                                |            |
|          | М        | 0                                                                                                                                                                                                                                   |                    |               |                                |            |
|          | M        |                                                                                                                                                                                                                                     |                    |               | ÷.,                            | . •        |
|          | M        |                                                                                                                                                                                                                                     |                    |               |                                |            |
|          | M        |                                                                                                                                                                                                                                     |                    |               |                                |            |
|          | 40M      | 0                                                                                                                                                                                                                                   |                    | 1 (a. 1)<br>1 |                                |            |
|          | M        |                                                                                                                                                                                                                                     |                    |               | •                              | · · · · ·  |
|          | M.       | •                                                                                                                                                                                                                                   |                    | 0             | •                              |            |
|          | M        |                                                                                                                                                                                                                                     |                    | U N           | · · · ·                        |            |
|          | NO C     | 0                                                                                                                                                                                                                                   |                    |               |                                |            |
|          | JUM      | 00                                                                                                                                                                                                                                  | 0                  | 0             |                                |            |
| Jumbon   | ivi<br>M |                                                                                                                                                                                                                                     |                    | Q I           | 0                              |            |
| of       | M        | 0                                                                                                                                                                                                                                   |                    | •             |                                |            |
| Passes   | M        |                                                                                                                                                                                                                                     | •                  |               |                                | •          |
| 103363   | 20M      | 0                                                                                                                                                                                                                                   | 000                | 0.0           | 0                              |            |
| •        | M        | 0 0                                                                                                                                                                                                                                 | e e<br>Foren an an | 0             |                                |            |
|          | М        | · · · · O                                                                                                                                                                                                                           |                    |               | • O                            | 0          |
|          | M        | 0.0                                                                                                                                                                                                                                 | 00                 | 0             | 0 0                            | •          |
|          | М        | 0                                                                                                                                                                                                                                   | 0                  | 0 0           | 0                              |            |
| 1990 - E | 1 OM     | 0:0                                                                                                                                                                                                                                 | 1                  | .0.           | 0 0                            | 0          |
|          | М        | 00 0                                                                                                                                                                                                                                | 0                  | • <b>O</b>    | 000 0                          |            |
|          | М        |                                                                                                                                                                                                                                     | 1                  |               | ()  ()  ()  ()  ()  ()  ()  () |            |
|          | M        | 0                                                                                                                                                                                                                                   | 00 < 00            | 00.00         | 0 0                            |            |
|          | M        | anana in in                                                                                                                                                                                                                         | 10 ()<br>11 ()     | -> − U        | и и                            | -0 - 0 = 0 |
|          |          |                                                                                                                                                                                                                                     | M                  | J M           | 194 194<br>RO                  | 100 M      |
| •        | U.       | 20                                                                                                                                                                                                                                  | 40                 | 00            | 00                             | .00        |

Trial Number

Figure 3.4 Total number of passes summed over a trial

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

|              | 35M                   |                 | 111         | · · · · · ·           |                           |    |
|--------------|-----------------------|-----------------|-------------|-----------------------|---------------------------|----|
| Аррі         | ∦<br>roved∦For Releas | se 2003/04/18 : | CIA-RDP96-0 | 0787R000200           | 150011-4                  | .' |
|              | M O<br>M<br>30M       | 0 0             |             |                       |                           |    |
|              | M O<br>M<br>M         | 0 0 0           |             |                       |                           |    |
|              | M<br>25M 0 00<br>M 0  |                 | )           |                       |                           |    |
|              | M OO<br>M<br>M O      |                 | )<br>)      |                       |                           |    |
|              | 20M ()<br>M<br>M ()   | )               | 0           |                       |                           |    |
| Number       | М<br>МО<br>15М        | 0               | 0           |                       |                           |    |
| of<br>Passes | M<br>M<br>M           |                 | 0           |                       | · ·                       |    |
|              |                       |                 | 0           |                       |                           |    |
|              | M<br>M<br>M           |                 | 0 0         | 0                     |                           |    |
|              | 5М<br>М<br>М          |                 | 0<br>000    | 0 0 00                | •                         |    |
|              | MO<br>OM M            | M M<br>20       | м м<br>40   | 0 00 0<br>M 000<br>60 | 00<br>000000<br><b>80</b> |    |
|              |                       | Sampl           | le Number   |                       |                           |    |

Figure 3.5 Total number of passes summed over sample number

C. Number of passes and the number of hits vs. the trail number on one plot. Investigation of the hits/passes relationship was dropped when the coefficient of correlation between the two was computed at -.114

50M 0 М М М M 40M 0 М М M 0 0 М 30M 0 М 00 0 0 0 М М 0 М 0 0 20M 000 0 0 Pass Μ 0 0 0 and М 0 0 0 Hit 00 0 0 М 0 0 0 0 Total Ρ. P P 0 0 0 P () · Р PO М P PPPOP' Р P P PP PP P O PPP 1 O M Ρ 0 MPP PP P PP PP PP POPP POPPPPP POO PPPPP OPO РР OPPOPPP MPPP P P PP PPPP PPP Р 00P 0.00 P OPP 0 00 М ()0 P 0 0 0 ρ 0 М P 0 М 00 M OMOOOOOOO M М М ()M 60 100 20 40 80 0

Trial Number

0 - passes per trial

P - hits per trial

39

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

per trial

Figure 3.6 Plot of number of hits per trial and number of passes

М

Ι٧.

