On file in CIA library is an exploitation report on a metallic fragment approximately 2" x 3", recovered near Kerekere, Republic of the Congo. The fragment was recovered by ground search after a UFO fell to earth in the area. The report concludes that the fragment was originally part of an electrical component and was constructed of 0.010-inch thick silicon-steel laminates.
The purpose of this report is to describe the results of an investigation of a metallic fragment recovered near the town of [Town]. The recovery was the result of a ground-level search which was conducted after an unidentified flying object exploded and fell to earth in the area. The explosion occurred on [Date] and [Date] October 1963. No reports of other than a reported east-west direction of flight for the UFO were forthcoming. Specific observation and recovery details are lacking.

[SECTION II: (C) Description]

The fragment is described as follows: [Description of fragment]. The density and characteristics of the fragment are as follows: [Density and characteristics]. The impact point is unknown. However, the apparent direction of the fragment is from east to west. The impact point is not known. The impact conditions were as follows: [Impact conditions]. The fragments were recovered and examined for [Examination details]. The results of the examination are as follows: [Results]. The fragment is a metal object that differs in color from the rest of the object. Figure 1 shows the side view of the fragment, and Figure 2 shows the top view.
Placing. This can be accomplished by tightly compacting the laminates assembly and keeping it in a heated press until the desired temperature is reached. The temperature required for heating the copper depends upon the degree of compaction required. Higher pressures require proportionately lower temperatures.

(c) A cross-section (lent to length of the specimen) is shown in Figure 3. The high-compression angles are shown. The compression of individual laminates shows how closely they come together. The angle between the laminates and the passive fins or petals are shaped. This shape is used to help locating wires in place during high strength testing. The indicated of the high heating condition experienced. The outer surface of the specimen shaft is serrated to prevent axial slippage of the laminates.

6. (c) The laminations or stacking of individual laminates is clearly illustrated in Figure 6. The top and bottom layers of the film at the edges are shown. A cross-section showing the slippage of the supporting during the high temperature testing of the pressure is shown. Some of the copper was removed from the specimen during the testing and the indicated of this area is shown in Figures 7 and 8.

(c) Showing results of burnout heating with a single grain structure and high strength, the results were as shown in Table 1. The indications of the burnout test are shown in Figure 9 and the cross-sectional grain shown that the results were as shown in Figure 2 and 3.