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p:\"s := Ks 

ne := 1 

.t1:= 50 
100 

_ 
fi.:= -

100 

::0 
tc:= -

100 

:= ne 

.ufl := fl 

pfc := fc 

:= tL 

:= );s.!p·ne.tlfi.fc.tl. :\ = 3500 

10 
afP:= 100 

1 
erne:= -

f3 
10 

aft:= -
100 

_ 10 
Oti:= --

lOa 

_ 10 
Ofe := -

100 

Table l. Input values (Le. mean values and deviations) for the seven Drake uniform random variables Oi. 
The first cnlumn on the left the seven input sheer numbers that also become the mean values (middle column). 
Finally the last column on the right lists the seven input standard deviations. The bottom line is the classical Drake 
equation (I). 

3.2 STEP 6: COl\1PUTING THE LOGS 
OFTHE 7 UNIFORl\1Y 
DISTRIBUTED DRAKE RANDOl\t1 
VARIABLES Di 

Intuitive1y speaking. the natural log of a 
uniform1y distribmed random variable may !lot be 
anmher uniformly distributed random variable! This 
is. obvious trom the trivial diagram of y = In(x) 
shown below: 
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f 
-2 0 

Natural logarithm of x 

""",.,.. ",.-

2 .3 4 

POSITIVE independent variable x 

-

Figure 1. The simple funclion y ;;;; In(xj. 

5 

So. if we huve a uniformly distribmed random 
variable Dj with lower limit al upper limit bj, Lhe 
random variable 

= In(DJ i = 1. ... ,7 (23) 

must have its range limited in bet ween the lower limil 
In(oi) und the upper limil In(bi}. In other wonts, lhis 
are the lower and upper limits or the rc1evant 
probability density function II'; (y). But ""hat is the 

actual analytic expression of such a pdf? To find it, 
we must resort to the general transfnrmation law for 
random defined by equation (9), Here we 

have 

y = g(x} = In{x) (24) 

That, upon inversion. yields the single root 

(25) 

On the other hand. differentiating (24) one gets 
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where (25) was already used in the last step. By 
virtue of the uniform probability density function 
(10) and of (26), the general transformation law (9) 
finally yields 

In other vy'Qrds, the requested pdf of Yi is 

Probability density functions of the natura/logs of 
all the llJl~fiJrmly distribllted Drake random 
variable,,' Di • 

This is indeed a positive function of y over the 
interval In(a;):::;: y :S In(h;), as for every pdf, and it is 

easy to see thal ils normalizalion condition is 
fulfilled: 

... (29) 

Next we want to find the mean value and 
standard deviation of Y/ , .")ince these playa crucial 

role for fulure developments. The mean value (Yi ) is 

given by 

( ) 
_ Iln(b;) (). llll(l,,) J" e t' • 

Yi - Y . .ty y dJ = . --- d}, 
In(i1,)' In(a,)b; - (Ii 

= b, [In(bi )-1] - (Ii [In (aJ- I] 
bi -aj 

(30) 

This is thus the mean value of the natural log of ail 
the uniformly di.\trihllted Drake random variable.\' 
Di 
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In order to tind the variance also. we must first 
compUle the mean value of the square of Y/ , thal is 

= bi [In 2{b;)_ 2InVJi )+ 2]- (Ii [In 2 (eli)- 2 In ("li )+ 2] 
Iii -ai 

... (32) 

The varial1ce of Y; = in(D;) is now given by (32) 
minus the square of (31), that. ufter u few reductions. 
yield: 

\Vhence the corresponding standard deviation 

1- tljbj [Ill(/)i )-In(o; )]1 
(hi-air-

(33) 

(34) 

Let us now tum to unother topic: the use of 
Fourier transforms, that, in probability theory, are 
called "characteristic functions," Following again the 
notations ofPapoulis (ref [51) we call "characteristic 
function", <!>r; (;) , of an assigned probability 

distribution Yi • the Fourier transform of the relevant 

probability density function, that i!-; (with j = r-I ) 

The use of characteristic functiuJls simplifies things 
greatly. for instance, the calculation of all moments 
of a known pdf becomes trivial if the relevant 
characteristic function is known, and greatly 
simplified also are the proofs of important theorems 
of slalistics, like lhc CenLral Limit Theorem that we 
will usc in Seclion 4. Anolhcr imporLant resuH is that 
the characteristic.: fum;tioll of the Sllm of a finite 
number of independent random variables is simply 
given by the product of the corresponding 
characteristic functions. This is just the case we are 
facing in (he Statistical Drake equa(ion (3) and so we 
are now led to find the characteristic function of the 
random variable Yi • i,e. 

( ) f,.r. , -, () ilJl(lJ,) , - eY 
(1) c: = ell:: ,\ r \.' d\' = e);'.r --- dr y. - , Y., or .) b . 

'f. " In(a; i -(Ii 
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1 IJn{ld 0 I 'c)r 1 1 [(II '.:h }n{h,) 
=-- t" '. 'dy=--·--.-e I., Jln(o,'l 

bj -ai lUtll ;) hi -(.Ii l+l( , 

e(I+}; }In!}>,) _ e{l-g )In(fI,} 

(hi -at HI + j~~) 
(36) 

Thus, the characteristic junction of tile lIatural log 
(~f tire Drake uniform random variahle Di i.\' given by 

3.3 STEP 7: FINDING THE 
PROBABILITY DENSITY 
FUNCTION OF N. BUT ONLY 
NUTvlERICALL Y NOT 
ANALYTICALLY 

Having f(mnd the characteristic functions 
<P Y

j 
(;) of the logs of the seven input random 

variables Dj . we can now immediately find the 
characteristic function of the random variable Y = 
In(1\') defined by (5). In fact, by virtue of (4), of the 
well-known Fourier transform property stating that 
"the Fourier transform of a convolution is the product 
of the Fourier transforms", and of (37). it 
immediately foJ1ows that <Dr (~~) equuls the product 

of the seven (I> r, (,): 

The next step is to illvert this Fourier transform in 
order 10 gel the probabilily density function of the 
random variable Y = In(N). In other words, we must 
compute the following inverse Fourier transtorm 
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This author regrets lhul he was unublc w compute the 
last integral analytically. He had to compute it 
numerically for the particular values of the 14 lIi and 
bi that follow from Table 1 and equations 17. The 
result wa!' the probabjlity density function for Y = 
In(l\') plotted 1n the following Figure 2. 