Tables of state transitions which reflect the influence of the subject on the machine. For color choices of the subject the table shows the number of colors the machine has on the next sample. For example on the first table, when the subject picked yellow, on the next sample 197 times the machine state was yellow.

|        | Yellow | Green | Blue | Red         |             |
|--------|--------|-------|------|-------------|-------------|
| Yellow | 88     | 77    | 87   | 95          |             |
| Green  | 38     | 46    | 39   | 47          | Machine 1   |
| Blue   | 27     | 28    | 24   | 24          |             |
| Red    | 120    | 105   | 99   | 112         | • • • • • • |
| Pass   | 84     | 83    | 98   | 81          |             |
|        |        |       |      |             |             |
| Yellow | 109    | 124   | 128  | 141         |             |
| Green  | 58     | 47    | 58   | 66          | Machine 2   |
| Blue   | 25     | 32    | 42   | 30          |             |
| Red    | 121    | 125   | 136  | 102         |             |
| Pass   | 146    | 162   | 161  | 168         |             |
|        |        |       |      | · · · · · · |             |
| Yellow | 197    | 201   | 215  | 236         |             |
| Green  | 96     | 93    | 97   | 113         | Both        |
| Blue   | .52    | 60    | 66   | 54          | Macrimes    |
| Red    | 241    | 230   | 235  | 214         | · · · · ·   |
| Pass   | 230    | 245   | 259  | 249         |             |

MACHINE STATES ON FOLLOWING SAMPLE

Figure 3.7 State Transitions from Subject Choice to Future Machine State

Approved For Release 2003/04/18 : CIA-RDP96-00787R000200150011-4

V. Because of the possibility that the subject was learning the state of machine
2 the distribution of the colors are plotted in Figures 3.8, 3.9, 4.0, and
4.1. The only states used are those in which the subject didn't pass.
Therefore there is a total of 25 for each trial.

| Approved I | For Release 2003/04/18 : CIA-RDP96-00787R000200150011-                                                                                                                                                                              | 4 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|            | 10.0M 0 0                                                                                                                                                                                                                           |   |
|            | M<br>M                                                                                                                                                                                                                              |   |
|            | M                                                                                                                                                                                                                                   |   |
|            | M 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                              |   |
| •          | M O OOO O O O O O O O                                                                                                                                                                                                               |   |
|            | MO 0 0 0 00 0                                                                                                                                                                                                                       |   |
| Number     | M<br>5.0M0 0 0 0 000 0 00                                                                                                                                                                                                           |   |
| Yellow     | M                                                                                                                                                                                                                                   |   |
|            | M 0 0 0 0 0 0 0 M                                                                                                                                                                                                                   |   |
|            |                                                                                                                                                                                                                                     |   |
|            | M O O                                                                                                                                                                                                                               |   |
|            | Maria da Carlo de Car<br>Maria de Carlo de Carl |   |
|            | M                                                                                                                                                                                                                                   |   |
|            | 0.0M M M M M M<br>0 20 40 60                                                                                                                                                                                                        |   |



Figure 3.8 Distribution of Yellow for Machine 2

| 12.5M<br>M                              | 0       |          | 2 |
|-----------------------------------------|---------|----------|---|
| M A A A A A A A A A A A A A A A A A A A |         |          |   |
| М<br>10.0М О                            |         |          |   |
| M                                       | 0       | 0 0      |   |
| MC)<br>M                                | U .     |          |   |
| M O O<br>7.5M                           | 0 0     | 0 00     |   |
| M O                                     |         | 0 0 0    | 3 |
| MO O<br>MO                              | 00      | 0 00 00  |   |
| 5.0M 000                                | 0 0 0   | 00 0 0 0 |   |
| M O O                                   | 0 00 00 | 0        | 0 |
| M                                       | 0       | 0        |   |
| 2.5M<br>M                               | 0       | 0        |   |
| M<br>M                                  |         |          |   |
| O.OM M                                  | M M     | M M      | M |

Number of Green

Approved For Release 2003/04/18<sup>T.</sup>rĊlA-RDP96-00787R000200150011-4 Figure 3.9 Distribution of Green for Machine 2 42

|                                       | 12.5M             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · |                   | ase 2003/04/18 · CIA-RDP96-00787R000200150011-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Approved for Reim | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | M M               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 10.OM             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | M Constant        | 00 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • • • •                               | M                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | M                 | 0 0 0 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | 7.5M              | 0 00 0000 0 0 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number                                | M                 | 0 00 0000 0 0 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Blue                                  | M                 | 0 000 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | M                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • .                                   | 5.0M              | 000 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | IVI<br>M          | 0 0 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | M                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | М                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 2.5M              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | M N               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | N                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | N ON              | s w w M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 0.00              | <u>20</u> 40 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Figure 4.0        | Distribution of Blue for Machine 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 12.5              | n en en ser en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                   | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | 1                 | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                   | MO OO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 10.0              | Ministration and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Numbon                                | 1                 | M 00 0 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Red                                   | 7.5               | M Constant of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   | MO 000 0000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   | Ministration of the second sec |
|                                       | 5.0               | 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                   | M A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                     |                   | м O<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                   | M O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 2.5               | M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                   | Manana Oran da Orangeo ante de Arra da Arra da<br>Manana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                   | Ministration of the second sec |
|                                       |                   | , we have the set of   |
|                                       | 0.0               | M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                     |                   | a an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Figure 4.1 Distribution of Red for Machine 2 43

