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An Introduction to the Statistical Drake Equation 

1. Introduction 

SETI (an acronym for "Search for Extraterrestrial Intelligence") is a relatively 
new branch of scientific research, having begun only in 1959. Its goal is to 
ascertain whether alien civilizations exist in the universe, how far from us 
they eXist, and possibly how much more advanced than us they may be. 

As of 2009, the only physical tools we know that could help us get in touch 
with aliens are the electromagnetic waves an alien civilization could emit and 
we could detect. This forces us to use the largest radiotelescopes on Earth for 
SETI research, because the higher our collecting area of electromagnetic 
radiation is, the higher our sensitivity is (that is, the farther in space we can 
probe). Yet, even by using the largest radiotelescopes on Earth (the 310-meter 
dish at Arecibo, for instance), we cannot search for aliens beyond, say, a few 
hundred light years away. This is a very, very small amount of space around us 
within our galaxy, the Milky Way, that is about 100,000 light years in diameter. 
Thus, current SETI can cover only a very tiny fraction of the galaxy, and it is 
not surprising that in the past 50 years of SETI searches, NO extraterrestrial 
civilization was discovered. Quite simply, we did not get far enough! 

This demands the construction of much more powerful and radicallv new 
radiotelescopes. Rather than big and heavy metal dishes, whose mechanical 
probl.ems hamper SETI research too much, we are now turning to "software 
radiotelescopes," where a large number of small dishes (ATA = Allen 
Telescope Array, and ALMA = Atacama Large Millimeter/submillimeter Array) 
or even just of simple dipoles (LOFAR = Low Frequency Array) using state-of­
the-art electronics and very-high-speed computing can outperform the 
classical radiotelescopes in many regards. The final dream in this field is the 
SKA (= Square Kilometer Array), currently being designed and expected to be 
completed around 2020. 

2. The Key Question: How Far are They? 

But still, the key question remains: how far are they? 

Or, more correctly, how far do we expect the NEAREST extraterrestrial civilization to be 
from the Solar System in the galaxy? 

This question was first faced in a scientific manner back in 1961 by the same scientist 
who also was the first experimental SETI radio astronomer ever: the American, Frank 
Donald Drake (born 1930). He first considered the shape and size of the galaxy where 
we are living: the Milky Way. This is a spiral galaxy measuring some 100,000 Hght 
years in diameter and some 16,000 light years in thickness of the Galactic Disk at half­
way from its center. That is: 

The diameter of the galaxy is (about) 100,000 light years, (abbreviated Iy) i.e., its 
radius, RGll/ltxr' is about 50,000 Iy. 
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The thickness of the Galactic Disk at half-way from its center, h(;ulll'\:\'1 is about 16/000 Iy. 

The volume of the galaxy may then be approximated as the volume of the 
corresponding cylinder, i.e. 

Now consider the sphere around us having a radius r. The volume of such a sphere is 

I _ 4 (. Ef _Distance J3 
~ OW'_ s,,/r"l"t' - '31( 2 

In the last equation, we had to divide the distance 'lET_Distance" between ourselves 
and the nearest ET civilization by 2 because we are now going to make the 
unwarranted assumption that all ET civilizations are equally spaced from each 
other in the galaxy! This is a crazy assumption, clearly I and should be replaced by 
more scientifically-grounded assumptions as soon as we know more about our Galactic 
Neighborhood. At the momentl however, this is the best guess that we can make, and 
so we shall take it for granted, although we are aware that this is a weak point in the 
reasoning. 

Furthermorel let us denote by N the total number of civilizations now living in the 
galaxy, including ourselves. Of course, this number N is unknown. We only know that 
N ~ 1 since one civilization does at least exist! 

Having thus assumed that ET civilizations are UNIFORMLY SPACED IN THE GALAXY1 we 
can then write down the proportion: 

N 

That is, upon replacing both (1) and (2) into (3): 

4 (Ef Distance \3 
.., IT-

tr ROa1a,\.Jl = 3 2) 
N 1 

The last equation contains two unknowns: Nand ET _Distance, and so we don't know 
which one it is better to solve for. 

However, we may suppose thatl by resorting to the (rather uncertain) knowledge that 
we have about the Evolution of the galaxy through the last 10 billion years or so, we 
might somehow compute an approximate value for N. 

Then, we may solve (4) for ET_Distance thus obtaining the (AVERAGE) DISTANCE 
BETWEEN ANY PAIR OF NEIGHBORING CIVILIZATIONS IN TH E GALAXY (DISTANCE 
LAW) 
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1, /..R2 J 
. . () G,,/an· fl C 

EI'_Dlstance(N)= .~r;-;' =-
"N VN 

where the positive constant C is defined by 

c = .~ 6 RL'my 1l0cdaxv ::::: 28845 light years. 

Equations (5) and (6) are the starting point to understand the origin of the Drake 
equation that we discuss in detail in Section 3 of this paper. 

Let us just complete this section by pointing out three different numerical cases of the 
distance law (5): 

(5) 

(6) 

• We know that we exist, so N may not be smaller than 1, Le., Nz. t. Suppose then 
that we are alone in the galaxy, i.e., that N=l. Then the distance law (5) yields as 
distance to the nearest civilization from us just the constant C, i.e' J 28,845 light 
years. This is about the distance in between ourselves and the center of the galaxy 
(i.e. the Galactic Bulge). Thus, this result seems to suggest that, if we do not find 
any extraterrestrial civilization around us in these outskirts of the galaxy where we 
live, we should look around the Galactic Center first. And this is indeed what is 
happening, i.e., many SET! searches are actually pointing the antennas towards the 
Galactic Center, looking for beacons (see, for instance ref. [1]). 

• Suppose next that N=1000, i.e. there are about a thousand extraterrestrial 
communicating civilizations in the whole galaxy right now. Then the distance law (5) 
yields an average distance of 2,885 light years. This is a distance that most 
radiotelescopes in Earth may not reach for SET! searches right now: hence the need 
to build larger radiotelescopes, like ALMA, LOFAR and the SKA. 

• Suppose finally that N= 1000000, i.e., there are a million communicating civilizations 
now in the galaxy. Then the distance law (5) yields an average distance of 288 light 
years. This is within the (upper) range of distances that our current radiotelescopes 
may reach for SET! searches/ and that justifies all SETI searches that have been 
done so far in the first fifty years of SETI (1960-2010). 

In conclusion, interpolating the above three special cases of N/ we may say that the 
distance law (5) yields the following key diagram of the average ET distance vs. the 
assumed number of communicating civilizations, N/ in the galaxy right now (Figure 1): 
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Figure 1. DISTANCE LAW; i.e., the Average Distance (plot along the vertical axis in light years) Versus 
the NUMBER of Communicating Civilizations ASSUMED to Exist in the Galaxy Right Now 

3. Computing N By Virtue of the Drake Equation (1961) 

In the previous section, the problem of finding how close the nearest ET civilization may 
be was \\solved" by reducing it to the computation of N, the total number of 
extraterrestrial civilizations now existing in this galaxy. In this section the famous 
Drake equation is described, that was proposed back in 1961 by Frank Donald Drake 
(born 1930) to estimate the numerical value of N. We believe that no better 
introductory description of the Drake equations exists other than the one given by Carl 
Sagan in his 1983 book "Cosmosfl (ref. [2]), in its turn based on the famous TV series 
"Cosmos." So, in this paragraph we report Carl Sagan/s description of the Drake 
equation unabridged. 

"But is there anyone out there to talk to? With a third or a half a trillion stars in our 
Milky Way galaxy alone, could ours be the only one accompanied by an inhabited 
planet? How much more likely it is that technical civilizations are a cosmic 
commonplace, that the galaxy is pulsing and humming with advanced societies, and, 
therefore, that the nearest such culture is not so very far away - perhaps transmitting 
from antennas established on a planet of a naked-eye star just next door. Perhaps 
when we look up at the sky at night, near one of those faint pinpoints of light is a world 
on which someone quite different from us is then glancing idly at a star we call the Sun 
and entertaining, for just a moment, an outrageous speculation. 
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It is very hard to be sure. There may be several impediments to the evolution of a 
technical civilization. Planets may be rarer than we think. Perhaps the origin of life is 
not so easy as our laboratory experiments suggest. Perhaps the evolution of advanced 
life forms is improbable. Or it may be that complex life forms evolve more readilYI but 
intelligence and technical societies require an unlikely set of coincidences - just as the 
evolution of the human species depended on the demise of the dinosaurs and the ice­
age recession of the forests in whose trees our ancestors screeched and dimly 
wondered. Or perhaps civilizations arise repeatedly, inexorably, on innumerable planets 
in the Milky WaYI but are generally unstable; so all but a tiny fraction are unable to 
survive their technology and succumb to greed and ignorance, pollution and nuclear 
war. 

It is possible to explore this great issue further and make a crude estimate of N, the 
number of advanced civilizations in the galaxy. We define an advanced civilization as 
one capable of radio astronomy. This is, of course, a parochial if essential definition. 
There may be countless worlds on which the inhabitants are accomplished linguists or 
superb poets but indifferent radio astronomers. We will not hear from them. N can be 
written as the product or multiplication of a number of factors, each a kind of filter, 
everyone of which must be sizable for there to be a large number of civilizations: 

• Ns, the number of stars in the Milky Way galaxy. 

• fp, the fraction of stars that have planetary systems. 

• net the number of planets in a given system that are ecologically suitable for life. 

• ff, the fraction of otherwise suitable planets on which life actually arises. 

• fi, the fraction of inhabited planets on which an intelligent form of life evolves. 

• rei the fraction of planets inhabited by intelligent beings on which a communicative 
technical civilization develops. 

• fL, the fraction of planetary lifetime graced by a technical civilization. 

Written out, the equation reads 

tV = Ns· Jj) . fie' .f'·.Ii· .fe.'·.fL 

All of the fs are fractions, having values between 0 and 1; they will pare down the 
large value of Ns. 

To derive N we must estimate each of these quantities. We know a fair amount about 
the early factors in the equation, the number of sta rs and planetary systems. We know 
very little about the later factors, concerning the evolution of intelligence or the lifetime 
of technical societies. In these cases our estimates will be little better than guesses. I 
invite you, if you disagree with my estimates below, make your own choices and see 
what implications your alternative suggestions have for the number of advanced 
civilizations in the galaxy. One of the great virtues of this equation/ due to Frank Drake 
of CornellJ is that it involves subjects ranging from stellar and planetary astronomy to 
organic chemistrYI evolutionary biology, history, politics and abnormal psychology. 
Much of the Cosmos is in the span of the Drake equation. 
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We know Ns, the number of stars in the Milky Way galaxy, fairly well, by careful counts 
of stars in a small but representative region of the sky. It is a few hundred billion; some 
recent estimates place it at 4 x 1011. Very few of these stars are of the massive short­
lived variety that squander their reserves of thermonuclear fuel. The great majority 
have lifetimes of billions or more years in which they are shining stably, providing a 
suitable energy source for the energy and evolution of life on nearby planets. 

There is evidence that planets are a frequent accompaniment of star formation: in the 
satellite systems of Jupiter, Saturn and Uranus, which are like miniature solar systems; 
in theories of the origin of the planets; in studies of double stars; in observations of 
accretion disks around stars; and is some preliminary investigations of gravitational 
perturbations of nearby stars.l Many, perhaps even most, stars may have planets. We 
take the fraction of stars that have planets, fp, as roughly equal to 1/3. Then the total 
number of planetary systems in the galaxy would be Ns fp rv 1.3 x 1011 (the symbol rv 

means "approximately equal toft). If each system were to have about ten planets, as 
ours does, the total number of worlds in the galaxy would be more than a trillion, a vast 
arena for the cosmic drama. 

In our own solar system there are several bodies that may be suitable for life of some 
sort: the Earth certainly, and perhaps Mars, Titan and Jupiter. Once life originates, it 
tends to be very adaptable and tenacious. There must be many different environments 
suitable for life in a given planetary system. But conservatively we choose ne==2. Then 
the number of planets in the galaxy suitable for life becomes Ns fp ne ~ 3 x 1011. 

Experiments show that under the most common cosmic conditions the molecular basis 
of life is readily made, the building blocks of molecules able to make copies of 
themselves. We are now on less certain grounds; there may, for example, be 
impediments in the evolution of the genetic code, although I think this is unlikely over 
billions of years of primeval chemistry. We choose fI <'V 1/3, implying a total number of 
planets in the Milky Wayan which life has arisen at least once as Ns fp ne fI ,..... 1 X 1011

1 

a hundred billion inhabited worlds. That in itself is a remarkable conclusion. But we are 
not yet finished. 

The choices of fi and Fe are more difficult. On the one hand, many individually unlikely 
steps had to occur in biological evolution and human history for our present intelligence 
and technology to develop. On the other hand, there must be quite different pathways 
to an advanced civilization of specified capabilities. Considering the apparent difficulty 
in the evolution of large organisms, represented by the Cambrian explosion, let us 
choose fi x fe == 1/100, meaning that only 1 per cent of planets on which life arises 
actually produce a technical civilization. This estimate represents some middle ground 
among the varying scientific options. Some think that the equivalent of the step from 
the emergence of trilobites to the domestication of fire goes like a shot in all planetary 
sys~ems; others think that, even given ten or fifteen billion years, the evolution of a 
technical civilization is unlikely. This is not a subject on which we can do much 
experimentation as long as our investigations are limited to a single planet. Multiplying 

1 Carl Sagan was writings these lines back in the 1970's, when no extrasolar planets had been discovered yet. The 
first such discovery occurred in 1995, when Michel Mayor and Didier Queloz, working at the "Observatoire de Haute 
Provence" in France, discovered the first extrasolar planet orbiting the nearby star 51 Peg. This first extrasolar 
planet was hence named 51 Peg B. Many more extrasolar planets were discovered around nearby stars ever since. 
As of April 2009, 347 extrasolar planets (exoplanets) are listed in the Extrasolar Planets Encyciopaedia. 
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these factors together! we find Ns fp ne fI fi Fe '" 1 x 109 , a billion planets on which 
technical civilizations have arisen at least once. But that is very different from saying 
that there are a billion planets on which technical civilizations now exist. For this we 
must also estimate fLo 

What percentage of the lifetime of a planet is marked by a technical civilization? The 
Earth has harbored a technical civilization characterized by radio astronomy for only a 
few decades out of a lifetime of a few billion years. So far/ then , for our planet fL is less 
than 1/108 , a millionth of a percent. And it is hardly out of the question that we might 
destroy ourselves tomorrow. Suppose this were a typical case, and the destruction so 
complete that no other technical civilization - of the human or any other species - were 
able to emerge in the five or so billion years remaining before the Sun dies. Then Ns fp 
ne ff fi fe fL tV 10, and l at a given time there would be only a tiny smattering! a handful! 
a pitiful few technical civilizations in the galaxy, the steady state number maintained as 
emerging societies replace those recently self-immolated. The number N might be even 
as small as 1 if civilizations tend to destroy themselves soon after reaching a 
technological phase; there might be no one for us to talk with but ourselves. And that 
we do but poorly. Civilizations would take billions of years of tortuous evolution, and 
then snuff themselves out in an instant of unforgivable neglect. 