PROB. DEt\'SlTY FU:--.ICTlON OF Y:;;;ln(N) 
0.4 

().J 

~~' 0.2 
c 
C) 

"C 
;.;.., 0.1 .= 
:§ 
.:8 0 o () 
~ 

"-

j' "'\ 
}{ ~ 

~ 
IT , .... -

2 3 4 5 6 7 8 <} 10 11 12 
ItuJcpcndcnt vrtl.'inblc Y = In{::"l') 

Figure 2. Probability density function of Y = In(N) 
computed numerically by virtue of tbe integral (39), 
The two "funny gaps" in the curve are due to the 
numeric limitations in the MathCad numeric solver 
that the author used for th1s numeric computation. 

We are now just one more step from f1nding the 
probability density of N, the number of 
ExtraTerrestrial Civilizations in the Galaxy predicted 
by our Statistical Drake equation (3). The point here 
is to transfer from the probability den!\ity function of 
Y to that of N, knowing that Y = In(1V) , or 
alternatively, that N=exp(Y). as stated hy (6), \Ve 
must thll .... resort to the transformation law of random 
variables (9) by setting 

y = g{x}= c'\' . (40) 

This. upon inverslon. yields the single root 

XJ (y) = xCv) = In(y). (4]) 

On the other hand, differentiating (40) one gets 

(42) 

where (41) was already used in the last step. The 
general transtormatiolllaw (9) tinally yields 

fN (y) = L.f~ (.ti ~y)) = ~ fy (In (y» . (43) 
i \g (Xi (J)~ IYI 
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Thi~ probabiJity density function fN (v) was 
computed numerically hy using (43) and the numeric 
curve given by (39). and the result is Shm"lll in Figure 
3. 

PROBABILlTY DE~SrrY fUN(TIO~ OF N 
~ 4-10-4 

E: ,-4 
_~ .HO 

~ 2-10-4 
.f' 
~ [-10-4 

4 
;:; 

c.. 00 loon 2000 3000 4000 
~ = ~umber of ET Civilizations in Galaxy 

Figure 3. The nllmeril..' (ami nol unalylic) probability 

density function curve f,v (y) of the number N of 

ExtraTerrestrial Civilizations in the Galaxy according 
w the Statistical Drake equation (3). We see that the 
curve peak (i.e. the mode) is very close tu low values 
of N, but the tail on the right is high, meaning that the 

resulting mean value (N) is of the order of 

thousands_ 

We nO\v want to compute the mean value (N) 
of the probabiJity density (43). Clearly, it is gi \len by 

or. 

(N) = f y Iv Cv)dy. (44) 

() 

This imegraI too was computed numericaJly, and {he 
result wa~ a perfect match with N=3500 of (22), that 
is 

(N) = 3499.99880 J77S00 +O.<XXXXXJ12 49J4686i (45) 

Note that this result was computed numerically in the 
complex domain because of the Fourier trunsform~. 
and that the real part is virtually 3500 (as expected) 
while the imaginary part is virtually zero because of 
the rounding errors. So, this result is excellent. and 

proves that the theory presented so far is 
mathematically correct. 

Finul1y we want to consider the standard 
deviation. This also had to be computed numeric~\l1y, 
resulting in 

(TN = 3953.429]0 J433H9 +OJXXDXXH 2HCXX}S8i . (46) 
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This standard devimion, higher (han the mean value, 
implies that N might range in betwecn 0 and 7453. 

This completes our study of the probabHity 
density function of N if the seven uniform Drake 
input random variable Dj have the mean values and 
standard deviations listed in Table 1. 

We conclude thut. unfortunutely, even under file 
simplifying assumptio,js that the Di be unijormly 
distributed, it is impossible to solve the full problem 
{lntllytically, since all calculations beYlmd equation 
(38) had to be performed nlimericlilly. 

This is no good. 

Shall we thus loose faith, and declare "impossible" 
the task of finding an analytic expression for the 
probability denl.)ity funClion IN (y) ? 

Rather surprisingly. the ans\ver is "no", and there 
is indeed a way out of this dead-end, as we shall see 
in the next section. 

5. THE CENTRAL LIl\UT THEOREIvI (CLT) 
OF STATISTICS 

Indeed there is a good, approximming analytical 
expression for Iv (y), and this is the following 

/ogntJTmal pmbability demdty lunctit1n 

(In(yhlf 
. ( ) 1 1 2.,.2 IN y,p,a =_. r;::- e 

Y ,,2lra 
(y 2: 0) . (47) 

To understand why, we must resort to what is 
perhaps the most beautiful theorem of Statistics: 
the Central Limit Theorem (abbreviated CLT). 
Hisloric~dly. the CLT was in f~lct pruven first in 
1901 by the Russian mathematician Alex,mdr 
Lyapunov (1857-1918), and later (1920) by the 
Finnish mathematician Jar1 Waldemar Lindeberg 
(1876-1932) under weaker conditions_ These 
conditions are certainly fulfilled in the context of 
the Drake equation becausc of the ·'reality'· or the 
astronomy. biology and sociology involved with it, 
and we are not going to discu~s this point any 
further here. A good, synthetic description of the 
Central Limit Theorem (CL T) of Statistics is found 
at the Wikipedia site (ref. 17J) to which the reader 
is referred for morc details, sllch as the equations 
for the Lyapul10v and the Limleberg conditions, 
making the theorem "rigorollsly" valid. 
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Put ill loose terms, tile eLl' states that, if one 
has a Slim of random variables even NOT 
identically distributed, thi.~ .W11l tends to a JlOrmai 
distribution when the 1Il111lber t~f terms making lip 
the sum teJld.~ t() il~finity. Al.'w, the normal 
di~'tributi()n mean vallie i.~ the sum t~f the meall 
values of tile addend ralldom variables, and the 
ntJrmal distriiJution variance is the Slim of the 
variances oj'the addend random variables. 

Let us now write down the equations of the CLT 
in the form needed to apply it to our Statistical Drake 
equation (3). The idea is to apply the CLT to the sum 
of nmdom variables given hy (4) and (5) whatever 
their probability di . .;triblitimls can ptJ.uibly be. In 
other worth;, the CL T applied tn the Statistical Drake 
equation (3) leads immcdiate1y to the fbl10wing three 
eqmttions: 

J) The sum of the (arbitrarily distributed) 
independent random vm-iahles Yt makes up 
lhe new random variable Y. \ 

2) The sum or lheir mcun vu]ues makes up the 
ne\\' mean value of Y. 

3) The sum of lhdr variances makes up the 
new variance or Y. 

In equations: 

j y = IYi 

(Y) = ±(Y;) 
i-I 
7 

0-: = La~, 
i-I 

(48) 

This completes our synthetic description of the CL T 
for sums of random variables. 

