## Next 2 Page(s) In Document Exempt

This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of:

## The Black Vauit



The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government \& Military.

Discover the Truth at: httpi/www.theblackvault.com

LN 725-83

PUBLICATION TITLE:
SUBJECT TITLE:

AUTHORS:

ZIRAN ZAZHI [Nature Journal]
PROCESSES IN SENSING FIGURES ON CRUMPLED AND ROLLED-UP PAPER USING SPECIAL INDUCTIVE FUNCTIONS OF THE HUMAN BODY

Shao Shaoyuan, et al.

Young children who possess special inductive functions of the human body can recognize writing and figures on crumpled and rolled-up paper without using their eyes, but by using their ears and other parts of their bodies. This recognition mechanism is more complex and more difficult to understand than the mechanism of recognizing writing and figures on flat paper. When studying the process of sensing figures using special inductive functions of the human body, we discovered nany indications that helped us to understand the mechanisms of recognizing patterns on crumpled paper. For example, when using folded paper for testing, sonie testees demonstrated that they sensed figures that were at first spread out flat, and then after a while they were again folded; in February of 1980, when Xlaofeng was working with the character "夫" written on a crumpled plece of paper, she first sensed a curved and crooked stroked " $7 \%$," but then the crooked strokes slowly straightened out into the character " $太$." In order to fnvestigate the mechanism of sensing patterns on crumpled paper, we examined separately patterns for crumpled paper by eight young children with different gpecial inductive functions. All together 62 tests were carried out on the process of subjectively sensing figures when the paper was rolled up.

## Test Results of Crumpled Paper

We cut up several sheets of approximately $4 \mathrm{~cm}^{2}$ into different shapes and wrote characters or figures on the pieces. Then we crumpled the paper without using any special method into small balls with diameters of about 4 mm. During the tests, we randonly selected a plece of crumpled paper and placed it on the external auditory canal of a testee and asked the testee to tell us or draw out the process of subjectively sensing the characters or figures on the paper in their auditory canal. After the crumpled paper was placed in the external auditory canal, its position was not changed. The hands of the testees did not come into contact with the crumpled paper. The tests were carried out separately and each testee independently gave an account of the process of sensing the figures. Below we present the accounts of geveral of the testees:

Xiaoli (female, 11 years old). After the crumpled paper was placed in her external auditory canal for several minutes, she sensed the figure on the crumpled piece of paper in her brain and spread it out. After several minutes, this spread-out figure rolled up into a ball again and several minutes later this closed ball of paper appeared in her brain and repeatedly opened out. Afterwards, it closed up again. During each test, Xiaoli could open up and close the paper with the figures several times in her brain. At first it opened only partially but afterwards it gradually expanded, and then finally the figure on the entire piece of paper opened up. At the same time, each
time the figure on the paper opened up and appeared, Xiaoli could recognize part of the contents written on the crumpled paper; at first the strokes of these characters and figures were crooked, but after the paper was opened up the strokes gradually straightened out. When the paper was completely spread out, Xiaoli was able to recognize the different shapes on the paper. After the figures on the paper opened out and closed for the last time, they did not open up again after a short period of time.

Xiaopu (female, 11 years old). Her sensing process of figures on paper was similar to that of Xiaoli. Her special characteristic was that the crumpled paper opened up and closed many times. Several seconds after the paper opened up it closed, and several seconds after it closed, the paper opened up again. With this alternation of opening and closing, the time of each opening of the figure gradually lengthened. When it lengthened to more than ten seconds or several tens of seconds, the figures on the paper were completely spread out and she could recognize the characters and figures on the paper. After the final opening up of the crumpled paper, clear figures could be maintained in her brain for several minutes without closing up or disappearing.

Xlaohong (female, 13 years old). After the crumpled paper was placed In her external auditory canal, at first there appeared figures on the crumpled piece of paper, and afterwards the figures on the "loosened ball" of paper gradually opened up. Yet, as soon as the paper opened out, the figures on the paper disappeared and afterwards only independent characters and figures appeared.

Xlaofeng (female, 12 years old). The special characteristic of her sensing of figures was that there was no appearance of figures on the paper. There was only the appearance of character forms of "crooked to flattened out," such as $\boldsymbol{j l}^{\prime} \rightarrow$ 中 . When characters were written on colored paper, the color of the paper could appear but not the shape of the paper.