But consider the alternative, the prospect that at least some civilizations learn to live 
with technology; that the contradictions posed by the vagaries of past brain evolution 
are consciously resolved and do not lead to self destruction; or that, even if major 
disturbances occur! they are reveres in the subsequent billions of years of biological 
evolution. Such societies might live to a prosperous old age, their lifetimes measured 
perhaps on geological or stellar evolutionary time scales. If 1 percent of civilizations can 
survive technological adolescence, take the proper fork at this critical historical branch 
point and achieve maturity, then fL tv 1/100, N '" 107 , and the number of extant 
civilizations in the galaxy is in the millions. Thus, for all our concern about the possible 
unreliability of our estimates of the early factors in the Drake equation l which involve 
astronomy, organic chemistry and evolutionary biologYI the principal uncertainty comes 
to economics and politics and what, on Earth l we call human nature. It seems fairly 
clear that if self-destruction is not the overwhelmingly preponderant fate of galactic 
civilizations, then the sky is softly humming with messages from the stars. 

These estimates are stirring. They suggest that the receipt of a message from space is, 
even before we decode it, a profoundly hopeful sign. It means that someone has 
learned to live with high technology; that it is possible to survive technological 
adolescence. This alone, quite apart from the contents of the message, provides a 
powerful justification for the search for other civilizations. 

4. The Drake Equation is Over-Simplified 

In the nearly fifty years (1961-2009) elapsed since Frank Drake proposed his equation/ 
a number of scientists and writers tried to find out which nu merical values of its seven 
independent variables are more realistic in agreement with our present-day knowledge. 
Thus there is a considerable amount of literature about the Drake equation nowadays/ 
and, as one can easily imagine! the results obtained by the various authors largely 
differ from one another. In other wordS, the value of N, that various authors obtained 
by different assumptions about the astronomy, the biology and the sociology implied by 
the Drake equation l may range from a few tens (in the pessimist's view) to some 
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million or even billions in the optimist's opinion. A lot of uncertainty is thus affecting our 
knowledge of N as of 2010. In all cases, however, the final result about N has always 
been a sheer number, i.e., a positive integer number ranging from 1 to millions or 
billions. This is precisely the aspect of the Drake equation that this author regarded as 
\\too simplistic" and improved mathematically in his paper #IAC-08-A4.1.4, entitled 
"The Statistical Drake Equation" and presented on October 1st, 2008, at the 59th 

International Astronautical Congress (lAC) held in Glasgow J Scotland, UK( September 
29th thru October 3rd, 2008. That paper is attached herewith as Appendix B. Newcomers 
to SETI and to the Drake equation, however, may find that paper too difficult to be 
understood mathematically at a first reading. Thus, 1 shall now explain the content of 
that paper "by speaking easily." I thank the reader for his or her attention. 

s. The Statistical Drake Equation 

We start by an example. 

Consider the first independent variable in the Drake equation (7), i.e., NSf the number 
of stars in the Milky Way galaxy. Astronomers tell us that approximately there should 
be about 350 millions stars in the galaxy. Of course, nobody has counted (or even seen 
in the photographic plates) all the stars in the galaxy! There are too many practical 
difficulties preventing us from doing so: just to name one, the dust clouds that don't 
allow us to see even the Galactic Bulge (i.e. the central region of the galaxy) in the 
visible light (although we may "see it" at radio frequencies like the famous neutral 
hydrogen line at 1420 MHz). So, it doesn't make any sense to say that Ns = 350 X 106, 

orl say (even worse) that the number of stars in the galaxy is (say) 354/233,321, or 
similar fanciful exact integer numbers. That is just silly and non-scientific. Much more 
scientific, on the contrary, is to say that the number of stars in the galaxy is 350 million 
plus or minus, say, 50 millions (or whatever values the astronomers may regard as 
more appropriate, since this is just an example to let the reader understand the 
difficulty) . 

Thus, it makes sense to REPLACE each of the seven independent variables in the Drake 
equation (7) by a MEAN VALUE (350 miliionsl in the above example) PLUS OR MINUS A 
CERTAIN STANDARD DEVIATION (50 millions, in the above example). 

By doing so, we have made a great step ahead: we have abandoned the too-simplistiC 
equation (7) and replaced it by something more sophisticated and scientifically more 
serious: the STATISTICAL Drake equation. In other words, we have transformed the 
classical and simplistic Drake equation (7) into an advanced statistical tool for the 
investigation of a host of facts hardly known to us in detail. In other words still: 

• We replace each independent variable in (7) by a RANDOM VARIABLE, labeled 
Di (from Drake). 

• We assume that the MEAN VALUE of each Di is the same numerical value previously 
attributed to the corresponding independent variable in (7). 

• But now we also ADD A STANDARD DEVIATION (J"J)i on each side of the mean value, 

that is provided by the knowledge gathered by scientists in each discipline 
encompassed by each Dj • 

11 
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Having so done, the next question is: 

How can we find out the PROBABILITY DISTRIBUTION for each Di ? 

For instance, shall that be a Gaussian, or what? 

This is a difficult question, for nobody knows, for instance, the probability distribution of 
the number of stars in the galaxy, not to mention the probability distribution of the 
other six variables in the Drake equation (7). 

There is a brilliant way to get around this difficulty f though. 

We start by excluding the Gaussian because each variable in the Drake equation is a 
POSITIVE (or, more preCisely, a non-negative) random variable, while the Gaussian 
applies to REAL random variables only. So, the Gaussian is out. Then, one might 
consider the large class of well-studied and positive probability densities called \\the 
gamma distributions," but it is then unclear why one should adopt the gamma 
distributions and not any other. The solution to this apparent conundrum comes from 
Shannon/s Information Theory and a theorem that he proved in 1948: "The probability 
distribution having maximum entropy (= uncertainty) over any FINITE range of real 
values is the UNIFORM distribution over that range/, This is proven in Appendix A of the 
present document. 

So, at this point, we assume that each of the seven Di in (7) is a UNIFORM random 
variable, whose mean value and standard deviation is known by the scientists working 
in the respective field (let it be astronomy, or biology, or sociology). Notice that, for 
such a uniform distribution, the knowledge of the mean value Po, and of the standard 

deviation (Y/)o' automatically determines the RANGE of that random variable in between 

its lower (called (Ii) and upper (called hf ) limits: in fact these limits are given by the 
equations 

rai =PJ), -J3uJ), 
lbi = ,uJ); + J3 uJ)~ 

(the "surprisingll factor Jj in the above equations comes from the definitions of mean 
value and standard deviation: please see equations (12)1 (15) and (17) in Appendix B 
for the relevant proof). So the uniform distribution of each random variable Dr is 
perfectly determined by its mean value and standard deviation, and so are all its other 
properties. 

The next problem is the following: 

OK, since we now know everything about each uniformly distributed /)/ I what is the 
probability distribution of N , given that N is the product (7) of all the Dj ? 

In other wordS, not only do we want to find the analytical expression of the probability 
density function of N, but we also want to relate its mean value f1,..,1 to all mean values 

POi of the Dj { and its standard deviation aI'll to all standard deviations ('fl). of the Dj • 
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This is a difficult problem. 

It occupied the author's mind for no less than about ten years (1997-2007). 

It is actually an ANALYTICALLY UNSOLVABLE problem, in that, to the best of this 
author's knowledge, it is IMPOSSIBLE to find an analytic expression for any FINITE 
PRODUCT of uniform random variablesDj • This result is proven in Sections 2 thru 3.3 of 

Appendix B (unfortunately!). 

6. Solving the Statistical Drake Equation By Virtue of the 
Central Limit Theorem (el T) of Statistics 

The solution to the problem of finding the analytical expression for the probability 
density function of N in the statistical Drake equation was found by this author in 
September 2007. The key steps are the following: 

• Take the natural logs of both sides of the statistical Drake equation (7). This 
changes the product into a sum. 

• The mean values and standard deviations of the logs of the random variables Di 

may all be expressed analytically in terms of the mean values and standard 
deviations of the D;. 

• Recall the Central Limit Theorem (elT) of statistics, stating that (loosely speaking) if 
you have a SUM of independent random variables, each of which is ARBITRARILY 
DISTRIBUTED (hence, also including uniformly distributed), then, when the number 
of terms in the sum increases indefinitely (i.e. for a sum of random variables 
infinitely long) ... the SUM RANDOM VARIABLE TENDS TO A GAUSSIAN. 

• Thus, the natural log of N tends to a Gaussian. 

• Thus, N tends to the LOGNORMAL DISTRIBUTION. 

• The mean value and standard deviations of this lognormal distribution of N may all 
be expressed analytically in terms of the mean values and standard deviations of 
the logs of the D j already found previously. 

ThiS result is fundamental. 

All the relevant equations are summarized in the following Table 1. This table is actually 
the same as Table 2 of the author's original paper IAC-08-A4.1.4, entitled \\The 
Statistical Drake Equation" and presented by him at the International Astronautical 
Congress (lAC) held in Glasgow, UK, on October 1st, 2008. This original paper is 
reproduced in Appendix B. 

To sum UPI not only is it found that N approaches the completely known lognormal 
distribution for an INFINITY of factors in the statistical Drake equation (7), but the way 
is paved to further applications by removing the condition that the number of terms in 
the product (7) must be FINITE. 

13 
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This possibility of ADDING ANY NUMBER OF FACTORS IN THE DRAKE EQUATION (7) 
was not envisaged, of course, by Frank Drake back in 1961 1 when "summarizing" the 
evolution of life in the galaxy in SEVEN simple STEPS. But today, the number of factors 
in the Drake equation should already be increased: for instance, there is no mention in 
the original Drake equation of the possibility that asteroidal impacts might destroy the 
life on Earth at any time, and this is because the demise of the dinosaurs at the KIT 
impact had not been yet understood by scientists in 1961 1 and was so only in 1980! 

In practice, the number of factors should INCREASE as much as necessary in order to 
get better and better estimates of N as long as our scientific knowledge increases. This 
is called the "Data Enrichment Principle tl and believe should be the next important goal 
in the study of the statistical Drake equation. 

Finally, a numerical example explaining how the statistical Drake equation works in the 
practice will be given in the next section. 

14 
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Table 1. summary of the Properties of the Lognormal Distribution That Applies 
to the Random Variable N = Number of ET Communicating Civilizations in the 

Galaxv 

Random variable N = number of communicating ET 
civilizations in galaxy 

Probability distribution Lognormal 
Probability density function - (1]1(11) ~Ir 

J 1 2 a:! f,.,,(n)=-·--e (n 20) 
Ii .j2;;tT 

Mean value cr 
(N)=e 11 e 1 

Variance .) 1 ., ~ " .J a- - j-,lI /'1- ,a- 1 N -(; (; {. -

Standard deviation rr~ 

p ~~ (TN = I.J e - e' - 1 

All the moments, i.e. k-th moment 
(N k

) = /JI £' 

k!, (r~ 
1 

Mode (= abscissa of the lognormal peak) n - n - "I'l'-(;-m,dc = peak - , 

Value of the Mode Peak (]'~ 

f ( . 1 -t(-:;-
A' "uude) = J2i . e . . e -

2ff (j 

Median (= fifty-fifty probability value for n:edian = Tn = e'U 
N) 
Skewness K ,,) , -6.u ,-~cr~ 

_3_ = e cr- I 2, _ (-. (~ 

~ f~ t ~ r,' ~ 1 ~ : r (KJ.:! ~(r -] e·'<r + 3f'!WO' + 61'/' + 6 

Kurtosis ~ = ~4tT~ + 2 ~:~cr~ + 3 ,2"! - 6 
'l {. (. • (. 

(K 2)-
Expression of J.l in terms of the lower (a;) /.J= ±(Yj) = ±bi[In(bJ-l]-{E;[ln(a;)-J] 
and upper (bi) limits of the Drake 

i-I i-l bi - (Ii 
uniform input random variables Dj 
Expression of (J'2 in terms of the lower (ai) 7 7 

l.'lib; [hl (bJ- hl(a; W 2L~L and Lipper (b;) limits of the Drake (j = O'l'; = 1 
(hi -a/f 

uniform input random variables Di 
i-I i-I 

7. An Example Explaining the Statistical Drake Equation 

To understand how things work in practice for the statistical Drake equation, please 
consider the following table 2. It is made up of three columns: 

• The first column on the left lists the seven input sheer numbers that also become 

• The mean values (middle column). 

• Finally the last column on the right lists the seven input standard deviations. 
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The bottom line is the classical Drake equation (7). We see that, for this particular set 
of seven inputs/ the classical Drake equation (i.e. the product of the seven numbers) 
yields a total of 3500 communicating extraterrestrial civilizations existing in the galaxy 
right now. 

""" "= "~"0.109 ... "'_ w __ 

~ 50 
tp:= 100 

ne := 1 

50 
fl:= -

100 

_ ~O 

11:= -
100 

. 10 
tc:= -

100 

fL := 10000 

10
10 

pne := ne 

pH := t1 

pfi:= fi 

~U:c := tc 

pfl. := t1. 

x = 3500 

~ 10 
olP:= -

100 

1 
One ~= -

,fj 
10 

crtl:= -
100 

_ 10 
oti:= -

100 

. 10 
atc:= -

100 

Table 2. Input Values (i.e. mean values and standard deviations) for the Seven Drake Uniform Random 
Variables Di • The first column on the left lists the seven input sheer numbers that also become the mean values 
(middle column). Finally the last column on the right lists the seven input standard deviations. The bottom line is 
the classical Drake equation (7). 