6. THE LOGNORl\1AL DISTRIBTION IS 
THE DISTRIBUTION OF THE NUMBER 
N OF EXTRATERRESTRIAL 
CIVILIZATIONS IN THE GALAXY 

The CLT may of course be extended to products 
of random variables upon taking the logs of both 
sides, just as we did in equation (3). It then follows 
that the exponent ralldom variable, like Y ill (6), 
tends to a normal random variable, and, as a 
cOllsequence, it follows that the base randmlt 
variable, like N in (6), tends to a 10g1lormal random 
variable. 
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To understand this fact better in mathematical 
lerms consider again uf the transformation law (9) oj' 
random variables. The question is: what is the 
probabiHty density function of the random variable N 
in equation (6). that is. what is the probability density 
function of the lognormal distribution? To find it. set 

(49) 

This. upon inversion. yields the .~ingle rool 

(50) 

On the other hand, differentiating (49) one gets 

(51 ) 

where (50) was already used in the 1ast step. The 
general transformation law (9) finally yields 

Therefore. replacing the probability density on {he 
right by virtue of the well-known normal (or 
Gaussian) distribution given by equation (7). the 
lognormal distribution of equation (47) is found. and 
(he derivation of the lognormal distribution from (he 
normal distribution is proved. 

In view of future calculations. it is also useful to 
point out the so-cal1ed "Gaussian integral", that is: 

HZ 

fOr: -;\-\:" H-t d ~ 4/\ A 0 e e .r= -·e . >, 
-'r; A 

B = rca]. (53) 

This follows immediately from the normalization 
condition of the Gaussian (7). that is 

(54) 

just upon expanding the square at the exponent and 
making the two replacements (we skip al1 steps) 

I

, 1 
,1=--.., >0, 

2(r 
J.I 

B = a~ = real. 

(55) 
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In the sequel of this paper we shall denote the 
indepcm.lcnl variable of the lognormal distribulion 
(47) by a lower case letter n to remind the reader that 
corresponding random variable N is the positive 
integer number of ExtraTerrestrial Civilizations in 
the Galaxy. In other words, 11 will be treated as a 
positive real number in all calculations to follow 
because it is a "large" number (i.e. a continuous 
variable) compared to the only civili7.ation that we 
know of, j,e. ourselves. In conclusion, from now Oil 

the [og,lOrmlll prObtlbility density function of N will 
be 11lritten liS 

f .... (I1)=!· ~ e 
n ,,2JUJ 

(In(ll)-pf 

2c:rJ 
(n?: 0) (56) 

Having so said, we now turn to the statistical 
properties of the lognormal distribution (55). i.e. to 
the statistical properties that describe the number N 
of ExtraTerrestrial Clvilizations in the Galaxy. 

Our first goa] is to prove an equation yielding all 
the moments of the lognormal distrihution (56), that 
is. for evcry non-negative integer k - 0, 1. 2. ... onc 
has 

(57) 

The relevam proof starts with the definition of {he k­
(h moment 
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(inrlll-.uf 
= Il ·_·---·e dn 1'- k I 1 -~ 

{) n &a 

One then transforms the above integral by 
virtue or the substitution 

(58) 

The new integral in z is then seen to 
reduce to thc Gaussian integral (53) 
{we !o;kip all step~ here) and (57) 
follows 

Upon setting k = 0 into (56), thc 
normali7,atlon condition for Iv (n) follow!o; 

r~i'N (n )dn = 1. (59) Jo 

Upon setting k =] into (56). the important 
mean value of the random variable LV is fou nd 

(60) 

Upon setting k = 2 into (56), the mean value 
of the square of the random variable N is found 

"',- _ ,-r l ,-" 
( 

"') '1, ?_.~ 
IV -(. (, (61 ) 

The variance of N now follows from the last two 
formulae: 

(62) 

The square root of this is the important stalldard 
deviation formula for tile N random variable 

(63) 

The third moment is obtained upon setting 
k = 3 into (56) 

(64) 

Finally, upon setting k = 4, the fOUlth moment 
of N is found 

(65) 

OUf next goal is to find the cumulants of N. In 
principle. we could compute all the cumulants Ki 

from the generic i-th moment p; by virtue of the 

recursion formula (see ref. [8]) 

. i-I (i -1) . 
K; = Iii - L. Kk ).1/J-k· 

k-l f.:.-l 
(66) 
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In practice. however ~ here we shall confine 
ourselves to the computation of the first four 
cumulants only because they only. are required to 
find the !;kewnes!; and kUttosis of the distribution. 
Then, the fir~t four cumulants in terms of the first 
four moments read: 

These equations yield, re~pecti vc1y: 

n" 

K( =e.P (! 1 . (68) 

2fl CT~ {CT~ ) K2 =e . (! ~~ -1. (69) 

(70) 

From these we derive the skewness 

and the kurtosis 

K 4~ }~ 'J! 
(K24)2 =e (T +2e'(r' +3e-t:T -6. (73) 

Fim~lly, we want to find the mode or the 
lognormal probitbility density function, i.e. the 
abscissa of its peak. To do so. we must tirst 
compute the derivative of the probability den!;ity 
function /I",(n) of equation (56), and then !;et it 

equal to zero. This derivative is actually the 
derivative of the ratio of two functions of n, as it 
plainly appears from (57). Thus. let us set for a 
moment 

41 

£(n) = (In ~l] -/' f 
2a-

(74) 

where "E" stands for ··exponent." Upon 
differentiating this, one gets 

.. ) 1 .[])1 E (11 = --? . 2 (In Il - f.l • - • 
20-- n 

(75) 

But the lognormal probability density function (56), 
by virtue of (74), now reads 

(76) 

So that its derivative is 

(NET Distan<e' (r) 
dr 

- e £(11) E' (n). n - ) . e £(f/) 

iiiD" 

(77) 

Setting this derivative equal to zero means setting 

(78) 

That is, upon replacing (75). 

~ . (In[n] - J.I) + 1 = 0 . (79) 
(r 

Rearranging, this becomes 

(80) 

and finally 

(81 ) 

TIli.~ is the most likely number of Extra Ten'estrial 
Civilizations ill the Galaxy. 

How likely? To find the value of the probability 
density function .t~"i (n) corresponding to this 

value of the mode. we must obviously replace (81) 
into (56). After a few rearrangements. one then 
gets 
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n:" 

f' ) I -u} 
, N (n !lllt1C = r;;- - e ' . e - • 

vbr (T 

(82) 

This ;'y J'IImv likel)," tile m()~1 likely number of 
ExtraTerrestrial Civilizations ill tile Galaxy is, i.e. 
it is the peak height ill the lognormal probability 
density fUllctioll f ... , (n). 

