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Xy (\) P

where (25) was already uscd in the last step. By
virtue of the uniform probability density function
(10) and of (26), the general transformation law (9)
finally yiclds

gl0== and glq()=

Fio ) I e
O o @

e

In other words, the requested pdf of Yiis

F)=— i=1..7) nle)<y<in(p)] @)
! bf—(tl

Probabitity density functions of the natural lags of
all the uniformly distributed Drake random
variahles D; .

This is indeed a positive function of ¥ over the
interval ln(ai )_<_ y¥< ln(b,), as for every pdt, and it 1s
casy o sce that its normalization condition is
fulfilled:

falpr | mp ) ¥ b} le,)
j Fy )y j L ay=E ¢ =1
Infer, ) hl[u,-){]f —H; bi —d{i;

..(29)

Next we want to find the meuan value and
standard deviation of ¥, , since these play a crucial
role for future developments. The mean value <Y ,-) is

given by

Inf; ) In{h) y. o
Y; :j‘ - fy dvz.( - dy
( > ln(u,}) fy’ ( ) } nlo, } o, —at;

_b [ln(bi )- l] ~; [lu(a,- - 1] ‘

i); “C'I'r'

30

This is thus the mean value of the natural log of afl
the uniformly distributed Drake random variables
D

[ln(b )- 1]— a,-[ln(a{v )- 1]

b —u,

(¥i)={n(n, )) =

. (31

36

In order 1o find the variance also, we must first
compule the mean value of the square of ¥, that is

u s}, T SR
(Y;'>=jl. ‘.v‘-,fxb')d.v=j‘1. =" gy

ma, ) n{u, } bé— -

[In {b) ’?ln(b) ]—a [ln a‘ - 2nfy; +2]

b, —q

...{32)

The variance of Yi = In(i};) is now given by (32)
minus the square of {31), that, after a few reductions,
vield:

| 4, [in{y, ) {e, )]

(b - )

(33)

a2 —
Ty, = Cinin,) =

Whence the corresponding standard deviation

b (b, )= m{e, )]
O'rl_:{)’m(”’_}:JI_(I,M[H(),) n{g; )] o

([" Y )2

Let us now turn to another topic: the use of
Fouarier transforms, that, in probability theory, arc
called “characteristic functions,” Following again the
notations of Papoulis (ref. [5]) we call “characteristic
function™, ¢>K(g“) , of an assigned probability

distribution ¥; . the Fourier transform of the relevant
probability density function, that is (with j=+—1)

g

Oy ()= e’ py ()| (35)

-3

The use of characteristic functions simplifics things
greatly. TFor instance, the calenlation of all moments
of a known pdf becomes trivial if the relevant
characteristic  function  is  known, and greatly
simplificd also arc the proofs of important theorems
of statistics, like the Central Limit Theorem that we
will use in Section 4. Another important result is that
the characteristic function of the sum of a finile
number of independent random variables is simply
given by the product of the corresponding
characteristic functions. This is just the case we are
facing in the Statistical Drake equation (3) and so we
are now led to find the characteristic function of the
random variable ¥; , i.e.

In{h} .. =)
fDY{C’) J (,jx.\!( J‘In A e dy

nfa; ) b —a,
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b, —a; Jinla;) Tob—a; 1444

L)[I+j;_: Yinls) _e(x—j; e, } PARY S I 4

= = ! - (36)

& —a )0+ j2) (b,

Thus, the characteristic function of the nafural log
of the Drake uniform random variable D;ix given by

—a; 1+ j¢)

- i
bl J __a’_“‘l’:

3.3 STEFP 7: FINDING THE
PROBABILITY DENSITY
FUNCTION OF N, BUT ONLY
NUMERICALLY NOT
ANALYTICALLY

Having found the characteristic  functions
Dy () of e logs of the scven input random
variables [; . we can now immediately find the
characteristic function of the random variable ¥ =
In(N) defined by (5). In fact, by vire of (4), of the
well-known Fourier transtorm property stating that
“the Fourier transforin of a convolution is the product
of the Foucier transforms™, and of (37), it
immediately follows that ¢, ( “) cquals the product

of the seven @ (5 ):

7
b[+]h

:)=fId> | (ot oo

e b -a, (I+ ;:.)

__“1-6-1».

(38)

The next step is to énvert this Fourier transform in
order 1o get the probability density funclion of the
random variable Y = In(V). In other words, we must
compute the following inverse Fourier transtorm

. . 3
.fy(_y)zg;; e 'lb'(IJ},(g)d{;'

|
L]

1P

_5._.[2 Ju ¥ H(Dy(é’)]dé—
—4% L /-1

_ 1 “ —.;‘;,'.\-- 7 ’ll;_ a"’“

37

S I s S v
t

()= m » (37

This author regrets that he was unable 1o compuie the
last integral analytically. He had to compute it
numerically for the particular values of the 14 «; and
& that follow from Table | and equations {7. The
result was the probability density function for ¥ =
In(N) plotted in the following Figure 2.

o 4PROB. DENSITY FUNCTION OF Y=In{N)

03 >
/
0.l //

U() I 23 4 5 6 7 8 9 101112
Indlependent vaviable Y = In(N)

0.2

Probability density functgon of Y

Figure 2. Probability density function of ¥ = In(N)
computed numerically by virtue of the integral (39).
The two “funny gaps™ in the curve are due to the
numeric limitations in the MathCad numeric solver
that the author used for this numeric computation.