The statistical Drake equation/ however/ provides a much more articulated answer than 
just the above sheer number N = 3500. In fact, a MathCad code written by this author 
and capable of performing all the numerical calculations required by the statistical 
Drake equation for a given set of seven input mean values plus seven input standard 
deviations, yields for N the lognormal distribution (thin curve) plotted in Figure 2. We 
see immediately that the peak of this thin curve (i.e. the mode) falls at about 

fl nDO \! == n[lCHk = eJ.i e-d
" ~ 250 (this is equation (99) of Appendix B), while the median (fifty­

fifty value splitting the lognormal density in two parts with equal undergoing areas) falls 
at about Nm:diun == eJ.l ;;:; ]740 . These seem to be smaller values than N = 3500 provided by 
the classical Drake equations, but it's a wrong impression due to a poor I\intuitivell 

understanding of what statistics is! In fact, neither the mode nor the median are the 
"really importantll values: the really important value for N is the MEAN VALUE! Now jf 
you look at the thin curve in Figure 2 below (Le. the lognormal distribution arising from 
the Central Limit Theorem), you see that this curve has a lONG TAllON THE RIGHT! In 
other words/ it does NOT immediately go down to nearly zero beyond the peak of the 
mode. Thus 1 when you actually compute the mean value, you should not be too 
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surprised to find out that it equals (N) = (~,ll e '2 ~ 4589.559 r>J 4590 communicating 
civilizations now in the galaxy. This is the important number, and it is HIGHER than the 
3500 provided by the classical Drake equation. Thus, in conclusion, THE STATISTICAL 
EXTENSION of the classical Drake equation INCREASES OUR HOPES to find an 
extraterrestrial civilization! 

:-4 
Z 5·10 
q... 
o 
§ 4-10-4 

'.0 
() 

= 
~ 3 -10-4 
..... 
~ 

~ 2.10-4 

.J:5 
e 

0.. 1 .10-4 

00 

PROBABILITY DENSITY FUNCTION OF N 

1000 2000 3000 4000 
N = Number ofET Civilizations in Galaxy 

Figure 2. Comparing the Two Probabilitv Density Functions of the Random Variable N Found (1) 
Without Resorting to the CLT at All (thick curve) and (2) Using the CLT and the Relevant Lognormal 
Approximation (thin curve). 

Even more so our hopes are increased when we go on to consider the standard 
deviation associated with the mean value 4590. In fact, the standard deviation is given 

CF~ 

by equation (97) of Appendix B. This yields aN = eP e 2 ~e(r~ -I = 11195 and so the 

expected number of N may actually be even much higher than the 4590 provided by 
the mean value aloneJ The \\upper limit of the one-sigma confidence interval" (as 
statisticians call it), i.e. the sum 4590+ 11195 = 15,785, yields a higher number still! 
(Note: the "lower limit of the one-sigma confidence interval is ZERO because the 
lognormal distribution is POSITIVE (or, more correctly, non-negative)). Finally, the 
reader should note that the thick curve depicted in Figure 2 is just the NUMERICAL 
solution of the statistical Drake equation for a FINITE number of 7 input factors. Figure 
2 actually shows that this curve "is well interpolated" by the lognormal distribution (thin 
curve), i.e., by the neat analytical expression provided by the Central Limit Theorem for 
an INFINITE number of factors in the Drake equation. That is, in conclusion, Figure 2 
visually shows that taking 7 factors or an infinity of factors "is almost the same thing" 
already for a value as small as 7. 

17 
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8. Finding the Probability Distribution of the Et-Distance By 
Virtue of the Statistical Drake Equation 

Having solved the statistical Drake equation by finding the lognormal distribution, we 
are now in a position to solve the ET-DISTANCE problem by resorting to statistics again, 
rather than just to the purely deterministic Distance Law (5), as we did in Section 2. 
This is "scientifically more serious" than just the purely deterministic Distance Law (5) 
inasmuch as the new statistical Distance Law will yield a PROBABILITY DENSITY for the 
Distance, with the relevant mean value and standard deviation. In other words, the 
Distance Law (5) itself becomes a random variable whose probability distribution, mean 
value and standard deviation must be computed by \\replacing" into (5) the fact that N 
is now known to follow the lognormal distribution. This is mathematically described in 
detail in Section 7 of Appendix A. 

The important new result is the PROBABILITY DENSITY FOR THE DISTANCE, the 
equation of which is 

holding for rzO. This is equation (114) of Appendix B. 

Starting from this equation, the MEAN VALUE OF THE random variable ET _DISTANCE is 
computed as 

(9) 

Jl q: 

(ET_Distance) = Ce-"J l~ 18 (10) 

which is equation (119) of Appendix B, and finally the ET_DISTANCE STANDARD 
DEVIATION 

-!:!.. £1:r;:~ 
_ ]. I~ 'J_ 

UE-CDistullcc - C e eel (11) 

which is equation (123) of Appendix B. Of course, all other descriptive statistical 
quantities, such as moments, cumulants etc. can be computed upon starting from the 
probability density (9), and the result is Table two hereafter, that is Table 3 of Appendix 
B. 

FinallYJ to complete this section, as well as this "introduction to the statistical Drake 
equation/' the numerical values that equations (10) and (11) yield for the Input Table 1 
are determined. They are, respectively: 

_.Lt r1" 

t;.!/('@ l'a[l/(' = C e } e lR ~ 2,670 light years (12) 
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which is equation (153) of Appendix B, and 

l( O"~ ~ 
a r:T_Di~lame = C e -'~ elK ~ e 9 -I :::; ],309 light years (13) 

which is equation (154) of Appendix B. 

19 
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Table 2. Summary of the Properties of the Probability Distribution That Applies 
to the Random Variable ET_Distance Yielding the (average) Distance Between 

Any Two Neighboring Communicating Civilizations in the Galaxy 

Random variable ET_Distance between any two neighboring 
ET civilizations in galaxy assuming they are 
UNIFORMLY distributed throughout the 
whole galaxy volume. 

Probability distribution Unnamed 
Probability density function 

r I { , R;',,,,,,,, """''''1" I' I • 
r • 

. 3 I - " } 

.I ET Dist:m<t> (r) = _. j2;; . e 
2(7! 

- r 2lf a 

Numerical constant C related to the Milky c = ;; 6 Rl{/fllxr h{~(lI'l.\~r ~ 28,845 light years 
Way size 
Mean value )I G"~ 

(ET_DisLuncc) = Ce -:> e IR 

Variance 
2 a' [a' J 2 ·.2 - J,lI <.) 1J 

O'I::T l)j"wnm = C (? e e -I 

Standa rd deviation '~ _,lI (7- a-

_ ,3 )~ ,q_ a ET Dist:m<e - C (. e t. 1 

All the moments, i.e. k-th moment k Jl k~.(Y2 
(Ef_Distancel:) = ck e 3 e lR 

Mode (= abscissa of the lognormal peak) ,II -
(T~ 

rrwd\.! == rpeak = C e J e I) 

Value of the Mode Peak Peak Value of fE'U)isl:mu:(r) = 

. ) 1 
Jl (T~ 

== .t ET DiqlHl('{~ (';nldc = 'J2; ·(>J·el~ 

C 7'(0" 

Median (= fifty-fifty probability value for N) - ,tI 

median = m = Ce J 

Skewness ( u' 'u' a' ) 

K." 

e-,lI t!:1. - 3 e 18 l 2 e 6 

-'-3 = 
3 

(K4h 
( Xu' 

:1tT~ 4a~ rr" '"')' - -
c:' ,l) -4e () -3e t) +]2 e ~ -6e <) . (. 

Kurtosis 4 (T'~ u" 2(/ 
K - - -

_4_=e 9 +2e 3 +3e 9 -6 
(K2f 

Expression of J.1 in terms of the lower (ai) 
)1= ±(Y;) = ±bi[ln(bi)-I]=ai[ln(ai )-1] 

and upper (bi) limits of the Drake uniform 
input random variables Di i-I i-I hi Gi 

'1 7 '1 
a/')i [In (hi )-111 (Gi)f Expression of 0'- in terms of the lower (ai) 2L22: 

and upper (bi) limits of the Drake uniform (j = aT:, = 1 
(bi -aif i-I i-l 

input random variables Di 
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It is clarifying to draw the graph of the ET _Distance probability density (9): 

5.63 _10-20 

500 

DIST ANCE OF NEAREST ET _ CI VILIZA TION 

1000 1500 2000 2500 3000 3500 4000 4500 5000 
ET _Dist ancc from Earlh (1ighl y cars) 

Figure 3. The Probability of Finding the Nearest Extraterrestrial Civilization at the distance r From Earth 
(in light years) if the Values Assumed in the Drake Equation are Those Shown in Input Table 1. The 
relevant probability density function IET_Di~l;lII\C(r) is given by equation (9). Its mode (peak abscissa) equals 1933 

light years, but its mean value is higher since the curve has a long tail on the right: the mean value equals in fact 
2670 light years. Rnally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR SETI, 
inasmuch as the nearest ET galaxy civilization might lie at just 1 sigma == 2670-1309 ::: 1361 light years from us. 

From Figure 3 we see that the probability of finding extraterrestrials is practically zero 
up to a distance of about 500 light years from Earth. Then it starts increasing with the 
increasing distance from Earth, and reaches its maximum at 

_t!. _ (1''-

rllmlt: == rpr'lIk = C e 3 e 'J :t 1,933 light years. 

This is the MOST LIKELY VALUE of the distance at which we can expect to find the 
nearest extraterrestrial civilization. 

(14) 

It is not the mean value of the probability distribution (9) for fET Dislall>l.!(r) • In fact, the 

probability density (9) has an infinite tail on the right, as clearly shown in Figure 3, and 
hence its mean value must be higher than its peak value. As given by (10) and (12)1 its 

,tI rr 

mean value is ';t/('WI WilliI' = Ce :l e 18 ~ 2670 light years. This is the MEAN (value of the) 

DISTANCE at which we can expect to find extraterrestrials. 
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UNCLASSIFIEDIlF8R app!@IAL ~!JI artLV 



UNCLASSIFIED/ /f." ."IIIAI: "'8i .'U!lV 

After having found the above two distances (1933 and 2670 light years, respectively), 
the next natural question that arises is: "what is the range J back and forth around the 
mean value of the distance[ within which we can expect to find extraterrestrials with 
"the highest hopes?1f The answer to this question is given by the notion of standard 
deviation that we already found to be given by (11) and (13)[ 

f.l(1"'~ 
O'E'CDislllllCl: = C e 3 e nqJ e ~ -I :::: 1309 light years. 

More precisely! this is the so-called 1-sigma (distance) level. Probability theory then 
shows that the nearest extraterrestrial civilization is expected to be located within this 
range, Le. within the two distances of (2670-1309) = 1361 light years and 
(2670+ 1309) = 3979 light years, with probability given by the integral of fET_l)i~tana:(r) 

taken in between these two lower and upper limits, that is: 

i
39791i2hLVCars 

_. fET DislanlL: (r) dr:::: 0.75 = 75% 
I 36 Jligl1ty\!m'~ -

(15) 

In plain words: with 75 percent probabilitYt the nearest extraterrestrial civilization is 
located in between the distances of 1361 and 3979 light years from us[ having assumed 
the input values to the Drake Equation given by table 1. If we change those input 
values, then all the numbers change again, of course. 

9. The "Data Enrichment Principle" as the Best CL T 
Consequence Upon the Statistical Drake Equation (Any 
Number of Factors Allowed) 

As a fitting climax to all the statistical equations developed so far, let us now state our 
"DATA ENRICHMENT PRINCIPLE." It simply states that "The Higher the Number of 
Factors in the Statistical Drake equation t The Better." 

Put in this simple way} it simply looks like a new way of saying that the CLT lets the 
random variable Y approach the normal distribution when the number of terms in the 
sum (4) approaches infinity. And this is the cases indeed. 

10. Conclusions 

We have sought to extend the classical Drake equation to let it encompass Statistics 
and Proba bility . 

This approach appears to pave the way to future, more profound investigations 
intended not only to associate "error bars" to each factor in the Drake equation, but 
especially to increase the number of factors themselves. In fact, this seems to be the 
only way to incorporate into the Drake equation more and more new scientific 
information as soon as it becomes available. In the long run, the Statistical Drake 
equation might just become a huge computer code, growing in size and especially in 
the depth of the scientific information it contains. It would thus be Humanity's first 
"Encyclopaedia Galactica." 
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UnfortunatelYI to extend the Drake equation to Statistics, it was necessary to usea 
mathematical apparatus that is more sophisticated than just the simple product of 
seven numbers. 

24 
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Appendix A: Proof of Shannon's 1948 Theorem Stating 
That the Uniform Distribution is the "Most Uncertain" One 
Over a Finite Range of Values 

Information Theory was initiated by Claude Shannon (1916-2001) in his well-known 
1948 two papers: 

A. :\'hthelllatical Theory of COlll111l.lIli~atioll 

In this Appendix, we wish to draw attention to a couple of theorems that Shannon 
proves on pages 36 and 37 of his work, and read, respectively (note that Shannon 
omits the upper and lower limits of all integrals in the first theorem: they are minus 
infinity and plus infinity, respectively): 

and 
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~. Ifx l:, hUl!ted to J hll:hae (P(.\ 1- 0 fOl x"" 0) ancl thefu:~t moment cf.\· i~ ft.xed at a 

1 .~.1 p:x: - :;t: ,. 

Now, we wish to point out that there is a third possible case, other than the two given 
by Shannon. This is the case when the probability density function p{x) is limited to a 
FINITE INTERVAL a s x s b. This is obviously the case with any physical POS1TIVE 
random variable, such as a distance, or the number N of extraterrestrial communicating 
civilizations in the /'. And it is easy to prove that for any such finite random variable the 
maximum entropy distribution is the UNIFORM distribution over a ~ x ~ h. Shannon did 
not bother to prove this simple theorem in his 1948 papers since he probably regarded 
it as too trivial. But we prefer to point out this theorem since, in the language of the 
statistical Drake equation, it sounds like: 

"Since we don/t know what the probability distribution of anyone of the Drake random 
variables Dj is, it is safer to assume that each of them has the maximum possible 
entropy over ai S)( 5; bi I i.e., that Di is UNIFORMLY distributed there. 