We can see from the test results of the four above-mentioned testees that the process of sensing crumpled paper is always a process in which the figures in space open up into plane figures. This type of opening-up process can be accomplished completely in one attempt, and it can also occur gradually after many repeated attempts. We also observed similar situations among other tested children. Table 1 gives some cases of the sensing of figures on crumpled paper.

## Test Results of Rolled-up Samples

We used a rectangular piece of paper 1 cm wide and 6 cm long with two ends cut into different shapes. We used a color pen to write characters or symbols on the paper, roiled up the paper into a ball with a diameter of 4 mm , and then used cotton thread to bind it into a test sample. The aim of using the rolled-up sample for testing was to examine whether or not the opening process when sensing rolled-up paper was similar to that of mechanically opening a piece of rolled-up paper. Table 2 gives the results of several tests.

From the descriptions of Xiaoli and Xiaopu, when sensing characters and figures on rolled-up paper, there still occurred the process of repeated opening

Table 1．The sensing process of recognizing figures on crumpled paper．
Approved For Release 2003／09／09 ：CIA－RDP96－00792R000300300001－1

| Num－ ber | Tested child | Test sample | Sensing process | The paper appears | Paper opens \＆ closes | $\begin{gathered} \text { Test sample } \\ \text { final } \\ \text { figure } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Xiaoli | 6 | $t-4-E]$ | Yes | Several <br> times | Closed |
| 2 | Xiaoli | （4） | （1）$-9=-(9)$ | Yes | ＂ | Closed |
| 3 | Xiaoli | （0） | $\cdots \rightarrow$（0） | Yes | Several times | Closed |
| 4 | Xiaopu | ＜ 7 | $s \rightarrow B-\mathbb{R}$ | Yes | Many times | Opened |
| 5 | Xiaopu | $\stackrel{N}{2}$ | $\cdots \rightarrow-\square \rightarrow{ }^{4}$ | Yes | ＂ | Opened |
| 6 | Xiaohong | $\mathbb{E}$ | A crumpled piece of paper $\rightarrow$ the paper moves and gradually opens + the crump－ led piece of paper seems to lave a character $\rightarrow$ the paper disaprears $\rightarrow$ 共 | Yes $\rightarrow$ No | One time | $/$ |
| 7 | Xiaohong | （white paper \＆ blue character） | ```A crumpled piece of paper }->\mathrm{ the paper moves }->\mathrm{ gradual opening }->\mathrm{ crumpled paper [] the paper disappears }->\mathrm{ a mass of blue * 全/``` | Yes $\rightarrow$ No | One time |  |
| 8 | Xiaofeng | 大 | 太 | No | $1$ |  |
| 9 | Xiaofeng | CB | 18－1 | No | ＂ | 7 |
| 10 | Xiaofeng | （s） <br> （red paper） | A strip of red $\rightarrow$ there is a back $S$ character on top | The color of paper appears but not the shape |  |  |

Table 2. The sensing process of sensing figures on rolled-up paper samples.


LN 725-83
and closing of the rolled-up paper. When the rolled-up paper was still not completely opened, sometimes "6" appeared and sometimes " Moreover, the figures on the rolled-up paper could rotate in the brain. The sequence of the appearance of the characters and figures on the rolled-up paper sometimes first appeared near the inside end of the pattern and sometimes appeared near the outside end of the pattern. Sometimes they also appeared in the middle of the rolled-up paper. This shows that the opening process of figures on rolled-up paper is not related to the outside end in a rolled-up paper sample, and it is also different from mechanically flattening out rolled-up paper with the hands.

After tests on recognizing crumpled and rolled-up paper samples, we further noted that the use of special inductive functions to sense samples was completely different from using the eyes to see things. One eye perceived the projection of an object in space on a certain surface but could not discriminate the projections of orerlapping figures. Special inductive functions can be used to sense three-dimensional objects in space and can also carry out more complex processing. Based on the opening processes described by the testees, they are similar to the repetitive grouping of figures in space by a computer. The differences between the several testees in their sensing of figures are possibly related to the strengths of their special inductive functions. Xiaofeng and Xlaohong participated in many special inductive function tests and generally their functions were relatively strong, so that after the sample was opened once it could be clearly and completely recognized. When Xiaoli and Xiaopu participated in special inductive function tests which were conducted relatively late in the day, their functions were at an intermediate level and only after processing the samples many times could they cause the figures of the sample to advance from partially to completely open. Sometimes, Xiaoli was unable to recognize completely and clearly the test contents. After the figure of the sample closed up it did not open again, so that it was best to halt the process. This shows that the level and sustained time of opening for the sample are related possibly to the level of the special inductive function. Based on the results of using multifolded samples, as well as crumpled and rolled-up paper, to examine the sensing process of pictures by special inductive functions in the human body, this type of sensing process is not the mechanical copying of samples; but it is rather a more complex process, whereby an existing weak signal is drawn from an interference background, ${ }^{1}$ selection for recognition is based on the number of the layer, ${ }^{2}$ and the figures in space open up to become plane figures. Today, scientific techniques such as hologram photography, fault photography, CT, recombination of figures in space, etc., have already been realized, and an examination of the principles of these scientific techniques can perhaps help us to understand the mechanisms of special inductive functions ' 1 the human body. Moreover, special inductive functions in the human $b$ ody have possibly more profound significance than these modern scientific and technological achievements.