We are now just one mwore step from tinding the
probability density of N, the npumber of
ExtraTerrestrial Civilizations in the Galaxy predicted
by owr Statistical Drake cquation (3). The point here
is to transter from the probability density function of
Y to that of N, knowing that ¥ = In(¥), or
alternatively, that N=exp(Y), as stated by (6). We
must thus resort to the transformation law of random
variables (9) by sctting

y=glx)=e". (40)
This, upon inversion, yields the single root
xi{y)=x(¥)=In(x). (41

On the other hand, ditferentiating (40) one gets

glr)=e" and g()=e"=y @)
where (41) was already used in the last step. The
general transformation law (9) tinally yields

fy (‘) fi (1 (}

o] R0
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This  probability density function £, (x) was
computed numerically by using (43) and the numcric
curve given by (39). and the result is shown in Figure
3

_JPROBABILITY DENSITY FUNCTION OF N

7 410

é g \

53

5 -t ‘\.

7 210 Ny

£ o

8 .5 B

< i-10 B
£

& 0

0 1000 2000 3000 4000
N = Number of ET Civilizations in Galaxy

Figure 3. The numeric (and nol analytic) probubility
density function curve £ (1) of the number N of
ExtraTerrestrial Civilizations in the Galaxy according
to the Statistical Drake cquation (3). We sce that the
curve peak (L.c. the mode) is very close to low valucs
of N, but the tail on the right is bigh, meaning that the
resulting mean  value (N ) is of the order of

thousands.

We now want to compute the mean value (N )
of the probability density (43). Clearly, it is given by

r

(iV> = J. ¥ f:\’ (.")‘{}‘ . (44)
0

This integral oo was computed numerically, and the
result was a perfect mateh with N=3500 of (22), that
is

(N ) = 3499.99880 177500 +0.00000012 49146861 (45)

Note that this result was computed numerically in the
complex domain because of the Fourier transforms,
and that the real part is virtually 3500 (as expected)
while the imaginary part is virtually zero because of
the rounding crrors. So, this result is excellent, and
proves that the theory presented so far s
mathematically correct.

Finally we want to consider the standard
deviation. This also had to be computed numerically,

resulting in

oy = 395342910 143389 + 0.00000003 28000581 . (46)

38

This standard deviation, higher than the mean value,
implics that N might range in between 0 and 7433,

This completes our study of the probability
density function of N if the seven uniform Drake
input randam variable D; have the mean values and
standard deviations listed in Table 1.

We conclude that, unfortunately, ever under the
simplifying assumptions that the Di be uniformly
distributed, if is impossible to solve the full problem
analytically, since all calculations bevond equation
(38} had fo be performed numerically.

This is no good.

Shall we thus loose faith, and declare “impossible™
the task of finding an analytic expression for the
probability density function fy (\,) ?

Rather surprisingly. the answer is “no™., and there
is indeed a way out of this dead-cnd, as we shall see
in the next seetion.

5. THE CENTRAL LIMIT THEOREM (CLT)
OF STATISTICS

Indeed there is a good. approximating analytical
expression for fy (_\-‘) , and this is the following
lognormal probability density function

(ofspaY

e 7 (rzo| ¢
2ro

. i
Falrnpo)= =

To understand why, we must resort to what is
perhaps the most beautiful theorem of Statistics:
the Central Limit Theorem (abbreviated CLT).
Hislorically, the CLT was in fact proven [irst in
1901 by the Russian mathemaliciun Alexandr
Lyapunov (1857-1918), and later (1920} by the
Finnish mathematician Jar! Waldemar Lindeberg
(1876-1932) wunder weaker conditions. These
conditions are certainly fulfilled in the context of
the Drake cquation because of the “teality™ of the
astronomy, biology and sociology involved with it,
and we are not going to discuss this point any
further here. A good, synthetic description of the
Central Limit Theorem (CLT) of Statistics is found
at the Wikipedia site (ref. [7]) to which the reader
is referred for more details, such as the equations
[or the Lyapunov and the Lindeberg conditions,
making the theorem “rigorously™ valid.

UNCLASSIFIED/ A-@R-0FrREhil-UeE-ahir



UNCLASSIFIED/ / FOR-OFFEghiir-t6E-0hiini-

Put in loose terms, the CLY states that, if one
has a sum of random variables even NOT
identically distributed, thix sum tends to a normal
distribution when the number of terms making up
the sum tends to infinity. Alve, the normal
distribution mean value ix the sum uof the mean
values of the addend random variables, and the
normal distribution varignce is the sum of the
variances of the addend random variables.