Next to the mode i the median m (ref. 19 J) is one 
more statistical number used to characterize any 
probability distribution. It is defined as the 
independent variable abscissa m such that a 
realization of the random variahle will take up a 
value lower than III with 50% probability or a value 
higher than In with 50% probabillty again. In other 
words. the median In splits up our probability 
density in exactly two equally probable parts. Since 
the probability of occurrence of the random event 
equals the area under its density curve (i.e. the 
definite integral under its density curve) then the 
median III (of the lognormal distribution, in this 
case) is defined HS lhe inlcgralupper limit m: 

(In\H)-pl'-

(lItl:v (n)dn = (III ~. _]_ e - 20"~ (83) 
Jo Jo 11 .j2;cr 2 

In order to tlnd m, we may Ilot differentiate (83) with 
respect to JIl, ~ince the ··precise" filctnr Y2 on the 

right would then disappear into a zero. On the 
contrary, we may try to perform the obvious 
substitution 

(84) 

inlO the inlegml (83) to reduce it lo lhe following 
inlegral defining lhe error function erf(.::) 

Random variable 
Probability distribution 

Probability density function 

Mean value 

Variance 

Standard deviation 

42 

(85) 

Then. after a few reductions lhat we skip for the sake 
of brevity, the full equation (83) is turncd into 

that is 

! + et:l(ln{m )-1I) = ~ 
2 . .J2a 2 

eif( In{m)- Ii) = 0 
J"Za 

(86) 

(87) 

Since from the definition (85) one obviously has 
erf(O)=O. (87) becomes 

whence finaJly 

In{m)-.u = 0 
J2a 

I rredian = m = e,ll I. 

(88) 

(89) 

This is the mediall of the lognormal distribution of 
N. In otlter words, this is the mmlber of 
ExtraTerrestrial civilizations ill the Galaxy such 
tilat, with 50% probabifity the actual value of IV will 
be lower thall this medial!, alld with 50% probability 
it will be higher. 

In conclusion, we feel useful to summarize all the 
equations that we derived about the random variable 
N in the following Table 2. 

N = number of communicating ET civilizations in Galaxy 
Lognormal 

(' 1 1 -{In{II}-,ttj! 

.1:'1,' n)=--..[2;; l' 
2(T~ 

(/1 ~ 0) 
n 2JtlT 

c:r~ 

(N) = eP e 2 

~ ~f.I n-' ~ n-' i) aN =c e e -I 
(T! 

P'}~ (J'N = e e - £' -I 

UNCLASSIFIED/ !Fillit ilrrl&IAk Wlii flrtlt\!' 



UNCLASSIFIEDII&OIl OEia;I&ltltk W&i epu.y 

All the moments, i.e. k-th momenl 

Mode (= abscissu of lhe lugnormu] peuk) 

Vulue of the Mode Peak 

Median (= fifty-fifty proh~tbi1ity vul1..1e for tV) 

Skewness 

Kurlosis 

Expression of Ji in terms of the lower (ai) and upper 
(hi) 1imits of the Drake uniform inpul nmdom 

variables Dj 

Expression of (1'2 in terms of the ){)wer (a,) und upper 
(hi) Emits of the Drake uniform input random 

variables Di 

1-( -c;­
n In.~dc == n peak = e (' 

,/ 

f
Ill -:;-

N(n.mtlc )= ~ ·e··e-
"'2it' (j 

nedian = m = el-t 

_ ~(Y\ _ ~ b,Dn{bJ)-lJ- (1;[ln((//)- J] 
p-£.... ii-£..... 

i-I i-l hi -ai 

7 7 

a
2 = Lo-:'· = LJ 

i-I i-I 

til'; [hl(b; )-In(a; }]2 
(bj -£li }2 

'fable 2. Summary of the properties of the lognormal distribution that applies. to the random variable N = number of 
ET communicating civilizations in the Galaxy. 

\Ve want to complete this section about the 
lugnormal probability density function (56) by 
tinding out its nllmeric vallie ... for the inputs to the 
Statistical Dmke equation (3) listed in Table 1. 

According to the CLT, the mean vallie J1 to be 

inserted intu the lugnormul densily (56) is given 
(according to the second equation (48)) by the sum of 
all (he mean values (Yi ). that is. by virtue of (31). by: 

Upon replacing lhe J4 Qi and b; listed in Table 1 

imo (90). the following numeric mean value J.1 is 
found 

l.u ~ 7.4621761 (91 ) 

Similarly. to get the numeric variance 0'2 one 
must resort to the last of equations (48) and to (33): 

(92) 
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yielding the fullowing numeric variance (12 to be 

inserted into the lognormal pdf (56) 

(93) 

whence the llllmerit.' standard deviation (T 

(94) 

Upon replacing these two numeric values (84) 
and (86) into the lognormal pdf (56), the latter is 
perfectly determined. It is plotted in Figure 4 
hereafter as the thin curve. 

In other words, Figure 4 shows the lognormal 
distribution for the number N Ilf ExtraTerrestrial 
Civilizations in lite Galaxy derived from tile Central 
Limit Theorem as applied to the Drake equatioll 
(with the input data listed ill Table 1) • ' 

We now like to point out the most important 
statistical properties of this lognormal pdf: 

I) J\1eau Value (If N. This is given by equation (60) 
with l' and (T given by (91) and (94)~ respectively: 
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(12 

(N) = iJ,u e T ~ 4589.559 . (95) 

lit other wOI'ds, tlteJ'e are 45.90 ET Civilizations in 
tlte Galaxy according the Central Limit Theorem of 
Statistics with the inputs of Table 1. This number 
45.90 is HlGHER thalt the 3500 foreseen by the 
classical Drake equation working with sheer 
Ilumbers only. rather than witl, probability 
distributions. Thus equation (95) IS GOOD FOR 
NEWS FOR 81£1'11 .rince it show.r that tile expected 
Ilumber of F.1's is HIGHER with an adequate 
statistical treatment than ju.rt witlt the too simple 
Orake sheer numbers of (1). 

2) Variance oj N. The variance of the lognormal 
distribution is given by (62) and turns out to be a 
huge number: 

3) StaJldard deviatitm of N. Thc standard dcviation 
of the lognormal distribution is given by (63) and 
turns out to be: 

(1"~ 

a .. v = i,·lI e"T ~ = l] 195 (97) 

Again, this is GOOD NElVS FOR SETI. In jacl, 
sllch a high stalldard deviation meallS that N may 
range from very low vailles (zero, theoretically, and 
one since Hmnallit}' exists) tip to tells of thousands 
(4590+11195=15785 is (95)+(97)). 