The proof of this theorem is along the same lines as for the previous two cases 
discu ssed by Sha nn on: 

We start by assuming that (li sx~bi' 

We then form the linear combination of the entropy integral plus the normalization 
condition for Di 

where A is a Lagrange multiplier. 

Performing the variation, one finds 

-log p{x) - 1 + A = 0 that is: p{x) = eJ. I. 

Applying the normalization condition (constraint) to the last expression for p(x} yields 

that yields 

.... -1 ] 
e =--

bi-a; 
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and finally 

showing that the maximum-entropy probability distribution over any FINITE interval 
ai 50 x~ hi is the UNIFORM distribution. 
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Appendix B: Original Text of the Author's Paper #IAC-08-
A4.1.4 Titled the Statistical Drake Equation 

IA c-os-A4.1.4 

THE STATISTICAL DRAKE EQUATION 
Claudio Maccolle 

Co- Vice Ch(lir, SHTI Permanent Sludy Group, IntenulIion£ll Academy oI A.\'lronaulics 

Address: Via Mllrtorelfi, 43 - Torino (Turin) 10155 - Italy 

URL: http://www.macconc.comJ - E-mail: clmaccon@libcro-it 

ABSTRACT. We provide the statistic,,} generalization of the Drake equation. 

From a simple product of seven positive numbers. the Drake equation is now turned into the product of seven 
positive random variables. We call this ·'the Statistical Drake Equation," The mathematical consequences of 
thi~ tran~formation are then derived. The proof of our result~ is based on the Centra] Limit Theorem (CL T) of 
Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of 
which may be ARBITRARILY distributed. 'lppn .. mches a Gaussian (i.e. nOn1lUl) random vmi~tble. This is c,\Ued 
the Lyapunov Form of the CLT. or the Lindeberg Form of the CLT. depending on the mathematic,d constraints 
assumed on the third moments of the various probability distributions. In conclusion. we show that: 
I) The new random variable N. yielding the number of communicating civilizations in the Galaxy. follows the 

LOGNORMAL distribution. Then. as a consequence. the mean value of this lognormal distribution is the 
ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this Jognormal N 
are found also. 

2) The seven factors in the ordimlry Drake equation now become seven positive random variables. The 
probability distribution of each random variable may be ARBITRARY. The CLT in the so-called 
Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for 
that. In other words, the eLT Htramilates" into our statistical Drake equation by allO\ving an arbitrary 
probability distribution for each factor. This is both physically realistic and practiea]]y very useful, of 
course. 

3) An ~lpplication of our statistic~tl Dntke equation then follows. The (average) DISTANCE between any two 
neighboring and communicating civilizations in tbe Galaxy may be shown to be inversely proporlJomll to 
the cubic root of N. Then. in our approach. this distance becomes a new random variable. We derive the 
relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" 
by Paul Davies. 

4) DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive number of random variables 
in the Sta(]~tical Drake Eqlmtion is compatible with the CLT. So, our generalization allows for many more 
factors to be added in the future as long as more refined scientific knowledge about each factor will be 
known to the scientists. This capabllity to make room for more future factors in the statistical Drake 
equation we call the '~Data Enrichment Principle~'. and we regard it as the key to more profound future 
results in the fieJds of Astrobiology and SETI. 

Final1y, a practical example is givcn of how our statistical Drake equation works numcrically. We work out in 
detail the ca~e where each of the seven random variables is uniformly distributed around its own mean value 
and has a given standard devi,ltion, For instance. the number of slar~ in the Galaxy is assumed to be uniformly 
distributed around (say) 350 billions with a standard deviation of (say) I billion. Then, the resulting lognormal 
distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows 

28 
UNCLASSIFIED/ trelt errlelJllL I15SE O"EI 



UNCLASSIFIED/lr." BIiIiIII:':. W&& 8'JkY 

that the mean value of the lognonnal random variable N is actually of the ~ame order as the classical N given 
by the ordinary Drake equation, as one might expect from a good st<ltistical generalization. 

1. INTRODUCTION 

The Drake equation is ~l now r"mous result 
(see ref. [1] for the Wikipedi'i summary) in the 
fields of SETf (the Search for ExtraTerrestial 
InteHigence, see ref. l2J) and Astrobiology (see ref. 
l3 J). Devised in 1960, the Drake equation was the 
first sc1cntific attempt to estimate the number N of 
ExtraTerre!o;tl;aJ c1vlli7.ations in the Galaxy with 
which we might come in contact. Frank D. Drake 
(see ref. f4l) proposed it as the product of seven 
factors: 

N = N.\'· .Ii) . n (~ . .fl . .Ii . ji.- •. fl· . ( 1 ) 

Where: 
I) Ns is the estimated number of stars in Ollr 

Gala..'Xy. 
2) fp is the fraction (= percentage) of such sl"rs 

that have planets. 
3) ne is the number "Earth-type" such planets 

around the given star~ in other words, ne is 
number of planets, in a given stellar system, 
on which the chemical conditions exist for life 
to begin its Course: they are "ready for life," 

4) .17 is fraction (- percentage) of such "rcady for 
life" planets on which life actually starts and 
grows up (but not yet to the "intelligence" 
level). 

5) fl is the fraction (= percentage) of such 
Uplanets with life fonTIs" that actually evolve 
until some form of "intelligent civilization" 
emerges (like the first. historic human 
civilizations on Earth). 

6) Je is the fraction (= percentage) of such 
··planets with civilizations" where the 
civilizations evolve to the point of being able 
to communicate "cross the interstellar 
distances with other (at least) similarly 
evolved civilization~. As far as we know in 
2008, this means that they must be aware of 
the Maxwell equations governing radio waves, 
a!o; well as of computers and radioastronomy 
(at lcast). 

7) .fL is the fraction of galactic civilizations alive 
,it the time when we, poor humans, attempt 10 
pick up their radio signals (that they throw out 
into space just as we have done since 1900, 
when Marconi started the transatlantic 
transmi!o;sion!o;). In other words~ .It is the 
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number of civiHzations now transmitting and 
receiving. and this irnplies an estimate ofhhow 
kmg will a technological civilization JivcT' 
th~d nobody c,m make at the moment. Also. 
are they going to destroy themselves in a 
nuclear war, and thus live only a few decades 
of technological civilization? Or are they 
slowly bccoming wiser, reject war, !o;pcak a 
single language (like Eng1i!o;h today). and 
merge intu a single "natiun'\ thus living in 
peace for ages? Or will robots take over one 
day making "flesh animals" disappear forever 
(the so-called "pORt-biological universe")'? 

No one knowg ... 

But let us go back to the Drake equation (I). 
In the fifty years of its exi~tence, a number of 
suggestions have been put forward about the 
different numeric values of its seven factors. Of 
course, every different set of these seven input 
numbers yields a different value lor N, and we c~m 
endlessly pluy th'lt way. Bul we cluim that these 
are like ... children plays! 

We claim the classical Drake equation (1), as 
we shaH call it from now on to distinguish it from 
our statistical Drake equation to be introduced in 
the coming sections. well. the classical Dutke 
equation is scientifically inadequate in one regard 
at least: it just handles sheer numbers and doe~ nut 
associate au error bar to each of its seven factors. 
At the very least, we wan.t to associate an error 
bar to eat'h Dr. 

Well. we have thus reached STEP ONE in our 
improvement of the classical Drake equation: 
replace each sheer number by a probability 
distributioll ! 

The reader is now ,lsked to look al the now 
chart in the next page as a guide lo this paper, 
please. 

2. STEP 1: LETTING EACH FACTOR 
BECOl\'IE A RANDOl\l VARIABLE 

In lhis paper we adopt the notutions of the 
great book "Probability, Random Variables and 
Stochastic Processes" by Athanasios Papoulis 
(1921-2002), now re-published as Papoulis-Pillai. 
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ref. r51. The advantage of this notation i~ that it 
makes a neat distinction between probabilistic (or 
Rtatistical: it's the same thing here) variables, 
always denoted by capital.r;, from non-probabilistic 
(or "dctenninistic") variables, always denoted by 
lower-case letters. Adopting the Papoulis notation 
also is a tribute to him by this ,wthor. who was a 
Fulbright Grantee in the United States with him at 
the Polytechnic In~titute (now Polytechnic 
University) of New York in the years ]977-78-79. 

We thus introduce seven new (positive) 
random variables D; ("0" from "Drake") defined 

as 

j
Dl = ~s 
D2=Jp 

DJ = ne 

/)4 = .fl 
D') =.li 
Df:l=}<': 

f)7 = .IL 

(2) 

so thal our STATISTICAL Drake eqllation nmy be 
simply rewTillen as 
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(3) 

Of course. N now becomes a (positive) random 
variable too. having its own (positive) mean value 
and standard deviation. Ju~t a~ each of the Di has its 

O\vn (positive) mean value and standard deviation ... 
... the natural question then arises: ho\v arc the seven 
mean values on the righl related to the mean value on 
the left? 
. .. and how are the seven standard deviations on the 
right related to the standard deviation on the left'! 

Just take the next step, ,. 

3. STEP 2: INTRODUCING LOGS TO 
CHANGE THE PRODUCT INTO A SUM 

Products of random variables are not easy 10 

hmu.lk in probability lhcory. It is acLually much 
easier 10 handle sums of random vuriubles. ralher 
lhan products, because: 

1) The pwbabilily density of lhe sum oflwo or 
more independcnl random variables is the 
convolution of the relevant probability 
densities (WOl1'Y noC about the equations, 
right now). 

2). The Fourier transform of the convolution 
simply is the product of the Fourier 
transforms (again. worry not about the 
equations. at this point) 
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So, let us take the natural log!; of both sides of the 
Statislical Dmke equation (3) anu changc it into a 
sum: 

It is now convenient to introduce eight new (positive) 
random variables defined as follO\:vs: 

J Y = In(N) 

ty; = In{Dj ) i = 1, ...• 7. 
(5) 

Upon inversion, the first equation of (5) yields the 
important equation, that will he used in the sequel 

r N=e . 

\Ve are no\v ready to take STEP THREE. 

(6) 

STEP 3: THE TRANSFORl\IATION LAW 
OF RANDOl\1 VARIABLES 

So tar we did not mention at all the problem: 
"which probability distribmion shaH we attach (0 

each of the seven (positive) random variables Di'!" 

It is nut easy to answer lhis question bct:ausc we 
do nut huve the JcaSl scientific cluc to what 
probability distribulions fit ut best lo each of the 
!;even points li!;ted in Section 1. 

Yet, at least one trivial error must be avoided: 
claiming that each of those seven random variables 
must have a Gaussian (i.e. normal) distribution. In 
fact, the Gaussian distribution, having the well­
known bell-shaped probability density function 

(o- ~ 0) (7) 

has ils indcpemJc11l variubk .\' ranging betwecn ---{XJ 

and ,~:, and so it can apply to a real random variable 
Y only, and never to positive random variables like 
those in the scutisticaJ Drake equation (3). Period. 

Searching again tor probability density functions 
(hat represent positive random variables, an obvious 
choice would be the gamma distriburions (see. tor 
jnscunce. ref. [6]). However. we djscarded this choice 
too because of a different reason: please keep in mind 
that, according to (5). once we selected a particular 
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type of probability density function (pdf) for the lnst 
sevcn of equations (5). lhen we musl compute the 
(new and different) pdf of the logs of such random 
variables. And the pdf of these logs certainly is not 
gamma-type any more. 

It is high time now to remind the reader of a 
certain theorem that is proved in probabiJity courses, 
but. unfortunately. does not seem to have a specific 
name. [t is the trallsformation law (so we shall call 
it. see, for instance, ref. l51) allowing us to compute 
the pdf of a certain new random variable Y that i!\ a 
known function Y = g(X) of another random 

variable X having a known pdf. In other words, if the 
pdf fx (x) of u certain random variable X 15 known. 

then the pdf f.,. (y) of the new random variable Y, 
relatcd to X by the functional relationship 

Y =g(X) (8) 

can be calculated according to this rule: 
1) First invert the corresponding non-probabilistic 

equation y = g{x) and dcnote hy x/(y) the 

various real roots resulting from the this 
inversion. 

2) Second, take notice whether these real roots may 
be either fjnitely- or infinitely-many, according 
to the nature of the function y = g(x). 

3) Third, the probability density function of Y is 
then given by the (finite or infinite) sum 

l.(\')= I1x(Xi(Y)) 
Y.· l Ig'(\'iC)')~ 

(9) 

where the summation extends to aJI roots Xi (y) and 

11." (.r,.(y)~ is lbe absolute value of the first 

derivative of g(x) where the i-th root Xi (y) has 

been replaced instead of .:r. 

Since we must use this transformaejon Jaw (Q transter 
from the Di to the }j = In(Vj ), it is clear that we 

need to start from a Di pdf that is as simpJe as 

possible. The gamma pdf is not responding to this 
need because the analytic expression of the 
transformed pdf is very complicuted (or, at least, it 
looked so to this author in the first instance). Also, 
the gamma distrihution has two free parameters in it, 
and this "complicates" its application to the various 
memlings of lhe Drake equaljon. In conclusion, we 
discarded the gamma distributions and conHncd 
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ourselves to (he simpler uniform distribmion instead, 
as shown in the nesL section. 