[^0]
# SUBJECT TITLE: PATTERN RECOGNITION OF THE HUMAN BODY WITHOUT USING THE EYES 

\author{

## AUTHOR: <br> <br> Ye Ziquan (Institute of Biophysics, Chinese Academy of

 Sciences).}


#### Abstract

Since the publication of the "Observation Report of 'Non-Visual Pattern Recognition'" in the Nature Journal [Ziran Zazhi], there have been many findings and reports published in our country. Our observation findings also confirm that some people possess the ability to recognize patterns without using their eyes. The facts prove that certain people can use many parts of their body to discriminate colors, characters, pictures, flat and folded objects, and even pictures on crumpled pieces of paper without using their eyes. Moreover, they can penetrate through paper, plastic, aluminum foil, copper foil, and various other obstructions. Because the process of sightless pattern recognition is relatively slow and because images appear in the forehead, the testee can write or orally relate the process and results of their own perceptions. Therefore, we can use the abilities of the human body itself to observe the process of sightless pattern recognition.

This article treats the sightless pattern recognition capability of the human body, including the recognition of colors and shapes of pictures, the recognition sequence, the function of position fixing and turning during recognition, the function of orientation, the function of measuring the angle, the assembling and conformity functions, the functions of study, making contact and contrast, as well as the feelings of vibration which occur during recognition.


## Methods

We used various colored characters, symbols, and pictures written on white paper as the test samples. Some were studied and recognized by the testees, while others were images which the testees had never come in contact with.

1. The test sample which was fixed in direction, as well as open and flat, was stuck to the center of the palm of the testee. The testee was not permitted to move the position of the picture in his palm, and the left and right palms independently carried out sightless recognition.
2. The test sample was open and flat or folded, and it was placed directly on the palm in a random direction for sightless recognition.
3. Certain protective screens were arranged for the test sample: we used black paper wrapping; it was placed in a cardboard box with wall thickness of 1 mm and dimensions of $52 \times 34 \times 15 \mathrm{~mm}^{2}$; it was placed in a black resin ink box with wall thickness of 2 mm , a diameter of 60 mm , and a height of 20 mm ; it was placed in an aluminum box with wall thickess of 0.2 mm , a diameter of 68 mm , and a height of 90 mm ; the test sample was rolled up and placed in a glass test tube with wall thickness of 1 mm , a diameter of 10 mm , and a height of 100 mm ; the test sample was placed in the above-mentioned container in a random direction and the testee held the container in his hands for sightless recognition.

LN 725－83

Each sensation reported by the testee during tho recognition process was recorded by a tester or spoken out and written down by the testee．

Testees：A（11 years old，female），B（10 years old，male），C（7 years old，female），D（5 years old，male）．

Results and Discussions
1．Observations of the Recognition Sequence
When the sightless pattern recognition functions occurred，the testee said he sensed a light screen moving on his forehead and sensed one screen after another of the figure disclosed．One screen after another appeared separately in a certain sequence，and finally he sented the appearance of the entire figure．The results are shown in Table 1.