4) Mode of N. The mode (= peak ubscissa) of the 
lognormal disLribution of N is givcn by (81). and has 
a surprisingly lo\v numeric valuc: 

Thj~ is wen shown in Figure 4: the mode peak is very 
pronounced and c1o~e to the origin. but the right tail 
is high. and thi~ means that the mean value of the 
distribution is much higher than the mode: 
4590»250. 
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5) l'dedian of N. The median (= fifty-tlfty abscissa, 
splitting the pdf in two exactly equi-probablc parts) 
of the lognormal distribution of N is given by (89), 
and has the numeric value: 

(99) 

Tn words. assuming the input values li.stcd in Table I, 
we have exactly a 50% probability that the actual 
value of N is lower than 1740, and 50% thaI it is 
higherthan 1740. 

7. COlVIP'ARING THE CLT RESULTS 
WITH TH~; NON·CLT R~;SlJLTS 

The time is now ripe to compare the CL T­
based results about the lognormal distribution of N. 
just described in Section 5, ,~gainst the NOll-CLT­
based results obtained numerically in Section 3.3 

To do so in a simple. visual way, let us plot on 
the same dlagram two curves: 

I) The numeric curves appearing in f-iigure 2 
and obtained after laborious Fourier 
tmnslorm calculations in the complex 
domain, and 

2) The lognormal distribution (56) with 
numeric Jl ,md () given by (91) and (94) 

respectively. 

We sec that thc two curves arc virtually coincidcnt 
for va]uc.s of N larger than 1500. This is a 
COllsequellce of tile law of large numbers, of which 
the CLT is just olle of the mallY facets. 

Similurly it happens for nalurallog of N. i.e. thc 
random variable Y of (5). lhul is plolted in Figure 5 
bOlh in its normal curvc version (thin curve) and in 
iLs numeric version. obtained via Fuurier transforms 
and already shown in Figure 2. 

The Clmc/liSitJn is simple: from now 1m we shall 
db;cal'd fore~'er the numeric calclllatifms alld we '/I 
stick only to tire equations derived by virtue (~f the 
CLT, i.e. to the l()glllJrmal (.:;6) and it.,· 
clJnsequence.~ . 
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N = I\'ulllber of ET Civilizations in Galaxy 

Figure 4. Comparing the two probability density functions of lhe random variable 11/ found: 
J) Allhe end of Section 3.3. in u purely numeric way and without resorling to lhe CLT at all (thick curve) and 
2) Analylically by using the CLT and lhe rclevanliognormal approximalion (thin curve). 
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Indepcnt.lcnt variable Y = In(N) 

Figure 5. Comparing the two probability dem.ity functions of lhe random variable Y;;;;ln(N) found: 
J) Allhc end of Section 3.3. in a purely numeric way and withoul resorting lo the CLT at all (lhick curve) and 
2) Analylically by using the CLT and the rclcvuntnormal (Gaussian) approximation (thin Gaussian curve). 

8. UISTANCIl: O~' THE Nf!:AREST 
EXTRA TERRESTRIAL CIVILIZATION 
AS A PROBABILITY DISTRIBUTION 

As an application of the Statistical Drake 
Equation developed in the previous sections of this 
paper. we now want to consider the problem of 
estimating the distance of the ExtraTerrestrial 
Civilization nearest to us in the GaJaxy. In all 
Astrobiology textbooks (::.:cc, for in~tancc, ref. llOJ) 
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and in several web sites~ the solution to this 
problem is reported with only slight differences in 
the mathematical proofs among the various authors. 
In thc fir::.:t of the coming two sections (section 7. I) 
we derive the expression for this "ET _Distance~' 
(as we like to denote it) in the classkal\ non­
probabilistic way: in other words. this is the 
classical. deterministic derivation. In the second 
section (7.2) we provide the probabilistic 
derivation. arising from our Statistical Drake 
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Equation, of the corresponding probability density 
function f~;r Dislanu::(r) : here r is the distance 
between llS and the nearest ET civilization 
assumed as the independent variable of its own 
probability density function. The enslling sections 
provide more mathematical details about this 
fET_Dist,U1u::(r) such as its mean value, variance. 

standard deviation, all central moments, mode. 
median, cumulants, skewness and kurtosis. 

CLASSICAL, NON-PROBABILISTIC 
Dt:RIVATION OF THE DISTANCE OF THE 
NIl:AREST ET CIVILIZATION 

Consider the Galactic Disk and assume that: 
1) The diameter of the G~tlaxy is (about) 100,000 

light years, (abbreviated ly) i.e. its radius, 
RCa/ax.'" is about 50,000 ly. 

2) The thickness of the Galactic Disk at half-way 

from its center, hCa1a.\T' is about l6,000 Jy. 

Then 
3) The volume of the Galaxy 

approximated as the volume 
con'esponding cylinder, i.e. 

may be 
of the 

(100) 

4) Now consider the sphere around us havinl':! a 
radius r. The volume of such as sphere is '"" 

(101) 

In the last equation, we had to divide the distance 
"ET _Distance" betv,reen ourselves and the nearest 
ET Civilization by 2 because we are now going to 
make the unwarranted assumption that all ET 
Civilizations are equally space from each other ill 
the Galaxy! This is a crazy assumption, clearly, 
and should be replaced hy more scientifically­
grounded m;sumptions m> soon as we km.l\v more 
about our Galactic Neighbourhood. Allhe moment; 
however, this is the best guess that we can make, 
and so we shall take it for granted, although we are 
a\vare that this is weak point in the reasoning. 

Havillg thus assumed tllat ET Civilizations 
are UNIFORMLY SPACED IN THE GAL4.XY, 
we can write down this proportion: 
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( 102) 

That is, upon replacing both (100) and (10 I) into 
(102): 

4 r ET Dis tance )3 2 J[-

II R(;altlXyh = 3 \ 2 
N 

( 103) 

The (mly unknown in the last equation is 
ET _Distance, and ,\'0 we may solve for it, tflUS 

~ettinf? lhe: 
(A VERAGE) DISTANCE BETWEEN ANY PAIR 
OF NEIGHBOURING CIVILIZATIONS IN 
THE GALAXY 

where the positive constant C IS defined by 

c = 3 fi RZo/mj" h(jcllflry ~ 2RR45 light years. (l05) 

Equations (104) and (l05) are the !-itarting point for 
our first application of the Statistical Drake 
equation, that we discuss in detail in the coming 
sections of this paper. .... 