Let us now write down the equations of the CL.T
in the form needed to apply it to our Statistical Drake
equation (3). The idea is to apply the CLT to the sum
of randem variables given by (4) and (5) whatever
their probability dixtributions can possibly be. In
other words, the CLT applicd to the Statistical Drake
cquation (3) lcads immediately to the following threc
cquations:
1) The sum of the (arbitrarily distributed)
independent random variables ¥, makes up
the new random variable Y.

2) The sum ol their mean values makes up (ht.
new mean value of Y.

3) The sum of (heir variunces makes up the

new variance ol ¥,

In equations:
i-1

n=34n) @
-l

2=t
=

This completes our synthetic description of the CLT
for sums of random variables.

6. THE LOGNORMAL DISTRIBTION IS
THE DISTRIBUTION OF THE NUMBER
N OF EXTRATERRESTRIAL

CIVILIZATIONS IN THE GALAXY

The CLT may of course be extended to products
of random variables upon taking the logs of both
sides, just as we did in equation (3). It then follows
thar the exponent random variable, like Y in (6),
tends to a normal random variable, and, as a
conseguence, it follows that the base random
variable, like N in (6), tends to a logrormal random
variable,

39

To understand this fact better in mathematical
terms consider again of the transformation law (9) of
random variables. The question is: what is the
probability density tunction of the random variable N
in equation (6), that is, what 1s the probability density
function of the lognormal distribution? To find it, set

y=glx)=e". (49)
This, upon inversion, yiclds the single root
xi{¥)=a(y)=m(y). (50)

On the other hand, differentiating (49) one gets

g{x)=¢' and g{x(v)=e Ml oy (51

where (50) was already used in the last step. The
general transformation law (9) finally yields

\ fx(f\ _ n
Ialy Zk&bj-wﬁ(» (52)

Therefore, replacing the probability density on the
right by virtue of the well-known normal {(or
Gaussian) distribution given by equation (7), the
lognormal distribution of equation (47) is found, and
the derivation of the lognormal distribution from the
normal distribution is proved.

In view of future calculations, it is also useful to
point out the so-called “Gaussian integral”, that is:

BS
J. e e ux= \/i;j'e““‘ , A>0, B=rcal.|(33)

This follows immediately from the normalization
condition of the Gaussian (7). that is

k'S l "
j' e 2 gr=1, (54)

) ora

just upon expanding the square at the exponent and
making the two replacemems (we skip all steps})

(55)
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In the sequel of this paper we shall denote the
independent variable of the lognormal distribution
(47) by a lower case letter n to remind the reader that
corresponding random variable N is the positive
integer number of ExtraTerrestrial Civilizations in
the Galaxy. In other words, 7 will be treated as a
positive real nomber in all calculations w follow
because it is a “large” number (i.e. a continuous
variable) compared to the only civilization that we
know of, i.e. ourselves, In conclusion, frem now on
tie lognormal probability density function of N will
be writien as

{ {in{n )—;i]"'
Folo)= 2w gzo| 66

= e
n ﬂ(r

Having so said. we now turn to the statistical
properties of the lognormal distribution (35), ie. to
the statistical properties that describe the number &
of ExtraTerrestrial Civilizations in the Galaxy.

Our first goal is to prove an equation yielding all
the moments of the lognormal distribution (56), that

is, for every non-negative integer £~ 0, 1, 2, ... one
has
2
{N" ) =g 2| 57)

The relevant proof starts with the definition of the &-
th moment

One then transforms the above integral by

virtue of the substitution

In[n] =z. (58
The new integral in z is then seen to
reduce 1o the Gaussian integral (53)

{we skip all sweps here) and (57)
follows

40

Upon setting k=0 into (56), the
normalization condition for £, (n) follows

J:f,,, (n)du =1, (59)

Upon setting k=1 into (56), the important
mean value of the random vartable N is found

¥

o

(Ny=e“e? | (60)

Upon sctting & =2 into (56), the mean value
of the squarce of the random variable & is found

<N:>=(?Z" (.’2": . ®hH

The variance of N now follows from the last two
formulae:

of =&k e (e"’: -1 62)

The square root of this is the important standard
deviation formula for the N random variable

e’ —11 {63)

The third moment is obtained upon setting
k=3 mto (56)

(U

<.’V3>=£’3ﬂ€26 . {64}

Finally, upon setting & =4, the fourth moment
of N is found

(N*)=e et (65)

Our next goal is to find the cumulants of ¥. In

principle. we could compute all the cumulants

from the generic i-th moment g, by virtue of the
recursion formula (see ref. [8])

o i-t ‘
K; =, —Z (k J Kyt (66)
PN
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In practice, however, here we shall confine
ourselves to the computation of the first four
cumulants only because they only. are required to
find the skewness and kurtosis of the distribution.
Then, the first four cumulants in terms of the first
{our moments read:

K, =P‘|
K'_:‘ -_—-'l-l_y_ “K,‘ \ (67)
K:‘ =,ll_\ _3K| K:g_ "‘K].
K,=p -4K Ki—3K; -6K, K} - K}
These equations yicld, respectively:
d"\
K =e¥e?, (68)
K, =c* o™ (a“" - 1). (69)
(J 0-:
Ky=eWe? | {70)

Ky = £ (e”i —l)’ («3": +3627 4607 +6) an

From these we derive the skewness

K
3 =

(x4)2

. it it
_{’d +2) R (. . N : - U2

l_«"_ ——l) («3"' +3¢*7 +6¢” +6)
and the kurtosis
Ks b 03 13077 6. (73)

Finally, we want to [ind the mode ol the
lognormal probability densily function, ie. the
abscissa of its peak. Te do so, we must first
compute the derivative of the probability density
function f, (n) of equation (56), and then set it
cqual to zera. This derivative is actually the
derivative of the ratio of two lunctions of a, as it
plainly appears from (57). Thus, let us set lor a
moment

41

2
E{n)= (o] )* ["]“f’ ) (74)

27
where “E™  stands  for “cxponent.” Upon

differentiating this, one gets

1

20

Ev(n)= 5 -Z(In[n]-—‘u}i—. (75}

But the lognormal probability density function (56),
by virtue of {74), now reads

1 e-E(I})

fV (") = \EO’ ' " (76)

So that its derivative is

—¢ E(")E'(n)'n —1.¢ EW)

dr N \[2_}1_0" n

d/ET Dismncc.(") 1

et -
I E('-[bj(u)-n-kl]- amn
s/%()‘ n-

Setting this derivative equal to zero means setting
E{n)n+1=0 (78)
That is, upon replacing (75).

._L)_ . (ln[n] - /,{)+ 1=0. (79)
ol

Rearranging, this becomes

In[n]-p+6% =0 80y
and finally

3
— _ -G
Myodge = Hpey =€ € 81

This is the most likely number of ExtraTerrestrial
Civilizations in the Galaxy.

How likely? To find the value of the prohability
density function fy(#) corresponding fo this
value of the mode, we must obviously replace (81)
into (56). After a few rearrangements, one then
gets
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. L w5
Ty Pogye) = 7_2—_-‘— e e 2 (82)
TG

This is “how likely” the most likely number of
ExtraTerrestrial Civilizations in the Galaxy is, i.e.
it is the peak height in the lognormal probability
density function f, (n).

Next to the mode, the median m (ref. [9]) is one
more statistical oumber used (o characterize any
probability  distribution. 1t is detined as the
indcpendent  variable  abscissa o such  that a
realization of the random variable will take up a
value lower than m with 50% probability or a value
higher than s with 50% probability again. In other
words, the median s splits up our probability
density in exactly twe equally probable parts. Since
the probability of occurrence of the random event
cquals the arca under its density curve (ic. the
definite integral under its deasity curve) then the
median m (of the lognormal distribution, in this
case) Is defined as the integral upper limit a1

Rt n{ ¥V

1 157 _

m] 25 1
[ Fuln)edn = J:, ; 5. 8

In order to find #1, we may not differentiate (83) with
respect to me, sinee the “precise™ factor ¥ on the
right would then disappear into a zero. On the
contrary, wc may try to perform the obvious
substitution

SRR 1) ) (84)

207 N

into the integral (83) w reduce it w the following
integral defining the crror function crf(z)

erf (x)= j;je‘f:d: (85)
“ 0

Then, after a {ew reductions that we skip for the sake
of brevity, the full equation (83) is turned into

1 m{m - M I
+ — (86)
”( 2o ] 2
that 1s
ln(m
erf 0 (87
{ V2o ]

Since from the definition (85) one obviously has
erf(0)=0, (87) becomes

In (m) #_o (88)

e

whence finally

[edian =m =] 59

This is the median of the lognormal distribution of
N. In other wards, this is the number aof
ExtraTerrestrial civilizations in the Galaxy such
that, with 50% probability the actual vaine of N will
be lower than this median, and with 50% probability
it will be higher.

In conclusion, we feel useful to summarize all the
equations that we derived about the random variable
N in the following Table 2.

Random variable

N = number of communicating ET civilizations in Galaxy

Probability distribution

Lognormal

Probability density function

I _UI\{IE}-.H)E
e @ (n20)

]
f‘\'(”) ; ﬂa_

G,J
Mean value (N ) =pte
Variance —e"" o )
Standard deviation oy=e¢"¢? Ve

42
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All the momenis, 1e. k-th moment

7
<Nk>=ek'" e 2

Mouode (= abscissa of the Jognormal peak)

- T
Aaode = npcnk =e ¢

Value of the Maode Peak

D_P
! Y

fr\"(nlmdc}:Tz;;‘e e

Median (= fifty-fifty probability value for V)

median = m=e*

Skewness

P =6y ‘_,—30‘:

[ s A sl : 3
(e" -1) (e-“’ +3e%% +6e +6}

Kurtosis

Expression of zin terms of the lower () and upper

($.) limits of the Drake uniform inpul random
variables D;

U= i(y i B lin{b, )~ 1]-a,[n(a,}-1]

b; —a;

Expression of o’ in terms of the Jower {c,y and upper
{b:) limits of the Drake uniform input random
variables D;

I i(y; _ i] _ab (b, )-In(a, )}

("’i 4 )2

Table 2. Summary of the properties of the lognormal distribution that applies to the random varisble N = number of

ET communicating civilizations in the Galaxy.