We can see from the observations that the process of sightless pattern recognition of the human body is a process with a certain sequence．It can divide the characters and figures into certain types of figure units，such as ＂－＂，＂｜＂，＂／＂，＂＂，＂，＂，＂＋＂，＂X＂，＂3＂，etc．Io recognition．However， it is not carried out in sequence according to the strokes of Chinese charac－ ters．Various shapes of screens are used for test samples which are flat and open，folded and rolled．After a testee recognizes the system and obtains the test sample information，he first differentiates the total contour，color， etc．of the test sample and then separately processes the separate parts of
 for siaple characters，the character＂$K$＂is divided into the recognition pro－ cess of＂$ᄉ \rightarrow \rightarrow^{+}+$．＂The processes of the two accounts by testees $A$ and $B$ were the same for the recognition of the character＂$太$ ．＂It is of interest that testee A seemed to enjoy searching from the protruding part of the out－ side towards the center and setting up logical connections．For example，
 $"$ 㐊＂was＂I $\rightarrow$ 志。＂However，testee B took even greater delight in pull－ ing together the strokes＇in the same direction．Fof example，＂$a$＂was＂（1

 direction，the earlier the sensing occurs．We call the method of testee $A$ the partial to imitation type and the method of tageng is called the partial to inference type．

It is very possible that the sequential sensingoterghtless pattern recognition by the human body truly reflects the relarive speed processes of the i，uman brain in dividing and discriminating pattert information．The dif－ ferences between the methods of testees $A$ and $B$ are possibly related to their sexual distinctions，individual characters，ages，educational levels，and other factors．

As regards the sensing of sequential recognition the testees stated that when one＂screen＂image flashed by and they still 缜领 not clearly＂see＂ it，they could use their thoughts to pull back the＂screen＂and＂look＂at it again．That is to say，it is controlled by one＇s congciousness．The se－ quential image sensing of the figure unit is the regule $\mathrm{of}_{\mathrm{f}}$ the analysis of

Table 1．Observations of the sequence of sightless pattern recognition in the human body

| Testee | Screen | $\begin{array}{\|l\|} \hline \text { Test } \\ \text { sample } \\ \hline \end{array}$ | Color | Folds | Main account（MA）$\quad$Re | Results of MA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |  | $\square$ | Red | 3 | Red \｜$\quad \rightarrow \rightarrow$ Z $\rightarrow$ 仡 |  |
| A |  | （1） | Blue | 3 | Blue $\square \rightarrow+\rightarrow$ f or $\rightarrow$ 且 $\rightarrow$ |  |
| B |  | 中 | Blue | 1 | Blue $\equiv \rightarrow \mathrm{H} \rightarrow \boldsymbol{\mathrm { O }}$＋ |  |
| A |  | 中 | Blue | 2 | Blue $\mid \rightarrow \square \rightarrow$ |  |
| B |  | $T$ | Black | 4 | B1ack $\rightarrow$｜$\rightarrow$ |  |
| A |  | 上 | Blue | 6 | B1ue $\mid \rightarrow- \pm \pm$ |  |
| A |  | 主 | B1ue | 1 | Blue I $\rightarrow$ |  |
| A | $\begin{gathered} \text { Aluminum } \\ \text { box } \end{gathered}$ | 人 | Gray | 1 | B1ack |  |
| B | Ink box | 大 | Red | 2 | Red 人 $\rightarrow$－ |  |
| A | －Imítäíon leather | 大 | Gray | 1 | B1ack $1 \rightarrow$ |  |
| A |  | 天 | B1ue | 3 | Blue $\rightarrow+\rightarrow$ 人 $\rightarrow$ |  |
| A | $\begin{aligned} & \text { Cardboard } \\ & \text { box } \end{aligned}$ | 力 | B1ue | 1 | Blue $ノ \rightarrow$ J |  |
| A |  | 台 | Blue | 3 | Blue $ム \rightarrow \square \rightarrow$ |  |
| B | Ink box | 吴 | Black | 1 | B1ack $A+\square \rightarrow \square \rightarrow$ |  |
| A | Glass tube | 巧 | Blue | Rollled | Blue $\boldsymbol{y}$ ， |  |
| A | $\begin{gathered} \text { Cardboard } \\ \text { box } \end{gathered}$ | 文 | Blue | 1 | Blue ，$\rightarrow$－ |  |
| B | Ink box | 构 | Black | 1 | B1ack 大 $\rightarrow$ 大 $\rightarrow$ ア + ， |  |
| B | In a quilt with light put out | 呵进 | Blue | 1 |  |  |
| A |  | $\begin{aligned} & \text { 上 } \\ & \frac{2}{f} \\ & \text { 土 } \end{aligned}$ | B1ue | 4 | Blue One strip of＂three characters＂with sep－ arations in between them． |  |

Note：Where there are blanks for the screen items，the test sample was placed directly into the palm and the direction of the test sample＇s position was random．
the picture by the human brain, and it is also a reflection of the relative speed processes of the analysis of the figure. However, the interili display cf the final results is the data and results of people's high-Ixy fentral disurimination.