4. STEP 4: ASSUMING THE EASIEST 
INPUT DISTRIBUTION FOR EACH Di: 
THE UNIFORJ\1 DISTRIBUTION 

Let us now suppose that each of the seve,1 Di is 
distributed UNIFORLWLY in the interval ranging 
from the [(}wer limit t:l i ;::: 0 to the llpper limit 

hi 2ai • 

This is the same as saying that the probability 
den~ity function of each of the seven Drake random 
variables Di has the equation 

.f~lIIijhrm D. {x) = __ 1_ with 05; (Ii S X 5; hl (10) 
- , b; -ui 

as it follows at once from the normalization condition 

J'" 'funil(Wm D (x) dr = 1 . 
((.. - I 

01 ) 

Let us now consider (he mean value of such 
uniform D; defined by 

[ 
.., ]'1, ? .., 

= b ~a .~ = ;r::) = 0, ;h, 
I I {/, I I 

By words (as it i.-. intuitively obvious): the mean 
value of tlte lIlIiform distribution simply is the mean 
of the lower plus upper limit or the variablc range 

(12) 

In order to tlnd the variance of the uniform 
distribution. we tirst need tinding the second moment 

[ 
~ ]b. 1 II' .. ") I X' 

= -_-- ~C dx = -_-- --
b; ai II, b; a i 3 

(~ i 
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_ (bi -ai )(~,; +lI;bi +b?) _ al~ +a;bj +b? 
- 3 (hi - Q

i 
) - 3 

The second moment of the uniform distrihution is 
thus 

(13) 

From (] 2 and (J 3) we may now derive the variance 
of the uniform distribution 

= al + Clibi +b? 
3 

({Ii + bi ? = (bi - a;)2 
4 12 

(14) 

Upon taking the square root of both sides of (14), we 
finally obtain the standard deviatioll of lite uiliform 
distribution: 

b· - (t. 
0'. =-,_-, 

Ll!lIlilnlLD j 2.J3· ( 15) 

We now wish to perfnnn a calculation that is 
mathematically trivial, but rather unexpected ti'om 
the i11luilivc poinl of vic\\/, and very important fur our 
applk:ations lo Lhc stalistical Drake equation. J llst 
consider the l\\'o simultaneous cqualions (12) and 
(15) 

j
.{ 't' D) a i +h; um om) . = ---

- I 2 
b· -((. 

(J'. =_' __ 1 

UllljtlrHLD j 2Jj' 

Upon inverting this trivial linear system, one finds 

f (Ii ;;;; (unifomLD j ) - J3 O"u11 it(l)'lll D .. 

lbi ;;;; (uniform_D j ) + J?, CTlIn iIi11111_J), • 

(16) 

( 17) 

This is of paramount importance for our application 
the Statistic~ll Drake equation inasmuch as it shows 
that: 
if olle (scientifically) assigns the meall vallie alld 
stalldard deviation of a certain Drake random 
variable Di, then the lower and upper limits of the 
relevant uniform distribution are given by the two 
equations (17), respectively. 
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In other words, there is a factor of .fj = 1.732 

included in the two equations (17) that is not obvious 
at all to human intuition, and must indeed be taken 
i nW account. 

The application of this result to the Statistical Drake 
equation is discussed in the next section. 

3.1 STEP 5: A NUi\1ERICAL EXAMPLE 
OF THE STATISTICAL DRAKE 
EQUA TION \VITH lJNIFORM 
DISTRIBUTIONS FOR THE DRAKE 
RANDOl\1 VARIABLES Di 

The first vmiablc Ns in lhe classical Drake 
equation (l) is the number of slars in our Galaxy. 
Nobody knows huw many lhey arc cxaclly (t). Only 
statistical estimates can be made by astronomers, and 
(hey oscillate (say) around a mean value of 350 
billions (if this value is indeed correct!). This being 
the situation, we assume that our uniformly 
distributed random variable Ns has a mean value of 
350 billions minus or plus a standard deviation of 
(say) one bilJion (we don't care \vhether this number 
is scientifically the best estimate as of August 2008: 
we just warn to set up u numerical example of our 
Statistical Drake equation). In other vmrds, we now 
assume that one has: 

{
(Unitonn_D I) = 350 _109 

O'unilil1l1U)1 ;;;::; ]·IO
jJ

• 

(1 R) 

Therefore, according to equations (17) the lower and 
upper limit of Ollr uniform distribution for the 
random variable Ns=DI are, respectively 

J(tN.~ = (unifonn_DJ)-J3o-uniti>n1LD, =348.3·1O~) (19) 

1 h;V.\ = (unifolTI1_D l) +.J3 (f ullilimlLD] = 351 .7·10'> 

Similarly we proceed for all the other six random 
variables in the Statistical Drake equation (3). 

For inslam.:c, we assume that lhc fraction of stars 
that have planets is SOLJu, i.e. 501100, and this will be 
the mean value of the l'andmn variahle fp=J)J.. We 
also assume that the relevant standard deviation wiH 

be 10%. i. e. that a./iJ = 10 I HX1 . Theretore, the 
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relevant lower and upper limit!) for the uniform 
distribution of.fiJ=Dl turn out lo be 

{ a.l~' : )un~t~rm_D2) - 13 O"uniliHm_D.\ : 0.327 (20) 
,bIll \UnttomLD 2 )+J3crUn ,klrlll_D., -0.673 

The next Drake random variable is the number 
ne of "Earth-type" planets in a given star system. 
Taking example from the Solur System, since only 
the Earth is truly "Earth-type", the mean value of ne 
is clearly 1, but the standard deviation is not zero if 
we assume that Mars also may be regarded as Earth­
type. Since there are thus two Earth-type planets in 
the Solar System1 we must assume a standard 

deviation of l/ J3 = 0.577 to compensate the J3 
appearing in ( 17) in order to {inally yield two "'Earth· 
type" planets (Earth and Mars) for the upper limit of 
(he random variable m.~. In other words. we assume 
cbar 

f (l,It' = (unitomLD.;)-J3 O'llnihrm.D\ = 0 

1 bile = (uniform_D3) + J3 O"lIni~)rm_DI = 2 
(21 ) 

The next four Drake random variables have even 
more "arbitrarily" assumed values that we simply 
assume for the sake of making up a numerical 
example of our Statistical Drake equation with 
uniform entry distributions. So, we really make no 
assumpti()n ab()ut tlte astronomy, or the biology, or 
the sociology of the Drake eqllation; we just care 
about its mathemlltics. 

All our assumed entries arc given in Tah1c 1. 

Please notice that, had we assumed all the 
standard deviations to equal zero in Table I, then our 
Statistical Drake equation (3) would have obviously 
reduced to the classical Drake equation (I). and the 
resulting number of civilizations in the Galaxy would 
have turned oulto be 3500: 

IN = 35a} I. (22) 

This is the important deterministic number that we 
will w.;e in the sequel of this paper for comparison 
with our .'~tatistical results on the mean value of N, 

i.e. (N). This will be explained in Sections 3.3 and 5. 
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p:\"s := Ks 

ne := 1 

.t1:= 50 
100 

_ ~O 

fi.:= -
100 

~ ::0 
tc:= -

100 

.~Ule := ne 

.ufl := fl 

pfc := fc 

~ttL := tL 

~ := );s.!p·ne.tlfi.fc.tl. :\ = 3500 

10 
afP:= 100 

1 
erne:= -

f3 
10 

aft:= -
100 

_ 10 
Oti:= --

lOa 

_ 10 
Ofe := -

100 

Table l. Input values (Le. mean values and ~Landard deviations) for the seven Drake uniform random variables Oi. 
The first cnlumn on the left list~ the seven input sheer numbers that also become the mean values (middle column). 
Finally the last column on the right lists the seven input standard deviations. The bottom line is the classical Drake 
equation (I). 

3.2 STEP 6: COl\1PUTING THE LOGS 
OFTHE 7 UNIFORl\1Y 
DISTRIBUTED DRAKE RANDOl\t1 
VARIABLES Di 

Intuitive1y speaking. the natural log of a 
uniform1y distribmed random variable may !lot be 
anmher uniformly distributed random variable! This 
is. obvious trom the trivial diagram of y = In(x) 
shown below: 
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f 
~ -2 0 ~ 

Natural logarithm of x 

""",.,.. ",.-

2 .3 4 

POSITIVE independent variable x 

-

Figure 1. The simple funclion y ;;;; In(xj. 

5 

So. if we huve a uniformly distribmed random 
variable Dj with lower limit al ~ll1d upper limit bj, Lhe 
random variable 

~ = In(DJ i = 1. ... ,7 (23) 

must have its range limited in bet ween the lower limil 
In(oi) und the upper limil In(bi}. In other wonts, lhis 
are the lower and upper limits or the rc1evant 
probability density function II'; (y). But ""hat is the 

actual analytic expression of such a pdf? To find it, 
we must resort to the general transfnrmation law for 
random variablc~, defined by equation (9), Here we 
ohviou~ly have 

y = g(x} = In{x) (24) 

That, upon inversion. yields the single root 

(25) 

On the other hand. differentiating (24) one gets 
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where (25) was already used in the last step. By 
virtue of the uniform probability density function 
(10) and of (26), the general transformation law (9) 
finally yields 

In other vy'Qrds, the requested pdf of Yi is 

Probability density functions of the natura/logs of 
all the llJl~fiJrmly distribllted Drake random 
variable,,' Di • 

This is indeed a positive function of y over the 
interval In(a;):::;: y :S In(h;), as for every pdf, and it is 

easy to see thal ils normalizalion condition is 
fulfilled: 

... (29) 

Next we want to find the mean value and 
standard deviation of Y/ , .")ince these playa crucial 

role for fulure developments. The mean value (Yi ) is 

given by 

( ) 
_ Iln(b;) (). llll(l,,) J" e t' • 

Yi - Y . .ty y dJ = . --- d}, 
In(i1,)' In(a,)b; - (Ii 

= b, [In(bi )-1] - (Ii [In (aJ- I] 
bi -aj 

(30) 

This is thus the mean value of the natural log of ail 
the uniformly di.\trihllted Drake random variable.\' 
Di 
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In order to tind the variance also. we must first 
compUle the mean value of the square of Y/ , thal is 

= bi [In 2{b;)_ 2InVJi )+ 2]- (Ii [In 2 (eli)- 2 In ("li )+ 2] 
Iii -ai 

... (32) 

The varial1ce of Y; = in(D;) is now given by (32) 
minus the square of (31), that. ufter u few reductions. 
yield: 

\Vhence the corresponding standard deviation 

1- tljbj [Ill(/)i )-In(o; )]1 
(hi-air-

(33) 

(34) 

Let us now tum to unother topic: the use of 
Fourier transforms, that, in probability theory, are 
called "characteristic functions," Following again the 
notations ofPapoulis (ref [51) we call "characteristic 
function", <!>r; (;) , of an assigned probability 

distribution Yi • the Fourier transform of the relevant 

probability density function, that i!-; (with j = r-I ) 

The use of characteristic functiuJls simplifies things 
greatly. for instance, the calculation of all moments 
of a known pdf becomes trivial if the relevant 
characteristic function is known, and greatly 
simplified also are the proofs of important theorems 
of slalistics, like lhc CenLral Limit Theorem that we 
will usc in Seclion 4. Anolhcr imporLant resuH is that 
the characteristic.: fum;tioll of the Sllm of a finite 
number of independent random variables is simply 
given by the product of the corresponding 
characteristic functions. This is just the case we are 
facing in (he Statistical Drake equa(ion (3) and so we 
are now led to find the characteristic function of the 
random variable Yi • i,e. 

( ) f,.r. , -, () ilJl(lJ,) , - eY 
(1) c: = ell:: ,\ r \.' d\' = e);'.r --- dr y. - , Y., or .) b . 

'f. " In(a; i -(Ii 
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1 IJn{ld 0 I 'c)r 1 1 [(II '.:h }n{h,) 
=-- t" '. 'dy=--·--.-e I., Jln(o,'l 

bj -ai lUtll ;) hi -(.Ii l+l( , 

e(I+}; }In!}>,) _ e{l-g )In(fI,} 

(hi -at HI + j~~) 
(36) 

Thus, the characteristic junction of tile lIatural log 
(~f tire Drake uniform random variahle Di i.\' given by 

3.3 STEP 7: FINDING THE 
PROBABILITY DENSITY 
FUNCTION OF N. BUT ONLY 
NUTvlERICALL Y NOT 
ANALYTICALLY 

Having f(mnd the characteristic functions 
<P Y

j 
(;) of the logs of the seven input random 

variables Dj . we can now immediately find the 
characteristic function of the random variable Y = 
In(1\') defined by (5). In fact, by virtue of (4), of the 
well-known Fourier transform property stating that 
"the Fourier transform of a convolution is the product 
of the Fourier transforms", and of (37). it 
immediately foJ1ows that <Dr (~~) equuls the product 

of the seven (I> r, (,): 

The next step is to illvert this Fourier transform in 
order 10 gel the probabilily density function of the 
random variable Y = In(N). In other words, we must 
compute the following inverse Fourier transtorm 
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This author regrets lhul he was unublc w compute the 
last integral analytically. He had to compute it 
numerically for the particular values of the 14 lIi and 
bi that follow from Table 1 and equations 17. The 
result wa!' the probabjlity density function for Y = 
In(l\') plotted 1n the following Figure 2. 

PROB. DEt\'SlTY FU:--.ICTlON OF Y:;;;ln(N) 
0.4 

().J 

~~' 0.2 
c 
C) 

"C 
;.;.., 0.1 .= 
:§ 
.:8 0 o () 
~ 

"-

j' "'\ 
}{ ~ 

~ 
IT , .... -

2 3 4 5 6 7 8 <} 10 11 12 
ItuJcpcndcnt vrtl.'inblc Y = In{::"l') 

Figure 2. Probability density function of Y = In(N) 
computed numerically by virtue of tbe integral (39), 
The two "funny gaps" in the curve are due to the 
numeric limitations in the MathCad numeric solver 
that the author used for th1s numeric computation. 

We are now just one more step from f1nding the 
probability density of N, the number of 
ExtraTerrestrial Civilizations in the Galaxy predicted 
by our Statistical Drake equation (3). The point here 
is to transfer from the probability den!\ity function of 
Y to that of N, knowing that Y = In(1V) , or 
alternatively, that N=exp(Y). as stated hy (6), \Ve 
must thll .... resort to the transformation law of random 
variables (9) by setting 

y = g{x}= c'\' . (40) 

This. upon inverslon. yields the single root 

XJ (y) = xCv) = In(y). (4]) 

On the other hand, differentiating (40) one gets 

(42) 

where (41) was already used in the last step. The 
general transtormatiolllaw (9) tinally yields 

fN (y) = L.f~ (.ti ~y)) = ~ fy (In (y» . (43) 
i \g (Xi (J)~ IYI 
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Thi~ probabiJity density function fN (v) was 
computed numerically hy using (43) and the numeric 
curve given by (39). and the result is Shm"lll in Figure 
3. 