PROBABILISTIC DERIVATION OF THE 
PROBABILITY DENSITY FUNCTION FOR 
ET_Dl~TANCE 

~he probability density function (pdf) .yielding 
the dl!;tance of the ET Civilization nearest to us in 
the Galaxy and presented in this section. was 
discovered by this author on September 5th, '2007. 
He did not di!-iclose it to other scientists until the 
SETI meeting run by the f~.mou!-i mathematical 
physicist and popular science author, Paul Davies. 
at the "Beyond'1 Center of the University of 
Arizona at Phoenix, on I-'ehruary 5-6-7-8, 2008. 
This meeting was also attended by SETI Institute 
experts Jill Tarter, Seth Shostak, Doug Vakoch, 
Tom Pierson and others. During this author's talk. 
Paul Davies suggested to call "the Maccone 
distribution" the new probability density function 
that yields the ET_Distance and is derived in this 
section. 
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Let us go back to equation (104). Since N is 
now a random variable (obeying the lognormal 
distribution), it follows that the ET _Distance must 
be a random variable a!'i well. Hence it must have 
s.ome unknown probability density function that 
we denote by 

(106) 

where r is the new independent variab1c of s.uch a 
probability distribution (it is. denoted by r to 

remind the reader that it expresses the three­
dimensional radial distance separating us from the 
nearest ET civilization in a full spherical symmetry 
of the space around us). 

The ques.lion then is: what is the unknown 
probability distribution (106) of the ET _Distance? 
We can answer this question upon making the two 
formal substitutions 

{ 
N~x 

Er_distancc -4 y 
(107) 

into the transformation law (8) for random 
variables_ As a consequence, (104) takes form 

l C -~ 
r = a(x} = if; = C· x ". . ,., " ." x 

(108) 

In order to rind the unknown probability density 

f'ET D" \. (r) \ we nmv tu apply the rule (9) to , _ 1:' LUHe 

( 108). First. notice that (108), when inverted to 
yield the various roots Xi (y), yields a single real 

root only 

(109) 

Then, the summation in (9) reduces to one term 
only, 
Secund. differentiating (108) une finds 

4-

'() C ~ g x =---.:\:' " _ 
3 

( 110) 

Thus. the relevant absulute value reads 

47 

(Ill) 
4 4 

I 
'{ ~ C -"\ C g x~=--·x - =-·x 

3 3 

Upon replacing (I I I) into (9), \ve then find 

, C _4 C [C 3 ]-* C [C]-4 )'4 

I ~ (Xl~=--X .l =_. -":\ =_. - =--"~. 
~ 3 3 y' 3 Y 3 C' 

-- .(112) 

This is the denominator of (9). The numerator 
simply i~ the lognormal probabiJity density 
function (56) where the uld independent variable x 
must now be re-written in terms of the new 
independent variable y by virtue of (109). By 
doing so, we finally an-ive at the new probabHity 
den!'iity function .h (y) 

3 C J 1 1 
fY()')=~'-('1' r:::-

2 
'e 

.r " - '1/1.][ (Y 

.1'3 

Rearranging and replacing y by r, the final furm 
is: 

Now. ju ~t replace C in (113) by virtue of (l 05 ). 
Then: 

We have discovered the probabilitv density 
jUllction yielding the probability of finding the 
nearest ExtraTerrestrial Civilization in the 
Galaxy in the spherical shell between the 
distances rand r+drJrom Earth: 

( 114) 
holding for r ~ 0 _ 

STATISTICAL PROPERTIES OF THIS 
DISTRIBUTION 

UNCLASSIFIED/ {FeA eFFI&iI,lzL: .,lii e'JIs:¥ 



UNCLASSIFIED/ /FSR: arrietA' OSE OnEi 

We no\", want to study this probabmty 
distrihution in detail. Our next questions are: 

) What is its mean value'? 
2) What are its variance and standard 

deviation? 
3) What are its moments to any higher order? 
4) What are its cumulants? 
5) What are its skewness and kurtosis? 
6) What are the coordinates of its peak, i.e. 

the mode (peak absci~sa) and its ordinate? 
7) What is its median? 

The first three points in the list are aU covered 
by the following theorem: all the moments of (113) 
are given hy (here k is the generk and non­
negative integer exponent, i.e. k = 0, L 2,3 .... ;:::: 0) 

(1 ]5) 

To prove this result. one tirst transform~ the above 
integral by virtue of the substitution 

[
C

3 

] ]n --,; =z. ,.' 
(116) 

Then the new integral in z is then seen to reduce to 
the known Gaussian integral (53) and, after several 
reductions that we ~kjp for the sake of brevity, 
(115) follow~ from (53). In other words. we have 
proven that 

(117) 

Upon seUing k = () into (117), the 

normalization condition for fET_Dj~t<\l\(c(r) follows 

l!ln Diqanm (r) tlr = I . (lI8) 
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Upon setting k = 1 into (] 17). the important 
mean value of the random variable ET _Distance 
isfollnd 

.II (.02 

(bT_Distance) = Ct.' J e lX • (119) 

Upon setting k = 2 into (J ] 7), the mean value of 
the square of the random variable ET _Distance is 
found 

" ", 
(ET _Distance 2 ) = C 2 e -;J.I (~~ c,... . (120) 

The variance of ET _Di!:aance now tollows from 
the last two formulae with a few reductions: 

2 _lET 0'. 1) IT::TT' OJ , )2 O"ET_Dhtallil: - \ _ )stance - \Ll_ stance 

(121) 

So, the variance of ET _Distance is 

(122) 

The square rool of this is the important 
standard deviation of the ET_Distance random 
variable 

( 123) 

The third moment is obtained upon setting 
k = 3 into (117) 

a 

(Ef_Distance:') = C:' e-J.l e T (124) 

Finally, upon setting k = 4 into (J] 7). the fourth 
moment of ET _Distance is found 

(125) 
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Our next goal is to find the curnulants of the 
ET _Distance. In principle, we could compute all 
the cunmlants Ki from the generic i-th moment 

jJ; by virtue of the recursion fOlll1ula (see ref. [8]) 

, H (i-I) . 
Ki = Pi - L _ Kk PH-/':" 

k-l k ] 
(126) 

In practice, however) here we shall confine 
oursc1 ves to the computation of the first four 
cumulant~ because they only are required to find 
the ~kewness and kU11o~is of the distribulion (113). 
Then, the first four cllmulanls in terms or the first 
four moments read: 

These equations yield) respectively: 