-4

| Test                                    | Description<br>Approved For Release 2003/04/18 : CIA-RDP96-00787F                                                                                                                                       |                          | Scoring         |                |                |                                            |                      |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|----------------|----------------|--------------------------------------------|----------------------|--|
| ,                                       |                                                                                                                                                                                                         |                          | )01 <u>1-</u> 4 | S3             | S4             | S5                                         | \$6                  |  |
| Halstead Category<br>Test               | Nonverbal test requiring abstraction of conceptual relation-<br>ships. Score: Total errors.                                                                                                             | 7                        | 14              | 33             | 26             | 6                                          | 28                   |  |
| Tactual Performance<br>Test             | Requires placement of 10 geometrically shaped blocks in<br>their correct locations on a formboard while blindfolded.<br>Separate RT, LT, and bimanual trials.<br>Score: Total time (min.).              | 16.4                     | 11.8            | 7.7            | 7.7            | 11.4                                       | 6.9                  |  |
| Speech Perception<br>Test               | Discrimination of non-word speech sounds.<br>Score: Total errors.                                                                                                                                       | 4                        | 2               | 0              | 2              | 5                                          | 3                    |  |
| Seashore Rhythm Test                    | Discrimination of nonverbal rhythms. Score: Number correct.                                                                                                                                             |                          | 25              | 28             | 29             | 26                                         | 29                   |  |
| Finger Tapping Test                     | Measure of finger oscillation rate for 10-sec. period, both<br>RT and LT hand trials. Score: No. taps/10 sec.                                                                                           | RT/LT<br>53/50           | RT/LT<br>53/49  | RT/LT<br>48/47 | RT/LT<br>54/53 | RT/LT<br>47/47                             | RT/LT<br>48/43       |  |
| Trail Making Test<br>(Part A)           | Requires connecting numbered circles in order from 1 to 25.<br>Paper and pencil task. Score: Total times (sec)                                                                                          | 40                       | 16              | 18             | 19             | 30                                         | 27                   |  |
| Trail Making Test<br>(Part B)           | Requires connecting alphabetic and numbered circles by alternating $1\rightarrow A\rightarrow 2\rightarrow B$ , etc. Score: Total time (sec)                                                            | 56                       | 50              | 55             | 50             | 54                                         | 53                   |  |
| Knox Cube Test                          | Measure of attention span and immediate visual memory.<br>Score: Number correct.                                                                                                                        | 13                       | 14              | 13             | 16             | 17                                         | 17                   |  |
| Raven Progressive<br>Matrices           | Nonverbal intelligence test involving spatial matrices.<br>Score: Number correct.                                                                                                                       | 39                       | 53              | 49             | 55             | 60                                         | 54                   |  |
| Verbal Concept<br>Attainment Test       | Requires abstraction of verbal conceptual relationships.<br>Score: Number correct.                                                                                                                      | 22                       | 24              | 27             | 23             | 21                                         | 24                   |  |
| Buschke Memory Test R<br>r<br>w         | Requires learning a 20-word list in a maximum of 12 trials with<br>repetition of words omitted after each trial. Score: Max. no.<br>words correctly remembered; List: no. words consistently remembered | Total:<br>14/20<br>List: | 17/20           | 18/20          | 19/20          | 20/20                                      | 20/20                |  |
|                                         |                                                                                                                                                                                                         | 8/20                     | 14/20           | 11/20          | 16/20          | 15/20<br>(8 tria)                          | 16/20<br>s)(7 trials |  |
| Grooved Pegboard Test                   | Requires insertion of 25 pegs in their holes in a pegboard. Both<br>RT and LT hand trials. Score: Total time (sec).                                                                                     | RT/LT<br>76/74           | RT/LT<br>69/70  | RT/LT<br>58/67 | RT/LT<br>59/67 | RT/LT<br><del>70/<b>48</b></del><br>7 2/70 | RT/LT<br>48/50       |  |
| Spatial Relations<br>Subtest of the PMA | Requires mental rotation and identification of figures<br>rotated in 2 dimensions. Score: no. correct - no. errors.                                                                                     | -                        |                 | •1             | <br>           | 60                                         | 52                   |  |
| Gottschaldt Hidden<br>Figures Test      | Requires tracing outline of simple figure hidden within lines of more complex Appgoved For Release 2003/04/18 ; CJArBDP.96-00787R                                                                       | 000200150                | 00ft-4          | _              | v.good         | outst.                                     | outst.               |  |