We want to complete this section about the
lognormal  probability density function (56) by
finding out its nameric values tor the inputs to the
Statistical Drake equation (3) listed in Table 1.

According to the CLT, the mean value g to be
inserted into the lognormal density (56) is given
(according to the second equation {48)) by the sum of
all the mean values (Y,- ) , that is. by virtue of (31), by:

si= i<yi> _ ibr' [h‘(bi)_ 1]‘“:‘[‘“("‘()" ‘] o)

b —a,

i=|

Upon replucing the 14 g; and b, listed in Table 1
into (90), the following numeric mean value y is
found

o)

Similarly, to get the numeric variance & one
must resort to the last of equations {(48) and to (33):

ol S

7 7 2
ol = Zo. - ;] _ ab; [m(bi)_ 1’:(‘-‘; )] 92)

b —a; )

43

yiclding the following rumeric variance ¢* 1o be
inserted into the lognormal pdf (56)

o? = 1.938725 93)

whence the niemeric standard deviation

o= 1.392381 | (94)

Upon replacing these two numeric values (84)
and- (86) into the lognormal pdf (36), the latter is
perfectly determined. It is plotted in Figure 4
hereafter as the thin curve.

In other words, Figure 4 shows the lognormeal
distribution for the number N of ExtraTerrestrial
Civilizations in the Galaxy derived from the Central
Limit Theorem as applied to the Drake equation
(with the input data tisted in Table 1) .

We now like to point out the most important
statistical propertics of this lognormal pdf:

1) Mean Value of N. This is given by cquation (60)
with gzand o given by (91) and (94), respectively:
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[

(Ny=e¢"e? =4589.559 | (95)

In other words, there are 4590 ET Civilizations in
the Galaxy according the Central Limit Theorem of
Statistics with the inputs of Table 1. This number
4590 is HIGHER than the 3500 foreseen by the
classical Drake equation working with sheer
numbers only, rather than with probability
distributions. Thus equation (93) IS GOOD FOR
NEWS FOR SETE, since it shows that the expected
rumber of ETs is HIGHER with an adequate
statistical freatment than just with the too simple
Drake sheer numbers of (1),

2) Variance of N. The variance of the lognormal
distribution is given by (62) and turns out to be a
huge number:

ol = e [T i)mimnes . (96)

3) Standard deviation of N. The standard deviation
of the lognormal distribution is given by (63) and
turns out 1o be:

>

o

oy =ete tVe® —1=11195 | (97)

Again, this is GOOD NEWS FOR SETIL In fact,
such a high standard deviation means that N may
range from very low values (zero, theoretically, and

one since Humanity exists} up to tens of thousands
{4590+11195=15785 is (95)+{97)).

4) Mode of N. The mode (= peak abscissa) of the
lognormal distoibution of N is given by (81). and has
a surprisingly low numeric value:

A

= Y’ - ,
Rpode & np;:uk =€ ¢ =250 | (95:)

This 15 well shown in Figure 4: the mode peak is very
pronounced and close to the origin, but the right tail
is high. and this means that the mean value of the
distribution is much higher than the mode:
4590250,

44

5) Median of N. The median (= fifty-fifty abscissa,
splitting the pdl in two exactly cqui-probable pants)
of the lognormal distribution of N is given by (89),
and has the numeric value:

]"mudi;m =c" = 1740 99

In words, assuming the input values listed in Table 1,
we have cxactly a 509% probability that the actual
value of N Is lower than 1740, and 50% tha 1 is
higher than 1740.

7. COMPARING THE CLT RESULTS
WITH THE NON-CL.T RESULTS

The time is now ripe to compare the CLT-
based results about the lognormal distribution of A,
just described in Section 5, against the Non-CLT-
based results obtained numerically in Section 3.3

To do se in a simple. visual way, let us plot on

the same diagram two curves:

1) The numeric curves appearing in Figure 2
and oblained alter luborious Fourier
translorm  calculations in the complex
domain, and

2) The lognormal distribution (56) with
numeric # and o given by (91) and (94)
respectively.

We see that the two curves are virtually coincident
for values of N larger than 1500. Thiv v a
consequence of the law of large numbers, of which
the CLT is just one of the many facets.

Similurly it happens for nutural log of N, i.c. the
random variable ¥ of (5), that is plotted in Figure 5
both in ils normal curve version (thin curve) and in
its mumeric version, obtained via Fourier transforms
and already shown in Figure 2.