PROBABILlTY DE~SrrY fUN(TIO~ OF N 
~ 4-10-4 

E: ,-4 
_~ .HO 

~ 2-10-4 
.f' 
~ [-10-4 

4 
;:; 

c.. 00 loon 2000 3000 4000 
~ = ~umber of ET Civilizations in Galaxy 

Figure 3. The nllmeril..' (ami nol unalylic) probability 

density function curve f,v (y) of the number N of 

ExtraTerrestrial Civilizations in the Galaxy according 
w the Statistical Drake equation (3). We see that the 
curve peak (i.e. the mode) is very close tu low values 
of N, but the tail on the right is high, meaning that the 

resulting mean value (N) is of the order of 

thousands_ 

We nO\v want to compute the mean value (N) 
of the probabiJity density (43). Clearly, it is gi \len by 

or. 

(N) = f y Iv Cv)dy. (44) 

() 

This imegraI too was computed numericaJly, and {he 
result wa~ a perfect match with N=3500 of (22), that 
is 

(N) = 3499.99880 J77S00 +O.<XXXXXJ12 49J4686i (45) 

Note that this result was computed numerically in the 
complex domain because of the Fourier trunsform~. 
and that the real part is virtually 3500 (as expected) 
while the imaginary part is virtually zero because of 
the rounding errors. So, this result is excellent. and 

proves that the theory presented so far is 
mathematically correct. 

Finul1y we want to consider the standard 
deviation. This also had to be computed numeric~\l1y, 
resulting in 

(TN = 3953.429]0 J433H9 +OJXXDXXH 2HCXX}S8i . (46) 
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This standard devimion, higher (han the mean value, 
implies that N might range in betwecn 0 and 7453. 

This completes our study of the probabHity 
density function of N if the seven uniform Drake 
input random variable Dj have the mean values and 
standard deviations listed in Table 1. 

We conclude thut. unfortunutely, even under file 
simplifying assumptio,js that the Di be unijormly 
distributed, it is impossible to solve the full problem 
{lntllytically, since all calculations beYlmd equation 
(38) had to be performed nlimericlilly. 

This is no good. 

Shall we thus loose faith, and declare "impossible" 
the task of finding an analytic expression for the 
probability denl.)ity funClion IN (y) ? 

Rather surprisingly. the ans\ver is "no", and there 
is indeed a way out of this dead-end, as we shall see 
in the next section. 

5. THE CENTRAL LIl\UT THEOREIvI (CLT) 
OF STATISTICS 

Indeed there is a good, approximming analytical 
expression for Iv (y), and this is the following 

/ogntJTmal pmbability demdty lunctit1n 

(In(yhlf 
. ( ) 1 1 2.,.2 IN y,p,a =_. r;::- e 

Y ,,2lra 
(y 2: 0) . (47) 

To understand why, we must resort to what is 
perhaps the most beautiful theorem of Statistics: 
the Central Limit Theorem (abbreviated CLT). 
Hisloric~dly. the CLT was in f~lct pruven first in 
1901 by the Russian mathematician Alex,mdr 
Lyapunov (1857-1918), and later (1920) by the 
Finnish mathematician Jar1 Waldemar Lindeberg 
(1876-1932) under weaker conditions_ These 
conditions are certainly fulfilled in the context of 
the Drake equation becausc of the ·'reality'· or the 
astronomy. biology and sociology involved with it, 
and we are not going to discu~s this point any 
further here. A good, synthetic description of the 
Central Limit Theorem (CL T) of Statistics is found 
at the Wikipedia site (ref. 17J) to which the reader 
is referred for morc details, sllch as the equations 
for the Lyapul10v and the Limleberg conditions, 
making the theorem "rigorollsly" valid. 
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Put ill loose terms, tile eLl' states that, if one 
has a Slim of random variables even NOT 
identically distributed, thi.~ .W11l tends to a JlOrmai 
distribution when the 1Il111lber t~f terms making lip 
the sum teJld.~ t() il~finity. Al.'w, the normal 
di~'tributi()n mean vallie i.~ the sum t~f the meall 
values of tile addend ralldom variables, and the 
ntJrmal distriiJution variance is the Slim of the 
variances oj'the addend random variables. 

Let us now write down the equations of the CLT 
in the form needed to apply it to our Statistical Drake 
equation (3). The idea is to apply the CLT to the sum 
of nmdom variables given hy (4) and (5) whatever 
their probability di . .;triblitimls can ptJ.uibly be. In 
other worth;, the CL T applied tn the Statistical Drake 
equation (3) leads immcdiate1y to the fbl10wing three 
eqmttions: 

J) The sum of the (arbitrarily distributed) 
independent random vm-iahles Yt makes up 
lhe new random variable Y. \ 

2) The sum or lheir mcun vu]ues makes up the 
ne\\' mean value of Y. 

3) The sum of lhdr variances makes up the 
new variance or Y. 

In equations: 

j y = IYi 

(Y) = ±(Y;) 
i-I 
7 

0-: = La~, 
i-I 

(48) 

This completes our synthetic description of the CL T 
for sums of random variables. 

6. THE LOGNORl\1AL DISTRIBTION IS 
THE DISTRIBUTION OF THE NUMBER 
N OF EXTRATERRESTRIAL 
CIVILIZATIONS IN THE GALAXY 

The CLT may of course be extended to products 
of random variables upon taking the logs of both 
sides, just as we did in equation (3). It then follows 
that the exponent ralldom variable, like Y ill (6), 
tends to a normal random variable, and, as a 
cOllsequence, it follows that the base randmlt 
variable, like N in (6), tends to a 10g1lormal random 
variable. 
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To understand this fact better in mathematical 
lerms consider again uf the transformation law (9) oj' 
random variables. The question is: what is the 
probabiHty density function of the random variable N 
in equation (6). that is. what is the probability density 
function of the lognormal distribution? To find it. set 

(49) 

This. upon inversion. yields the .~ingle rool 

(50) 

On the other hand, differentiating (49) one gets 

(51 ) 

where (50) was already used in the 1ast step. The 
general transformation law (9) finally yields 

Therefore. replacing the probability density on {he 
right by virtue of the well-known normal (or 
Gaussian) distribution given by equation (7). the 
lognormal distribution of equation (47) is found. and 
(he derivation of the lognormal distribution from (he 
normal distribution is proved. 

In view of future calculations. it is also useful to 
point out the so-cal1ed "Gaussian integral", that is: 

HZ 

fOr: -;\-\:" H-t d ~ 4/\ A 0 e e .r= -·e . >, 
-'r; A 

B = rca]. (53) 

This follows immediately from the normalization 
condition of the Gaussian (7). that is 

(54) 

just upon expanding the square at the exponent and 
making the two replacements (we skip al1 steps) 

I

, 1 
,1=--.., >0, 

2(r 
J.I 

B = a~ = real. 

(55) 
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In the sequel of this paper we shall denote the 
indepcm.lcnl variable of the lognormal distribulion 
(47) by a lower case letter n to remind the reader that 
corresponding random variable N is the positive 
integer number of ExtraTerrestrial Civilizations in 
the Galaxy. In other words, 11 will be treated as a 
positive real number in all calculations to follow 
because it is a "large" number (i.e. a continuous 
variable) compared to the only civili7.ation that we 
know of, j,e. ourselves. In conclusion, from now Oil 

the [og,lOrmlll prObtlbility density function of N will 
be 11lritten liS 

f .... (I1)=!· ~ e 
n ,,2JUJ 

(In(ll)-pf 

2c:rJ 
(n?: 0) (56) 

Having so said, we now turn to the statistical 
properties of the lognormal distribution (55). i.e. to 
the statistical properties that describe the number N 
of ExtraTerrestrial Clvilizations in the Galaxy. 

Our first goa] is to prove an equation yielding all 
the moments of the lognormal distrihution (56), that 
is. for evcry non-negative integer k - 0, 1. 2. ... onc 
has 

(57) 

The relevam proof starts with the definition of {he k­
(h moment 
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(inrlll-.uf 
= Il ·_·---·e dn 1'- k I 1 -~ 

{) n &a 

One then transforms the above integral by 
virtue or the substitution 

(58) 

The new integral in z is then seen to 
reduce to thc Gaussian integral (53) 
{we !o;kip all step~ here) and (57) 
follows 

Upon setting k = 0 into (56), thc 
normali7,atlon condition for Iv (n) follow!o; 

r~i'N (n )dn = 1. (59) Jo 

Upon setting k =] into (56). the important 
mean value of the random variable LV is fou nd 

(60) 

Upon setting k = 2 into (56), the mean value 
of the square of the random variable N is found 

"',- _ ,-r l ,-" 
( 

"') '1, ?_.~ 
IV -(. (, (61 ) 

The variance of N now follows from the last two 
formulae: 

(62) 

The square root of this is the important stalldard 
deviation formula for tile N random variable 

(63) 

The third moment is obtained upon setting 
k = 3 into (56) 

(64) 

Finally, upon setting k = 4, the fOUlth moment 
of N is found 

(65) 

OUf next goal is to find the cumulants of N. In 
principle. we could compute all the cumulants Ki 

from the generic i-th moment p; by virtue of the 

recursion formula (see ref. [8]) 

. i-I (i -1) . 
K; = Iii - L. Kk ).1/J-k· 

k-l f.:.-l 
(66) 
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In practice. however ~ here we shall confine 
ourselves to the computation of the first four 
cumulants only because they only. are required to 
find the !;kewnes!; and kUttosis of the distribution. 
Then, the fir~t four cumulants in terms of the first 
four moments read: 

These equations yield, re~pecti vc1y: 

n" 

K( =e.P (! 1 . (68) 

2fl CT~ {CT~ ) K2 =e . (! ~~ -1. (69) 

(70) 

From these we derive the skewness 

and the kurtosis 

K 4~ }~ 'J! 
(K24)2 =e (T +2e'(r' +3e-t:T -6. (73) 

Fim~lly, we want to find the mode or the 
lognormal probitbility density function, i.e. the 
abscissa of its peak. To do so. we must tirst 
compute the derivative of the probability den!;ity 
function /I",(n) of equation (56), and then !;et it 

equal to zero. This derivative is actually the 
derivative of the ratio of two functions of n, as it 
plainly appears from (57). Thus. let us set for a 
moment 
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£(n) = (In ~l] -/' f 
2a-

(74) 

where "E" stands for ··exponent." Upon 
differentiating this, one gets 

.. ) 1 .[])1 E (11 = --? . 2 (In Il - f.l • - • 
20-- n 

(75) 

But the lognormal probability density function (56), 
by virtue of (74), now reads 

(76) 

So that its derivative is 

(NET Distan<e' (r) 
dr 

- e £(11) E' (n). n - ) . e £(f/) 

iiiD" 

(77) 

Setting this derivative equal to zero means setting 

(78) 

That is, upon replacing (75). 

~ . (In[n] - J.I) + 1 = 0 . (79) 
(r 

Rearranging, this becomes 

(80) 

and finally 

(81 ) 

TIli.~ is the most likely number of Extra Ten'estrial 
Civilizations ill the Galaxy. 

How likely? To find the value of the probability 
density function .t~"i (n) corresponding to this 

value of the mode. we must obviously replace (81) 
into (56). After a few rearrangements. one then 
gets 
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n:" 

f' ) I -u} 
, N (n !lllt1C = r;;- - e ' . e - • 

vbr (T 

(82) 

This ;'y J'IImv likel)," tile m()~1 likely number of 
ExtraTerrestrial Civilizations ill tile Galaxy is, i.e. 
it is the peak height ill the lognormal probability 
density fUllctioll f ... , (n). 

Next to the mode i the median m (ref. 19 J) is one 
more statistical number used to characterize any 
probability distribution. It is defined as the 
independent variable abscissa m such that a 
realization of the random variahle will take up a 
value lower than III with 50% probability or a value 
higher than In with 50% probabillty again. In other 
words. the median In splits up our probability 
density in exactly two equally probable parts. Since 
the probability of occurrence of the random event 
equals the area under its density curve (i.e. the 
definite integral under its density curve) then the 
median III (of the lognormal distribution, in this 
case) is defined HS lhe inlcgralupper limit m: 

(In\H)-pl'-

(lItl:v (n)dn = (III ~. _]_ e - 20"~ (83) 
Jo Jo 11 .j2;cr 2 

In order to tlnd m, we may Ilot differentiate (83) with 
respect to JIl, ~ince the ··precise" filctnr Y2 on the 

right would then disappear into a zero. On the 
contrary, we may try to perform the obvious 
substitution 

(84) 

inlO the inlegml (83) to reduce it lo lhe following 
inlegral defining lhe error function erf(.::) 

Random variable 
Probability distribution 

Probability density function 

Mean value 

Variance 

Standard deviation 
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(85) 

Then. after a few reductions lhat we skip for the sake 
of brevity, the full equation (83) is turncd into 

that is 

! + et:l(ln{m )-1I) = ~ 
2 . .J2a 2 

eif( In{m)- Ii) = 0 
J"Za 

(86) 

(87) 

Since from the definition (85) one obviously has 
erf(O)=O. (87) becomes 

whence finaJly 

In{m)-.u = 0 
J2a 

I rredian = m = e,ll I. 

(88) 

(89) 

This is the mediall of the lognormal distribution of 
N. In otlter words, this is the mmlber of 
ExtraTerrestrial civilizations ill the Galaxy such 
tilat, with 50% probabifity the actual value of IV will 
be lower thall this medial!, alld with 50% probability 
it will be higher. 

In conclusion, we feel useful to summarize all the 
equations that we derived about the random variable 
N in the following Table 2. 

N = number of communicating ET civilizations in Galaxy 
Lognormal 

(' 1 1 -{In{II}-,ttj! 

.1:'1,' n)=--..[2;; l' 
2(T~ 

(/1 ~ 0) 
n 2JtlT 

c:r~ 

(N) = eP e 2 

~ ~f.I n-' ~ n-' i) aN =c e e -I 
(T! 