_f!.. !!.:.. 
KI = C e 3 e 18 • (128) 

(129) 

(130) 

From these we deri ve the skewness 
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:t 

C",[:~, -4 /~' -3::' + 12 e ~' -6/~')' 

. .. (132) 
and the kUttosls 

( 133) 

Next we want to find the mode of this 
distribution. i.e. the abscissa of its peak. To do so, 
we must first compute the derivative of the 
probability density function fl-":I'-.Di:-.lantc(r) of (1 B), 

and then set it equal to zero. This derivative is 
actually the derivative of the ratio of two functions 
of r, as its plainly appears from (I 13). Thus, let us 
set for a moment 

(134) 

where "E" stands for "exponent," Upon 
differentiating, 
one gets 

'( ) 1 ([c~] ) 1 .~ ( ) -4 E r =--,,·2 In - -p .-.C- . -3 '1' 
20'- 1'3 C 3 

r3 

] ([CJ.]) 1 = -,' In ~ - Ii . (- ~)- . 
(J'- y- r 

(135) 

But the probability density function (II3) now 
reads 

3 ,-I::(d 
lET DblulIU: (r) = r::- . _t. __ 

- ..,;2Jl('J'" r 
(136) 

So that its derivative is 

d.JET Di .. tanre· (r) 3 -l' £(r) E' (r). r -1· e £(r) 

elr = j2;(J' . r2 
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(137) 

Setting thi~ derivative equal to zero mcan~ ~ctting 

£'(r)-r+l =0 (138) 

That is, upon replacing (135) into (13R), we get 

1 ( [C 3

] J ] -., - In ~ -/-1 .(-3)--r+] =0 
c"- r- r 

\. 

(J39) 

Rearranging, this becomes 

(140) 

that is 

(14]) 

whence 

[C] J-l (j~ In - =-+-
r 3 9 

(142) 

and finally 

II (1"= 

'irodc == 'peak = C e 3 () 9 (143) 

This is tile most likely ET_DistanccJ;'om Earth. 

How likely? 
To find the value of the probability density 
function fET.J)islantC (r) corresponding to this value 

of the mode. \ve must obviously replace 0 into O. 
After a few reanangements, which we skip for the 
sake of brevity. one gets 
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_ .. (144) 

This is tile peak height in the pet/" ftn:"J)i~lantC(r). 

Next lo the mode. the median m (ref. [91) is one 
more statistical number used to characterize any 
probability distribution_ It is defined as the 
independent variable absclssa 111 such that a 
realization of lhe nmdom variable wilJ tukc up a 
value lower thun m with 50% probability or a value 
higher than III with 50% probability ugain. In other 
words. the median 111 splits up our probability 
density in exm;tly two equully probable parls. Since 
the probability of occurrence of the Hl11UOm event 
equals the urea under its density curve (i.c. the 
definite integral under its density curve) then the 
median m (uf the lognormal distribution. in this 
case) is defined as the integral upper limit m: 

1
m . 1 

.frrr i); <t",,,,· (r)t!r -:; o , 
(J45) 

Upon replacing (1 ]::\), thi.s becomes 

r"3 ] 
Jo ~. ~Ci·e 2 

(146) 

In order to find m, we may not differentiate (]46) 
with respect to m, since the "precise" factor Y2 on the 
right would then disappear into a zero. On the 
conlrary. we may lry lo perform thc obvious 
substitulion 

(147) 

into the integral (t 46) to reduce it to the fol1owing 
integral (R5) dctining the error function crf(z). Then. 
after a few reductions that we leave to the reader as 
an exercise, the full equation (t 45). defining the 
median, is turned into the corresponding equation 
involving the error function er/(x) as detlned by (85): 

UNCLASSIFIED/trait arrIeIAt tt3! 8'ttl 



UNCLASSIFIED/ ,P." .ffI81,'" .,lii a'lIs'! 

ET _Distance between any two neighboring ET 
Random variable Civilizations in Galaxy assuming they are UNIFORMLY 

distributed throughout the whole Galaxy volume. 
Prohabilitv distribution Unnamed (Paul Davies suggested "Maccone distribution") 

'I ' " 
Probability density function 

t.ln n Rt; •• h',\hC;<I.'i"" 1-.uJ 

l ) 3 I 2(T! 

, ET_Di~talHc(r =-. J2; ·e 
r _lr (J" 

(Defining the positive numeric constant C) C = ~6 R~It'a\\. "OaI£I.\Y :::: 28845 light yeal'S 

Ji (i~ 
-

Mean value (Ef_Dislance) = C e 3 e 18 

VH1'LanCe 
2 ..:! -.,!I l) t) 2 ~(~ 

O'ET Distun<e = C e' e e -I) 
'[":: Standard deviation 

_P f'r (T-

_ 3,18 I,) 
O"ET Di~I"nlL~ - C e £ e-1 

All the mmncnts, i.e. k-lh momenl 
1;)1 k~'Cf~ 

(ET_Distancel;) = Ck e :3 e 18 

.u (T~ - -
Mode (= abscissa of the probability density function I~mdc == rp"ak = C e 3 e ') 

peak) 

Peak Value of JET_Distance (1') = 

Value of the Mode Peak j' 3 
,II 0-) 

==, ET_Dislt.mcc (/~ll'dc) = c.,J2; (]' . e 3 . c.~ lR 

Median (= fifty-fifty probabihty value for 
.u 

median = m = Ce 3 
ET Distance) 

( a' 5.' cT~ \ 

e-J.1 e:! -3 e III 
! 2e· J 

Skewness ~ = ;\ ~ 

(K4h ( 'u' 
'sIT! 41'T~ I'T~ ou'J' C~ e () -4e ') -3e <) + 12 e :; -6e <) 

K". 
4 (T2 Cf1 2 (}'1 

Kurtosis 
- - -

(KJ2 = e 
q +2e 3 +3e I.) -6 

Expression of jl in tenns of the lower (Ui) and upper _ ±{y\_ ±bi [1n(b;)-1]-a/[ln(aJ-I] 
(bi) limits of the Drake uniform input random 

11- ij-

variables Di 
i-l i-I bi - at 

Expression of (fl in terms of the 100\'cr (a,) and upper 
7 7 all; [In(b; )-In(CI,)J2 

? L'J L 
(b;) limit~ of the Drake uniform input random 

cr = O"t,. = 1 
(hi -aJl 

variables D; 
i-I i-I 

Table 3. Summary of the propertie~ of the probability distribution that applies to the random variable ET _Distance 
yielding the (average) di~tance hetween any two neighhoring communicating civilizations in the Galaxy. 
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r 
[C:'] ] In -~ -p 

~+e}',. mo' = ~ 
2 . /2a 2 

\ 

nf 
err = 0 

In[C:]_ J.l] 

. .J2u 

( 14R) 

(149) 

This is Ihe median of the logllormal distribution of 
N. 11, other word:;, Ihis is tire Ilumber of 
ExtraTerrestrial civilizations hl the Galaxy such 
that, with 50% probability the actual value of N will 
be lower than this median, alld with 50% probability 
it will be higher. 
In conclusion, we feel useful to summarize all the 
equations that we derived about the random va.riable 
N in the following Table 2. 