The conclusion is simple: from now on we shall
discard forever the numeric calculations and we’ll
stick only to the equations derived by virtue of the
CLT, ie to the lognormal (56) and il
conseguences.
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- PROBABILITY DENSITY FUNCTION OIF N
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Prob. density function of N
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N = Number of ET Civilizations in Galaxy

Figure 4. Compuring the two probability density functions of the random variable N found:
1) At the end of Scetion 3.3, in a purcly numeric way and without resorting to the CLT at all (thick curve) und
2) Analytically by using the CLT and the relevant lognormal approximation (thin curve).

PROBARILITY DENSITY FUNCTION QF Y=ln(N)

05

> 04 7~

/

5 03

/ {

N 62

{nd

3

=]

£ o /

) | [ \\
O L

o 0 I 2 3 4 5 6 7 8 9 10 11 12

Independent variable ¥ = In{N)

Figure 5. Comparing the two probability density functions of the random variable Y=In(N) found:
1) Althe end of Section 3.3, in a purely numeric way and withoul resorting (o the CLT at all (thick curve) and
2) Analytically by using the CLT and the relevant normal {Gaussian) approximation (thin Gaussian curve).

8. DISTANCE OF THE NEAREST
EXTRATERRESTRIAL CIVILIZATION
AS A PROBABILITY DISTRIBUTION

As un application of the Statistical Drake
Equatien developed in the previous sections of this
paper, we now want to consider the problem of
estimating the distance of the ExtraTerrestrial
Civilization nearest to us in the Galaxy. In all
Astrobiology textbooks (sce, for instance, ref. [10])
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and in several web sites, the solution to this
problem is reported with only slight differences in
the mathematical proofs among the various authors.
In the first of the coming two scctions {section 7.1)
we derive the cxpression for this “ET_Distance™
(as we like o denote it} in the classical, non-
probabilistic way: in other words, this is the
classical, deterministic derivation. In the second
section {7.2) we provide the probabilistic
derivation, arising from our Statistical Drake
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Equation, of the corresponding probability density
function fiy pigae(F) @ here r is the distance
hetween us and the ncarest ET  civilization
assumed as the independent variable of its own
probability density function. The ensuing seclions
provide more mathematical details about this
JET Distane (F) such as ils mean value, variance,
standard deviation, all central moments, maode,
median, cumulants, skewness and  Kurtosis.

CLASSICAL, NON-PROBABILISTIC
DERIVATION OF THE DISTANCE OF THE
NEAREST ET CIVILIZATION

Constder the Galactic Disk and assume that:

1) The diameter of lhe Galaxy is (about) 100,000
light years, (abbreviated ly) ie. its radius,
Rutuse - 18 about 30,000 1y.

2) The thickness of the Galactic Disk at halt-way
from its center, lig,.. 16 about 16,000 ly.

Then

3) The volume of the Galaxy may be
approximated as the volume of the
corresponding cylinder, i.e.

=aR, h (100)

Caleny

V{i{n’ iy

4) MNow consider the sphere around us having a
radivs r. The volume of such as sphere s

4 { EI'_Distance :
VO:N‘_ Sphere = 4—%' ’T(———_—é——_] { 101 )

In the last equation, we had to divide the distance
“ET_Distance”™ between oursclves and the ncarest
ET Civilizalion by 2 because we are now going to
make the unwarranted assumption that ell ET
Civilizations are equally space from each other in
the Galaxy! This is a crazy assumption, clearly,
and shonld be replaced by more scientifically-
grounded assumptions as soon as we know more
about our Galactic Neighbourhvod. At the moment,
however, this is the best guess that we can make,
and so we shall take it for granted, although we are
aware that this is weak point in the reasoning.

Having thus assumed thar ET Civilizations

are¢ UNIFORMLY SPACED IN THE GALAXY,
we can write down this proportion:
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VU{U’(:\T vf}m' Sphere
¥ o e 102
" ] {102}
That 1s, upon replacing both (100) and (101) into
(102):

4 T[( ET_Distange )3

5

ﬂRF.‘al‘u.v}'h - 3 \ 2 “0‘”
N ! ' ‘

The only unknown in the last equarion is
ET_Distance, and so we mav solve for it, thus
getting the:

(AVERAGE) DISTANCE BETWEEN ANY PAIR
OF NEIGHBOURING CIVILIZATIONS IN
THE GALAXY

YRl ¢

ET_Distance = —————= {104)

YN N

where the positive constant C is defined by

C =6 Rty P = 28845 light years| (105)

Equations (104) und (105) are the starting point [or
our Tfirst application of the Staustical Drake
equation, that we discuss in detail in the coming
sections of this paper.