P'}~ (J'N = e e - £' -I 
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All the moments, i.e. k-th momenl 

Mode (= abscissu of lhe lugnormu] peuk) 

Vulue of the Mode Peak 

Median (= fifty-fifty proh~tbi1ity vul1..1e for tV) 

Skewness 

Kurlosis 

Expression of Ji in terms of the lower (ai) and upper 
(hi) 1imits of the Drake uniform inpul nmdom 

variables Dj 

Expression of (1'2 in terms of the ){)wer (a,) und upper 
(hi) Emits of the Drake uniform input random 

variables Di 

1-( -c;­
n In.~dc == n peak = e (' 

,/ 

f
Ill -:;-

N(n.mtlc )= ~ ·e··e-
"'2it' (j 

nedian = m = el-t 

_ ~(Y\ _ ~ b,Dn{bJ)-lJ- (1;[ln((//)- J] 
p-£.... ii-£..... 

i-I i-l hi -ai 

7 7 

a
2 = Lo-:'· = LJ 

i-I i-I 

til'; [hl(b; )-In(a; }]2 
(bj -£li }2 

'fable 2. Summary of the properties of the lognormal distribution that applies. to the random variable N = number of 
ET communicating civilizations in the Galaxy. 

\Ve want to complete this section about the 
lugnormal probability density function (56) by 
tinding out its nllmeric vallie ... for the inputs to the 
Statistical Dmke equation (3) listed in Table 1. 

According to the CLT, the mean vallie J1 to be 

inserted intu the lugnormul densily (56) is given 
(according to the second equation (48)) by the sum of 
all (he mean values (Yi ). that is. by virtue of (31). by: 

Upon replacing lhe J4 Qi and b; listed in Table 1 

imo (90). the following numeric mean value J.1 is 
found 

l.u ~ 7.4621761 (91 ) 

Similarly. to get the numeric variance 0'2 one 
must resort to the last of equations (48) and to (33): 

(92) 
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yielding the fullowing numeric variance (12 to be 

inserted into the lognormal pdf (56) 

(93) 

whence the llllmerit.' standard deviation (T 

(94) 

Upon replacing these two numeric values (84) 
and (86) into the lognormal pdf (56), the latter is 
perfectly determined. It is plotted in Figure 4 
hereafter as the thin curve. 

In other words, Figure 4 shows the lognormal 
distribution for the number N Ilf ExtraTerrestrial 
Civilizations in lite Galaxy derived from tile Central 
Limit Theorem as applied to the Drake equatioll 
(with the input data listed ill Table 1) • ' 

We now like to point out the most important 
statistical properties of this lognormal pdf: 

I) J\1eau Value (If N. This is given by equation (60) 
with l' and (T given by (91) and (94)~ respectively: 
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(12 

(N) = iJ,u e T ~ 4589.559 . (95) 

lit other wOI'ds, tlteJ'e are 45.90 ET Civilizations in 
tlte Galaxy according the Central Limit Theorem of 
Statistics with the inputs of Table 1. This number 
45.90 is HlGHER thalt the 3500 foreseen by the 
classical Drake equation working with sheer 
Ilumbers only. rather than witl, probability 
distributions. Thus equation (95) IS GOOD FOR 
NEWS FOR 81£1'11 .rince it show.r that tile expected 
Ilumber of F.1's is HIGHER with an adequate 
statistical treatment than ju.rt witlt the too simple 
Orake sheer numbers of (1). 

2) Variance oj N. The variance of the lognormal 
distribution is given by (62) and turns out to be a 
huge number: 

3) StaJldard deviatitm of N. Thc standard dcviation 
of the lognormal distribution is given by (63) and 
turns out to be: 

(1"~ 

a .. v = i,·lI e"T ~ = l] 195 (97) 

Again, this is GOOD NElVS FOR SETI. In jacl, 
sllch a high stalldard deviation meallS that N may 
range from very low vailles (zero, theoretically, and 
one since Hmnallit}' exists) tip to tells of thousands 
(4590+11195=15785 is (95)+(97)). 

4) Mode of N. The mode (= peak ubscissa) of the 
lognormal disLribution of N is givcn by (81). and has 
a surprisingly lo\v numeric valuc: 

Thj~ is wen shown in Figure 4: the mode peak is very 
pronounced and c1o~e to the origin. but the right tail 
is high. and thi~ means that the mean value of the 
distribution is much higher than the mode: 
4590»250. 
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5) l'dedian of N. The median (= fifty-tlfty abscissa, 
splitting the pdf in two exactly equi-probablc parts) 
of the lognormal distribution of N is given by (89), 
and has the numeric value: 

(99) 

Tn words. assuming the input values li.stcd in Table I, 
we have exactly a 50% probability that the actual 
value of N is lower than 1740, and 50% thaI it is 
higherthan 1740. 

7. COlVIP'ARING THE CLT RESULTS 
WITH TH~; NON·CLT R~;SlJLTS 

The time is now ripe to compare the CL T­
based results about the lognormal distribution of N. 
just described in Section 5, ,~gainst the NOll-CLT­
based results obtained numerically in Section 3.3 

To do so in a simple. visual way, let us plot on 
the same dlagram two curves: 

I) The numeric curves appearing in f-iigure 2 
and obtained after laborious Fourier 
tmnslorm calculations in the complex 
domain, and 

2) The lognormal distribution (56) with 
numeric Jl ,md () given by (91) and (94) 

respectively. 

We sec that thc two curves arc virtually coincidcnt 
for va]uc.s of N larger than 1500. This is a 
COllsequellce of tile law of large numbers, of which 
the CLT is just olle of the mallY facets. 

Similurly it happens for nalurallog of N. i.e. thc 
random variable Y of (5). lhul is plolted in Figure 5 
bOlh in its normal curvc version (thin curve) and in 
iLs numeric version. obtained via Fuurier transforms 
and already shown in Figure 2. 

The Clmc/liSitJn is simple: from now 1m we shall 
db;cal'd fore~'er the numeric calclllatifms alld we '/I 
stick only to tire equations derived by virtue (~f the 
CLT, i.e. to the l()glllJrmal (.:;6) and it.,· 
clJnsequence.~ . 
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Figure 4. Comparing the two probability density functions of lhe random variable 11/ found: 
J) Allhe end of Section 3.3. in u purely numeric way and without resorling to lhe CLT at all (thick curve) and 
2) Analylically by using the CLT and lhe rclevanliognormal approximalion (thin curve). 
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Indepcnt.lcnt variable Y = In(N) 

Figure 5. Comparing the two probability dem.ity functions of lhe random variable Y;;;;ln(N) found: 
J) Allhc end of Section 3.3. in a purely numeric way and withoul resorting lo the CLT at all (lhick curve) and 
2) Analylically by using the CLT and the rclcvuntnormal (Gaussian) approximation (thin Gaussian curve). 

8. UISTANCIl: O~' THE Nf!:AREST 
EXTRA TERRESTRIAL CIVILIZATION 
AS A PROBABILITY DISTRIBUTION 

As an application of the Statistical Drake 
Equation developed in the previous sections of this 
paper. we now want to consider the problem of 
estimating the distance of the ExtraTerrestrial 
Civilization nearest to us in the GaJaxy. In all 
Astrobiology textbooks (::.:cc, for in~tancc, ref. llOJ) 

45 

and in several web sites~ the solution to this 
problem is reported with only slight differences in 
the mathematical proofs among the various authors. 
In thc fir::.:t of the coming two sections (section 7. I) 
we derive the expression for this "ET _Distance~' 
(as we like to denote it) in the classkal\ non­
probabilistic way: in other words. this is the 
classical. deterministic derivation. In the second 
section (7.2) we provide the probabilistic 
derivation. arising from our Statistical Drake 
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Equation, of the corresponding probability density 
function f~;r Dislanu::(r) : here r is the distance 
between llS and the nearest ET civilization 
assumed as the independent variable of its own 
probability density function. The enslling sections 
provide more mathematical details about this 
fET_Dist,U1u::(r) such as its mean value, variance. 

standard deviation, all central moments, mode. 
median, cumulants, skewness and kurtosis. 

CLASSICAL, NON-PROBABILISTIC 
Dt:RIVATION OF THE DISTANCE OF THE 
NIl:AREST ET CIVILIZATION 

Consider the Galactic Disk and assume that: 
1) The diameter of the G~tlaxy is (about) 100,000 

light years, (abbreviated ly) i.e. its radius, 
RCa/ax.'" is about 50,000 ly. 

2) The thickness of the Galactic Disk at half-way 

from its center, hCa1a.\T' is about l6,000 Jy. 

Then 
3) The volume of the Galaxy 

approximated as the volume 
con'esponding cylinder, i.e. 

may be 
of the 

(100) 

4) Now consider the sphere around us havinl':! a 
radius r. The volume of such as sphere is '"" 

(101) 

In the last equation, we had to divide the distance 
"ET _Distance" betv,reen ourselves and the nearest 
ET Civilization by 2 because we are now going to 
make the unwarranted assumption that all ET 
Civilizations are equally space from each other ill 
the Galaxy! This is a crazy assumption, clearly, 
and should be replaced hy more scientifically­
grounded m;sumptions m> soon as we km.l\v more 
about our Galactic Neighbourhood. Allhe moment; 
however, this is the best guess that we can make, 
and so we shall take it for granted, although we are 
a\vare that this is weak point in the reasoning. 

Havillg thus assumed tllat ET Civilizations 
are UNIFORMLY SPACED IN THE GAL4.XY, 
we can write down this proportion: 

46 

( 102) 

That is, upon replacing both (100) and (10 I) into 
(102): 

4 r ET Dis tance )3 2 J[-

II R(;altlXyh = 3 \ 2 
N 

( 103) 

The (mly unknown in the last equation is 
ET _Distance, and ,\'0 we may solve for it, tflUS 

~ettinf? lhe: 
(A VERAGE) DISTANCE BETWEEN ANY PAIR 
OF NEIGHBOURING CIVILIZATIONS IN 
THE GALAXY 

where the positive constant C IS defined by 

c = 3 fi RZo/mj" h(jcllflry ~ 2RR45 light years. (l05) 

Equations (104) and (l05) are the !-itarting point for 
our first application of the Statistical Drake 
equation, that we discuss in detail in the coming 
sections of this paper. .... 

PROBABILISTIC DERIVATION OF THE 
PROBABILITY DENSITY FUNCTION FOR 
ET_Dl~TANCE 

~he probability density function (pdf) .yielding 
the dl!;tance of the ET Civilization nearest to us in 
the Galaxy and presented in this section. was 
discovered by this author on September 5th, '2007. 
He did not di!-iclose it to other scientists until the 
SETI meeting run by the f~.mou!-i mathematical 
physicist and popular science author, Paul Davies. 
at the "Beyond'1 Center of the University of 
Arizona at Phoenix, on I-'ehruary 5-6-7-8, 2008. 
This meeting was also attended by SETI Institute 
experts Jill Tarter, Seth Shostak, Doug Vakoch, 
Tom Pierson and others. During this author's talk. 
Paul Davies suggested to call "the Maccone 
distribution" the new probability density function 
that yields the ET_Distance and is derived in this 
section. 
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Let us go back to equation (104). Since N is 
now a random variable (obeying the lognormal 
distribution), it follows that the ET _Distance must 
be a random variable a!'i well. Hence it must have 
s.ome unknown probability density function that 
we denote by 

(106) 

where r is the new independent variab1c of s.uch a 
probability distribution (it is. denoted by r to 

remind the reader that it expresses the three­
dimensional radial distance separating us from the 
nearest ET civilization in a full spherical symmetry 
of the space around us). 

The ques.lion then is: what is the unknown 
probability distribution (106) of the ET _Distance? 
We can answer this question upon making the two 
formal substitutions 

{ 
N~x 

Er_distancc -4 y 
(107) 

into the transformation law (8) for random 
variables_ As a consequence, (104) takes form 

l C -~ 
r = a(x} = if; = C· x ". . ,., " ." x 

(108) 

In order to rind the unknown probability density 

f'ET D" \. (r) \ we nmv tu apply the rule (9) to , _ 1:' LUHe 

( 108). First. notice that (108), when inverted to 
yield the various roots Xi (y), yields a single real 

root only 

(109) 

Then, the summation in (9) reduces to one term 
only, 
Secund. differentiating (108) une finds 

4-

'() C ~ g x =---.:\:' " _ 
3 

( 110) 

Thus. the relevant absulute value reads 
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(Ill) 
4 4 

I 
'{ ~ C -"\ C g x~=--·x - =-·x 

3 3 

Upon replacing (I I I) into (9), \ve then find 

, C _4 C [C 3 ]-* C [C]-4 )'4 

I ~ (Xl~=--X .l =_. -":\ =_. - =--"~. 
~ 3 3 y' 3 Y 3 C' 

-- .(112) 

This is the denominator of (9). The numerator 
simply i~ the lognormal probabiJity density 
function (56) where the uld independent variable x 
must now be re-written in terms of the new 
independent variable y by virtue of (109). By 
doing so, we finally an-ive at the new probabHity 
den!'iity function .h (y) 

3 C J 1 1 
fY()')=~'-('1' r:::-

2 
'e 

.r " - '1/1.][ (Y 

.1'3 

Rearranging and replacing y by r, the final furm 
is: 

Now. ju ~t replace C in (113) by virtue of (l 05 ). 
Then: 

We have discovered the probabilitv density 
jUllction yielding the probability of finding the 
nearest ExtraTerrestrial Civilization in the 
Galaxy in the spherical shell between the 
distances rand r+drJrom Earth: 

( 114) 
holding for r ~ 0 _ 

STATISTICAL PROPERTIES OF THIS 
DISTRIBUTION 
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We no\", want to study this probabmty 
distrihution in detail. Our next questions are: 

) What is its mean value'? 
2) What are its variance and standard 

deviation? 
3) What are its moments to any higher order? 
4) What are its cumulants? 
5) What are its skewness and kurtosis? 
6) What are the coordinates of its peak, i.e. 

the mode (peak absci~sa) and its ordinate? 
7) What is its median? 