## 2. Position Fixing and Turning Functions

For figures with axial symmetry or which are non-sytmetich it we aimed them directionally in the direction of the testee's middle inger, the surface of the figure faced the center of the palm, and the lett end \&ight hand palms or clenched fists separately carried out sightless procesent. Testee A was tested with 18 figures, 9 in each of her hands; testee B was tested with 6 figures, 3 in each of his hands, and he carried out fepeattyb bipling tests. The testees said that when they "saw" the figure of the pht screen" on their foreheads, they used the middle finger as the top and trearist as the bottom. It was the same as "seeing" the figure right in front of the forehead. When the hands were luwered or level, or when the person was standing, sitting, and lying down, there was no influence on the fobining direction of the figure. It was as if the eyes were forming in the palms of the hands, the head was pointed toward the tip of the midde finger, the feet were facing the wrists, and the face was looking toward the lisure. See Fig. 1 for the results.

The results of the observations show that the sightless patyrn recognition functions of the human body have directional abiliter, this type of directional ability is a necessary condition of pattern recginition without using the eyes. It can be assumed that if direction finding is $n$ tot possible, then it will be impossible to realize pattern recognition withoutwoing the eyes.

How does sightless pattern recognition discriminate direction?
One possibility is that if a path which has figure inforwivin transmitted in it is induced by the skin, then the relative positionatuirection of the skin and figure are fixed, and the skin and brain tissus frio hive certain corresponding relationships. That is, as regards the reldtlonship between "induction" and "feeling," the direction of the tips of the middle fingers of the left and right hands is the same as the direction of the top of the head of the body's axis. However, when the left and righe hands have inversion symmetry, the position of each spot on the hands also hige an inversion symmetry relationship in the brain. This causes the figures fecognized separately by the left and right hands of the testee to have ghe dige recognition results in the brain.

This type of directional rule is possibly innate in humarise Moreover, each part of the human body possibly has correspondences befween the directional axis and central axis. It was observed that when fhe te ty sample character "中" was placed in a random direction in the hand of tegtee "D," his account was "er." However, as can be seen from Table 1, when the character "中" was placed in a random direction in the hand of testee $B$, the recognition sequence related by testee $B$ was " $\| \rightarrow \# \rightarrow G \rightarrow \phi$ "Tgatee Dhad not yet attended school, whereas testee B had already been attenting school for three years. We can explain from testee B's recognition prodess, which


Fig．1．Observation results of the directional functions of sightless pattern recognition of the human body．
was capable of changing＂$\theta$＂into＂中，＂that：（1）when the information was being processed in the brain，testee $B$ had the ability to rotate the figure information around the vertical axis of the center axis；（2）this type of rotational ability is possibly related to the educational level of the testee．

It was observed that in the recognition process of the character＂下＂ by testee B：＂下 $\rightarrow$＂上 $\rightarrow$ F．＂This is possibly the function of still having the figure information rotate around its vertical axis on the center axis when processing the information in the brain．

For figures randomly placed in the hands，ears，and other parts of the body，as well as for figures placed in certain kinds of containers，the sight－ less pattern recognition capability of the human body can still accurately find and discriminate the direction．During the recognition process，the position of the sample sometimes changed，but the direction of the sample could still be found accurately．As regards samples that were folded，
rolled up，and crumpled，the testees said that they could th ， information，find the direction，and rotate it．This is anththerm ability of sightless pattern recognition by the human bodyturnsumy

3．Orientation，Angle Measurement，Assembling， Functions

 recognition sequence to obtain sense perception of the tipe witwer whe figure units assembled together to form a complete character pateuntric－ cording to the testee，the character＂上＂is divided Into three parts，＂＂＂ ＂－＂and＂－＂，and they had already used their direction－findin watictions．
 positional relationship between them can be arranged in way why three parts are fixed on a coordinate plane and we use the grranjotient wethod for the Chinese character＂$由$ ，＂then＂ $\mid$＂uses three positions to design
 types of arrangement methods，then the positional relatiotithis of $/ P$ and
 actually first assembled it into the character＂$\pm$＂and divithe deter－ mined that it was the character＂上．＂This is to say that ofter The igure is entirely fixed in direction，each of the divided units 18 alson fised In direction．However，it is also necessary to $f i x$ accuratery he soblition and eliminate the various random positions in order to be ablawatchentethem accurately．