PROBABILISTIC DERIVATION OF THE
PROBABILITY DENSITY FUNCTION FOR
ET_DISTANCE

The probability density function {pdf) yielding
the distance of the ET Civilization nearest to us in
the Galaxy and presented in this section, was
discovered by this author on September 5%, 2007.
He did not disclose it (o other scientists until the
SETI meeting run by the famous mathematicul
physicist and popular science author, Paul Davies,
at the “Beyond” Center of the University of
Arizona at Phoenix, on February 5-6-7-8, 2008.
This mecting was also attended by SETI Institute
experts Jill Tarter, Seth Shostak, Doug Vakoch,
Tom Pierson and others. During this author’s talk.,
Paul Davies suggested to call “the Maccone
distribution” the new probability density function
that yields the ET_Distance and is derived in this
section.
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Let us go back w equation (104). Since N is
now a random variable (obeying the lognormal
distribution), it follows that the ET_Distance must
be a random variable as well. Hence it must have
some unknown probability density function that
we denote by

vf[i'f_Dlsmmc (r} ( 106\’

where £ is the new independent variable of such a
probability distribution (it is denoted by r 10
remind the reader that it expresses the three-
dimensional radial distance separating us from the
nearest ET civilization in a full spherical symmetry
of the space around us).

The guestion then is: what is the unkoown
probability distribution (106) of the ET_Distance?
We can answer this question upon making the two
formal substitutions

N .,
{ e (107)

ET_distance - ¥

into the transformation law (8) for random
variables. As a consequence, { [(4) takes form

J':g(x):%:(;',\'—3< (1(}8)
N

In order to lind the unknown probability density
SeT Distane (7) » We now to apply the rule (9) to
(108). First, notice that {108), when inverted to
yield the various roots x,{y}, yields a single real
root only

x ()= % . (109)

Then, the summation in (9) reduces to one term
only.
Second, diiferentialing (108} one finds

g'{f\')=—%-.r . (110)

Thus, the relevant absolute value reads
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4

|g'{_z-)|='—§-x"3 =%x4‘ (111

Upon replacing (111) into (9), we then find

4
4 1773 -3 4
: c -, _Cic 2 C Yy
o )=5 :H 55 ==

¥
L (112)

:qu

This is the denominator of {9). The numcrator
simply is the lognormal probability density
function {56) where the old independent variable x
must now be re-written in terms of the new
independent variable ¥ by virtue of (109). By
doing so, we finally amrive at the new probability
density function fy (y)

¢t 1 T

3¢
i =—— e
! v ¢ iro
]
v

Rearranging and replacing y by #, the linal lorm
is:

3‘ 1 - 2470

fET__dislunw {r): ; -\{fﬁ;{— o '€ - 8 ( 11 3)

Now, just replace C in (113} by virtue of (105).
Then:

We have discovered the probability density
Junction yielding the probability of finding the
nearest ExtraTerrestrial Civilization in  the
Galaxy in the spherical shell between the
distances r and r+dr from Earth:

1

( Tor:, R h
;lnl” (mm\; (’“m‘l‘l_l"
¥ :

7

~

17

3
- (}’)=;"“—‘(’~
fFT_Dt. e r \/2—;;0_

(tid
holding for r=0.

STATISTICAL PROPERTIES OF THIS
DISTRIBUTION
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We now want to study this probability
distribution in detail. Qur next questions are:

1} What is its mean value?

2y What arc its variance and standard
deviation?

3) What are its moments to any higher order?

4}  What are its cumulants?

5) What are its skewness and kurtosis?

6) What are the coordinates of its peak, i.e.
the mode (peak abscissa) and its ordinate?

7Y What is its median?

The first three points in the list are all covered
by the following theorem: all the moments of (113)
are given by (here %k is the generic and non-
negative integer exponent, ie. & =0,1,2,3,..20)

(ET__DiSfﬂﬂcek> = JO e fET_Disl;mm (") dr

et r e (115)

To prove this result, one first transforms the above
integral by virtue of the substitution

3
]n[—(%—}:z. (116)
r

Then the new integral in z is then seen to reduce to
the known Gaussian integral (33) and, after several
reductions that we skip for the sake of brevity,
(115) follows from (53). In other words. we have
proven that

TR A

<ET_Distzmcc*)=Ck e *e B (117

Upon  selling k=0 into {117, the
normalization condition {01 fpr pjga0e(7) Tollows

Q-/ET Distane (rJ dr=1. (118)
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Upon sctting & =1 into (117), the important
mean value of the random variable ET_Distance
is found

)

i

(ET_Distance) =Ce *e'¥ | (119)

Upon setting & =2 into (117}, the mean value of
the sguare of the random variable ET_Distance is
found

- a

2

Ty e
<ET_Distance2 > =CYe ¥ ey . (12m

The variance of ET Distance now follows from
the last two formulae with a few reductions:

2

ORT pistane = <ET _Distance3> - {ET_Distance)

=+ ,
2 I a
g T4

e Mevley 21, zb

So, the variance of ET_Distance is

2 Pr R S A
FET Distane = Coe e e’ =1} (122}

The square rool of this is the important
standard deviation of the ET_Distance random
variable

L
Telsypy _

O‘ET_sttunm =Ce¢ ! 8 ( 123)

The third moment is obtained upon setting
k=3 into (117)

a”
2

(\’ET_Distance:;) —CF e (124)

Finally, upon setting k =4 into (117), the fourth
moment of ET_Distance 1s found

4 3 .
- M a”
<E’T_Distance4> —cte e (125)
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Our next goal is to find the cumulants of the
ET_Distance. In principle, we could compute all
the cumulants X, from the generic i-th moment