The first three points in the list are aU covered 
by the following theorem: all the moments of (113) 
are given hy (here k is the generk and non­
negative integer exponent, i.e. k = 0, L 2,3 .... ;:::: 0) 

(1 ]5) 

To prove this result. one tirst transform~ the above 
integral by virtue of the substitution 

[
C

3 

] ]n --,; =z. ,.' 
(116) 

Then the new integral in z is then seen to reduce to 
the known Gaussian integral (53) and, after several 
reductions that we ~kjp for the sake of brevity, 
(115) follow~ from (53). In other words. we have 
proven that 

(117) 

Upon seUing k = () into (117), the 

normalization condition for fET_Dj~t<\l\(c(r) follows 

l!ln Diqanm (r) tlr = I . (lI8) 

48 

Upon setting k = 1 into (] 17). the important 
mean value of the random variable ET _Distance 
isfollnd 

.II (.02 

(bT_Distance) = Ct.' J e lX • (119) 

Upon setting k = 2 into (J ] 7), the mean value of 
the square of the random variable ET _Distance is 
found 

" ", 
(ET _Distance 2 ) = C 2 e -;J.I (~~ c,... . (120) 

The variance of ET _Di!:aance now tollows from 
the last two formulae with a few reductions: 

2 _lET 0'. 1) IT::TT' OJ , )2 O"ET_Dhtallil: - \ _ )stance - \Ll_ stance 

(121) 

So, the variance of ET _Distance is 

(122) 

The square rool of this is the important 
standard deviation of the ET_Distance random 
variable 

( 123) 

The third moment is obtained upon setting 
k = 3 into (117) 

a 

(Ef_Distance:') = C:' e-J.l e T (124) 

Finally, upon setting k = 4 into (J] 7). the fourth 
moment of ET _Distance is found 

(125) 
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Our next goal is to find the curnulants of the 
ET _Distance. In principle, we could compute all 
the cunmlants Ki from the generic i-th moment 

jJ; by virtue of the recursion fOlll1ula (see ref. [8]) 

, H (i-I) . 
Ki = Pi - L _ Kk PH-/':" 

k-l k ] 
(126) 

In practice, however) here we shall confine 
oursc1 ves to the computation of the first four 
cumulant~ because they only are required to find 
the ~kewness and kU11o~is of the distribulion (113). 
Then, the first four cllmulanls in terms or the first 
four moments read: 

These equations yield) respectively: 

_f!.. !!.:.. 
KI = C e 3 e 18 • (128) 

(129) 

(130) 

From these we deri ve the skewness 
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:t 

C",[:~, -4 /~' -3::' + 12 e ~' -6/~')' 

. .. (132) 
and the kUttosls 

( 133) 

Next we want to find the mode of this 
distribution. i.e. the abscissa of its peak. To do so, 
we must first compute the derivative of the 
probability density function fl-":I'-.Di:-.lantc(r) of (1 B), 

and then set it equal to zero. This derivative is 
actually the derivative of the ratio of two functions 
of r, as its plainly appears from (I 13). Thus, let us 
set for a moment 

(134) 

where "E" stands for "exponent," Upon 
differentiating, 
one gets 

'( ) 1 ([c~] ) 1 .~ ( ) -4 E r =--,,·2 In - -p .-.C- . -3 '1' 
20'- 1'3 C 3 

r3 

] ([CJ.]) 1 = -,' In ~ - Ii . (- ~)- . 
(J'- y- r 

(135) 

But the probability density function (II3) now 
reads 

3 ,-I::(d 
lET DblulIU: (r) = r::- . _t. __ 

- ..,;2Jl('J'" r 
(136) 

So that its derivative is 

d.JET Di .. tanre· (r) 3 -l' £(r) E' (r). r -1· e £(r) 

elr = j2;(J' . r2 
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(137) 

Setting thi~ derivative equal to zero mcan~ ~ctting 

£'(r)-r+l =0 (138) 

That is, upon replacing (135) into (13R), we get 

1 ( [C 3

] J ] -., - In ~ -/-1 .(-3)--r+] =0 
c"- r- r 

\. 

(J39) 

Rearranging, this becomes 

(140) 

that is 

(14]) 

whence 

[C] J-l (j~ In - =-+-
r 3 9 

(142) 

and finally 

II (1"= 

'irodc == 'peak = C e 3 () 9 (143) 

This is tile most likely ET_DistanccJ;'om Earth. 

How likely? 
To find the value of the probability density 
function fET.J)islantC (r) corresponding to this value 

of the mode. \ve must obviously replace 0 into O. 
After a few reanangements, which we skip for the 
sake of brevity. one gets 
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_ .. (144) 

This is tile peak height in the pet/" ftn:"J)i~lantC(r). 

Next lo the mode. the median m (ref. [91) is one 
more statistical number used to characterize any 
probability distribution_ It is defined as the 
independent variable absclssa 111 such that a 
realization of lhe nmdom variable wilJ tukc up a 
value lower thun m with 50% probability or a value 
higher than III with 50% probability ugain. In other 
words. the median 111 splits up our probability 
density in exm;tly two equully probable parls. Since 
the probability of occurrence of the Hl11UOm event 
equals the urea under its density curve (i.c. the 
definite integral under its density curve) then the 
median m (uf the lognormal distribution. in this 
case) is defined as the integral upper limit m: 

1
m . 1 

.frrr i); <t",,,,· (r)t!r -:; o , 
(J45) 

Upon replacing (1 ]::\), thi.s becomes 

r"3 ] 
Jo ~. ~Ci·e 2 

(146) 

In order to find m, we may not differentiate (]46) 
with respect to m, since the "precise" factor Y2 on the 
right would then disappear into a zero. On the 
conlrary. we may lry lo perform thc obvious 
substitulion 

(147) 

into the integral (t 46) to reduce it to the fol1owing 
integral (R5) dctining the error function crf(z). Then. 
after a few reductions that we leave to the reader as 
an exercise, the full equation (t 45). defining the 
median, is turned into the corresponding equation 
involving the error function er/(x) as detlned by (85): 
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ET _Distance between any two neighboring ET 
Random variable Civilizations in Galaxy assuming they are UNIFORMLY 

distributed throughout the whole Galaxy volume. 
Prohabilitv distribution Unnamed (Paul Davies suggested "Maccone distribution") 

'I ' " 
Probability density function 

t.ln n Rt; •• h',\hC;<I.'i"" 1-.uJ 

l ) 3 I 2(T! 

, ET_Di~talHc(r =-. J2; ·e 
r _lr (J" 

(Defining the positive numeric constant C) C = ~6 R~It'a\\. "OaI£I.\Y :::: 28845 light yeal'S 

Ji (i~ 
-

Mean value (Ef_Dislance) = C e 3 e 18 

VH1'LanCe 
2 ..:! -.,!I l) t) 2 ~(~ 

O'ET Distun<e = C e' e e -I) 
'[":: Standard deviation 

_P f'r (T-

_ 3,18 I,) 
O"ET Di~I"nlL~ - C e £ e-1 

All the mmncnts, i.e. k-lh momenl 
1;)1 k~'Cf~ 

(ET_Distancel;) = Ck e :3 e 18 

.u (T~ - -
Mode (= abscissa of the probability density function I~mdc == rp"ak = C e 3 e ') 

peak) 

Peak Value of JET_Distance (1') = 

Value of the Mode Peak j' 3 
,II 0-) 

==, ET_Dislt.mcc (/~ll'dc) = c.,J2; (]' . e 3 . c.~ lR 

Median (= fifty-fifty probabihty value for 
.u 

median = m = Ce 3 
ET Distance) 

( a' 5.' cT~ \ 

e-J.1 e:! -3 e III 
! 2e· J 

Skewness ~ = ;\ ~ 

(K4h ( 'u' 
'sIT! 41'T~ I'T~ ou'J' C~ e () -4e ') -3e <) + 12 e :; -6e <) 

K". 
4 (T2 Cf1 2 (}'1 

Kurtosis 
- - -

(KJ2 = e 
q +2e 3 +3e I.) -6 

Expression of jl in tenns of the lower (Ui) and upper _ ±{y\_ ±bi [1n(b;)-1]-a/[ln(aJ-I] 
(bi) limits of the Drake uniform input random 

11- ij-

variables Di 
i-l i-I bi - at 

Expression of (fl in terms of the 100\'cr (a,) and upper 
7 7 all; [In(b; )-In(CI,)J2 

? L'J L 
(b;) limit~ of the Drake uniform input random 

cr = O"t,. = 1 
(hi -aJl 

variables D; 
i-I i-I 

Table 3. Summary of the propertie~ of the probability distribution that applies to the random variable ET _Distance 
yielding the (average) di~tance hetween any two neighhoring communicating civilizations in the Galaxy. 
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r 
[C:'] ] In -~ -p 

~+e}',. mo' = ~ 
2 . /2a 2 

\ 

nf 
err = 0 

In[C:]_ J.l] 

. .J2u 

( 14R) 

(149) 

This is Ihe median of the logllormal distribution of 
N. 11, other word:;, Ihis is tire Ilumber of 
ExtraTerrestrial civilizations hl the Galaxy such 
that, with 50% probability the actual value of N will 
be lower than this median, alld with 50% probability 
it will be higher. 
In conclusion, we feel useful to summarize all the 
equations that we derived about the random va.riable 
N in the following Table 2. 

NUMERICAL EXAlVIPLE OF THE 
ET_llISTANCE DISTRIBUTION 

Since from the definition (147) one obviously has 
erf(O)=O, (149) yields 

In this section we provide a numerical 
example of the analytic calculations carried on so 
far. 

whence finally 

[ C:~ ] 
In"j- -p =0 

.fiu 

Ji 

mediml =J1l = Ce :~ . 

( 150) 

(151 ) 

Consider the Drake Equation values reported 
in Table 1. Then, the graph of the corresponding 
prohability density function of the nearest 
ET_Distance, lET Di!\(i\n{C(r), is shown in Figure 6. 

D1STA:-.JCE OF NEAREST ET _ClVlUZA nON 

500 1000 1500 3000 
ET _Distan~e from Earth (light years) 

Figure 6. This is the probability of finding the nearest ExtraTen'estrial Civilization at the distance r from 
Earth (in light year~) if the value~ assumed in the Drake Equation are those shown in Table I. The relevant 
probability density function lET Di~wnlC(r) is given by equation (I ] 3). Its mode (peak abscissa) equals 1933 

light years. but its mean value is higher since the curve has a high tail on the right: the mean value equals in 
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NElVS FOR 
SETI, inasmuch as the Ilearest ET CivilizatiOit might lie at jw.t 1 sigma = 2670-1309 = 1361 light years 
from us. 

From Figure 6, we see that the probubility of 
finding ExtraTelTestrials is practically zero up to a 
dist~mce of about 500 light years from Earth. Then 
it starts increasing with the increasing distance 
from Earth, and reaches its maximum at 

_l!... (j~ 

r,11)(h:: == ',"'Ilk =Ce J e tJ :::::1933 light years. (J52) 

This ;s tile llJlOST LIKELY VAI..,UE of tile 
distance at which we can expect to find the 
nearest ExtraTerrestrial civilization. 

It is not, however, the mean value of the 
probability distribution (113) for fr:CDi:-.limw(I'). In 

fact, the probability density (113) has an infinite 
tail on the right, as dearly shown in Figure 6. and 
hence its me~m v,due must be higher than its pe,lk 
value. As given by (119), its mean value is 

~ 

j.I rr 

"1/1'(//1_ \'(rl!{(' = C e 3 e 1 x ~ 2670 light years. (153) 

This is tile MEAN (value of tile) DISTANCE 
at which we can expect to find ExtraTerrestrials. 

After having found the above two distances (1933 
and 2670 light years, respectively), the next natural 
question that arises is: "what is the range, forth and 
back ,m.mnd the mean value of the distance. within 
which we cun expect to find ExtraTerrestrials with 
'"the highest hopes ?," The answer to this question 
is given by the notion of standard deviation. that 
we aJready found to be gi ven by ( ] 23) 

iT CL' I; e7; r;;e~' I ~ 1309 l)'~~ht yC~lI"".". .... E'J:"Distanll: = ,,,' V e 9" - I ~ - E ..'> 

... (154) 

More precisely, this is the so called I-sigma 
(distance) level. Probability theory then sho\vs that 
the nearest ExtraTerrestrial civilization is expected 
to be located within this range, i.e. within the two 
distances of (2670-] 309) = ] 36] Jight years and 
(2670+ 1309) = 3979 light years, with probability 
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glven by the integral of fET_Disl:lIIIC(r) taken in 

between these two lower and upper limits, that is: 

J.
3979Iigll1YCllr~ 

~. lET DiSllllllL!{r}dr z 0.75 = 75% (155) 
b6lhghtyc:m 

In plain wurds: with 75% probability. the nearest 
ExtmTerrestrial civilization is located in between 
the distances of 1361 and 3979 light years from us, 
having assumed the input values to the Drake 
Equ,ltiun given by Table I. If we ch~mge those 
input values. then ,,11 the numbers clmnge 'lgain. 

9. THE "DATA E~RICH)'IE~T 
PRI~CIPLE" AS THE BEST CL T 
CONSEQUENCE UPON THE 
STATISTICAL DRAKE EQUATION 
(ANY NUl\1BER OF FACTORS 
ALLOWED) 

As a fitting climax to aU the statistical 
equations developed so far, let us now state our 
"DATA ENRICHiWENT PRINCIPLE," It simply states that 
"The Higher the lVumber of Factors ill the 

Statistical Drake equation, The Better .• " 

Put in this simple way, it simply looks like a 
new way of saying that the CLT lets the random 
variable Y approach the norma) distribution \vhen 
the number of terms in the sum (4) approaches 
infinity. And this is the c~\se, indeed. However. our 
"Data Enrichment Principle" has more profound 
methodological consequences that we cannot 
explain now, but hope to describe more precisely 
in one 01' more coming papers. 

CONCLUSIONS 

We have sought to extend the du!\sical Drake 
equation to let it encompass Statistics and 
Probability. 

Thi~ approach appear~ to pave the way to 

future. more profound investig~\tiolls intended not 
only to associate "error bars" to each factor in the 
Drake equation, but especially to increase the 
number of factors themselves. ]n fact. this seems to 
be the only way to incorporate into the Drake 
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equation more and more new scientific information 
as soon as it becomes available. In the long run, 
the Statistical Drake equation might just become a 
huge computer code. growing up in size and 
especial1y in the depth of the scientific information 
it contained. It would thus be Humanity's first 
"Encyclopaedia GaJactica." 

Unfortunately, to extend the Drake equation to 
Statistics, it was necessary to LIse a mathematical 
apparatus that is more sophisticated than just the 
simple product of seven numbers. 

When this author had the honour ~md privilege 
to present his results at the SETI Institute on April 
II th, 2008, in front of an audience also including 
Professor Frank Drake, he fe1t he had to add these 
word~: "My apologies, Prank, for disrupting the 
beautiful simplicity of your equation," 
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