From an analysis of the test results，after the picture information and each of its units are fixed in direction on the centestof，oritinal point or a figure unit is fixed on the center axis direchanchitw scale＂ is also fixed．Then，each unit of the picture is detectited on tho top and bottom relative positions on the scale，and it is assembtedthont he center

 and from＂叶＂$\rightarrow$＂由＂that on the transverse axis direse romes wequfi to
 information．The movement of each part of the figure fifyonditionton the axis is called＂assembly．＂

The correctness of assembly is related to the sizemsinfery le ubed

 checked so as to be able to fix accurately the position twors semble the figure．For example，testee B fixed the posiflof dite character $" 中 "$ and divided it into $" \underline{E} " \rightarrow " \| " \rightarrow "$ 日．＂At thistlime，the assembled ＂甘＂was uniformly checked by the scale，the image sent fot of the figure in－
 and finally the testee discriminated the character＂

In sightless pattern recognition by the human body wrecustanit hav－ ing a certain angle of inclination with the center axis frectori，GSide from the length scale，also have measuring angle position fixlng funcions，See Table 2 for the observation results．


Table 2．Observations of the measuring angle position fixing functions of the sightless pattern recognition by the human body


Key：1－aluminum box； 2 －ink box； 3 －cardboard box； 4 －black paper； 5 －paper tub．

We can see from Table 2 that the figure units are not parallel nor per－ pendicular to the center axis and transverse axis，and their sensed images often appear continuously or simultaneously．＂人＂$\rightarrow$＂人，＂＂＂$\rightarrow$＂人 $\rightarrow$
 angle position fixing functions in the information processing of sightless pattern information．However，if the position fixing function of the ratio of the measuring angle fixed position to length do not match well，then the error of＂A＂assembled into＂大＂can occur．It can be considered that measur－ ing angle position fixing has a process of independent analytical processing．

As regards the recognition of circular and arched patterns，the testees said that the circular shaped images were sensed in their entireties，and the circles were always sensed before the arcs．In the recognition of circles， the phenomenon whereby there was division into separate sections of arcs which were later connected together did not occur．The observations are given in Fig．1．For the pattern＂$\%$ ，＂testee A said that＂there are two circles and the one in the middle is black and indistinct．＂This shows that there is an independent process for the processing of circles and arcs in the sight－ less pattern recognition by the human body．This area of work still requires further observations．We can see from Table 1 that for more complex charac－ ters，such as＂芙，＂＂巧，＂＂水岛，＂＂台，＂＂新进，＂＂上学考，＂etc．，the method of processing by dividing the characters into parts was used．More－ over，we can see that following the development of recognition functions，the figure units divided for recognition can change from simple to relatively complex．After the process of dividing the characters into parts，they ther use uniform proportions，fixed positions，measuring angle，etc．，between each divided part to form a complex character pattern．

## 4．Practice，Making Contact，and Contrastive Functions

We discovered in the observation process that following an increase in the number of tests on the testees，the testees said that the sightless recog－ nition of characters was＂one character at a time jumping on a light screen．＂

For example，this was true of later observations of＂EDy［adventel，＂


 ［hard work does not shoulder strong－willed people］，＂etc．＂Whe ibows that the sightless pattern recognition function by the human body comis Into con－ tact with data processing channels after being used many times．This is a self－organizing function，and it causes the recognition capabilities to in－ crease from the recognition of simple figure units to the cecognition of complex figure units．We call it the＂making－contact function，＂，

The testees must always check their own sightless recognition results and samples．The testees always appear very happy when there are correct sightless recognition results．This is also a process of gaining practice， so that after study and training，the speed and ability of testees to process figure information can be raised．The＂making－contact function＂in the sight－ less pattern recognition by the human body is the basis of the ablifty to gain practice through training．The strength of the ability to study reflects the strength of the＂making－contact ability＂and study can strengthen the ＂making－contact function．＂

The testees could copy out the characters on the samples which they did not know，for example，＂＂＂＂ R＂＂$^{2}$ etc，Moreover，they colld compare and even guess and determine them from what they had already studled：for example，they distinguished＂呎＂by saying it had one less dot＂＂than ＂gの＂．．．
［Tr．Note：last page of original text missing．］


[^0]:    1 Wang Chu, et al. Ziran Zazhi [Nature Journal], Vol. 3 (1980), p. 438.
    ${ }^{2}$ Luo Liner, et al. Ziran Zazhí, Vol. 4 (1981), p. 291.