NUMERICAL EXAlVIPLE OF THE 
ET_llISTANCE DISTRIBUTION 

Since from the definition (147) one obviously has 
erf(O)=O, (149) yields 

In this section we provide a numerical 
example of the analytic calculations carried on so 
far. 

whence finally 

[ C:~ ] 
In"j- -p =0 

.fiu 

Ji 

mediml =J1l = Ce :~ . 

( 150) 

(151 ) 

Consider the Drake Equation values reported 
in Table 1. Then, the graph of the corresponding 
prohability density function of the nearest 
ET_Distance, lET Di!\(i\n{C(r), is shown in Figure 6. 

D1STA:-.JCE OF NEAREST ET _ClVlUZA nON 

500 1000 1500 3000 
ET _Distan~e from Earth (light years) 

Figure 6. This is the probability of finding the nearest ExtraTen'estrial Civilization at the distance r from 
Earth (in light year~) if the value~ assumed in the Drake Equation are those shown in Table I. The relevant 
probability density function lET Di~wnlC(r) is given by equation (I ] 3). Its mode (peak abscissa) equals 1933 

light years. but its mean value is higher since the curve has a high tail on the right: the mean value equals in 
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NElVS FOR 
SETI, inasmuch as the Ilearest ET CivilizatiOit might lie at jw.t 1 sigma = 2670-1309 = 1361 light years 
from us. 

From Figure 6, we see that the probubility of 
finding ExtraTelTestrials is practically zero up to a 
dist~mce of about 500 light years from Earth. Then 
it starts increasing with the increasing distance 
from Earth, and reaches its maximum at 

_l!... (j~ 

r,11)(h:: == ',"'Ilk =Ce J e tJ :::::1933 light years. (J52) 

This ;s tile llJlOST LIKELY VAI..,UE of tile 
distance at which we can expect to find the 
nearest ExtraTerrestrial civilization. 

It is not, however, the mean value of the 
probability distribution (113) for fr:CDi:-.limw(I'). In 

fact, the probability density (113) has an infinite 
tail on the right, as dearly shown in Figure 6. and 
hence its me~m v,due must be higher than its pe,lk 
value. As given by (119), its mean value is 

~ 

j.I rr 

"1/1'(//1_ \'(rl!{(' = C e 3 e 1 x ~ 2670 light years. (153) 

This is tile MEAN (value of tile) DISTANCE 
at which we can expect to find ExtraTerrestrials. 

After having found the above two distances (1933 
and 2670 light years, respectively), the next natural 
question that arises is: "what is the range, forth and 
back ,m.mnd the mean value of the distance. within 
which we cun expect to find ExtraTerrestrials with 
'"the highest hopes ?," The answer to this question 
is given by the notion of standard deviation. that 
we aJready found to be gi ven by ( ] 23) 

iT CL' I; e7; r;;e~' I ~ 1309 l)'~~ht yC~lI"".". .... E'J:"Distanll: = ,,,' V e 9" - I ~ - E ..'> 

... (154) 

More precisely, this is the so called I-sigma 
(distance) level. Probability theory then sho\vs that 
the nearest ExtraTerrestrial civilization is expected 
to be located within this range, i.e. within the two 
distances of (2670-] 309) = ] 36] Jight years and 
(2670+ 1309) = 3979 light years, with probability 
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glven by the integral of fET_Disl:lIIIC(r) taken in 

between these two lower and upper limits, that is: 

J.
3979Iigll1YCllr~ 

~. lET DiSllllllL!{r}dr z 0.75 = 75% (155) 
b6lhghtyc:m 

In plain wurds: with 75% probability. the nearest 
ExtmTerrestrial civilization is located in between 
the distances of 1361 and 3979 light years from us, 
having assumed the input values to the Drake 
Equ,ltiun given by Table I. If we ch~mge those 
input values. then ,,11 the numbers clmnge 'lgain. 

9. THE "DATA E~RICH)'IE~T 
PRI~CIPLE" AS THE BEST CL T 
CONSEQUENCE UPON THE 
STATISTICAL DRAKE EQUATION 
(ANY NUl\1BER OF FACTORS 
ALLOWED) 

As a fitting climax to aU the statistical 
equations developed so far, let us now state our 
"DATA ENRICHiWENT PRINCIPLE," It simply states that 
"The Higher the lVumber of Factors ill the 

Statistical Drake equation, The Better .• " 

Put in this simple way, it simply looks like a 
new way of saying that the CLT lets the random 
variable Y approach the norma) distribution \vhen 
the number of terms in the sum (4) approaches 
infinity. And this is the c~\se, indeed. However. our 
"Data Enrichment Principle" has more profound 
methodological consequences that we cannot 
explain now, but hope to describe more precisely 
in one 01' more coming papers. 

CONCLUSIONS 

We have sought to extend the du!\sical Drake 
equation to let it encompass Statistics and 
Probability. 

Thi~ approach appear~ to pave the way to 

future. more profound investig~\tiolls intended not 
only to associate "error bars" to each factor in the 
Drake equation, but especially to increase the 
number of factors themselves. ]n fact. this seems to 
be the only way to incorporate into the Drake 

UNClASSIFIEDllrefl8rrI21J!t[ b!lE O"EI 
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equation more and more new scientific information 
as soon as it becomes available. In the long run, 
the Statistical Drake equation might just become a 
huge computer code. growing up in size and 
especial1y in the depth of the scientific information 
it contained. It would thus be Humanity's first 
"Encyclopaedia GaJactica." 

Unfortunately, to extend the Drake equation to 
Statistics, it was necessary to LIse a mathematical 
apparatus that is more sophisticated than just the 
simple product of seven numbers. 

When this author had the honour ~md privilege 
to present his results at the SETI Institute on April 
II th, 2008, in front of an audience also including 
Professor Frank Drake, he fe1t he had to add these 
word~: "My apologies, Prank, for disrupting the 
beautiful simplicity of your equation," 
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