#, by virtue of the recursion formula (see ref. [8])

-l /.
: i1 .
K. =p - E (k—-]] Ky gty . (126)

k-1

In practice, however, here we shall confine
oursclves to the computation of the first four
cumulants because they only are required to find
the skewness and kurtosis of the distribution (113).
Then, the first four cumulants in terms of the first
four maments read:

K, = 4,
K2.=/'12_K]- (127)
Ky=py - 3K Ky - Ky
K, =11, 4K K,-3K; -6K, K} -K}.
These equations yield, respectively:
s
K =Ce Fel¥, (128)
IRV O
Ky=C%¢ Y e%]e® 11 (129)
cr_3 S ot
Ki=Cle™e? =3¢ 1206 | (130)
K,= (13D
$uf 8a io’ 40t o 2¢°

=C'e *le? -de¥ -3¢ Y +12¢7 —Ge ¢

From these we derive the skewness
K.

S

(k)2
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s Sg° a’
¢ "le? —3e!3 42¢60

_ \
- ]
W% e o )
C'le Y —4e¢ ¥ -3¢ % +12¢* —6e °
...{132)
and the kurtosis
K ic Ef. i
fo—e 9 +2eF 4309 -6, (I133)
(k. )

Next we wanl to {ind the mode of this
distribution. i.e. the abscissa of its peak. To do so,
we must first compute the derivative of the
probability density function fyy e (F) of (113),

and then set it equal o0 zero. This derivative is
actually the derivative of the ratio of two functions
of #, as its plainly appears from (113). Thus, let us
set for a moment

o
E(r) = . (139)

where “E” stands for “exponent,” Upon
differentiating,
one gets

=-’_,.{|n[i;}y}-(—3)l. (135)
o” ! l4 ¥

But the probability density function (113) now
reads

3 e_Em

fli'l'_l)ixlun«: (I‘) = '\/EO‘ . ( | 36)

So that its derivative is

d/ET Dixtnnm'(r) - 3

dr e r?
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_ 3 ‘—e"iﬁ"’[E;{r)‘r+l]‘ (137)
V2o e

Setting this derivative equal to zero means sctting
E{r)r+1=0 (138)

That is, upon replacing {135) into (138), we get
A (m[‘ : } pJ-(—3)l-r+l —0 (139)
o’ \ r ¥

Rearranging, this becomes

C;\ A
—3{‘[1{—-‘7}—;1J'+62 =0 (144
E

that is
c’ -
=3ln| = |+3u+o” =0 (141)
I
whence
L8 - S (142)
r 39
and finally
# Pa
Tyode = ek =Ce Se Y. (143)

This is the most likely ET_Distance from Earth.

How likely ?

To find the value of the probability density
function fiy 5igme (#) corresponding to this value
of the mode, we must obviously replace () into ().
After a few rearrangements, which we skip for the
sake of brevity, one gets

Peak Value of fl".’l'_l)i.\t.'mu:(r) = fl‘;'l’_l)islunu: O]mdu}

_u o’
e 1 8

(,«/ga

50

.(144)
This is the peak height in the pdf i) e (7}

Next to the mode, the median m (rel. {97} is one
more  statistical number osed to characterize any
probability  distribution. It is  defined as the
independent variable abscissa s such that a
realization of the random variable will take up a
value lower than m with 509 probability or a value
higher than m with 50% probability again. In other
words, the median a7 splits up our probability
density in exactly two equally probuble parts. Since
the probability of vccurrence of the random cvenl
cquals the arca under its density curve (i.c. lhe
definite integral under its density curve) then the
median m (of the lognormal distribution, in this
case) is defined as the integral upper limit m:

{145)

N |

411
In FET Dicame (F)elr =

Upon replacing (113), this becomes

r'q.__. , 207 =_1_, (146)
{ 2

In order to findm, we may not differentiate (146)
with respect to m, since the “precise” lactor ¥ on the
right would then disappear into a zero. On the
contrary, we¢ may Uy to perform the obvious
substitution

I s —— 220 (]47)

into the integral (146) to reduce it to the following
integral (85) defining the ervor function erf(z). Then,
after a4 fow reductions that we leave to the reader as
an cxercise, the full cquation (145). defining the
median, is turned into the corresponding cquation
involving the error function erf(x) as defined by (85):
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ET_Distance between any two neighboring ET

Random variable

Civilizations in Galaxy assuming they are UNIFORMLY
distributed throughout the whole Galaxy vohune.

2

Unnamed (Paul Davics suggested “Maccone distribution™)

Expression of zin terms of the lower () and upper

{}) limits of the Drake uniform input random
variables D;

Probability distribution
¢ .
OB ot
’ 1nl (A \‘ ety -1
.
Probability density function 3 1 . = .
fET Dunmc(’) - ¢ .
r ro
o o T ol b - 2 . .
{Drefining the positive numeric constant €) =-;‘f6 Ry Hgurar = 28845 light years
_x G:
Mean value (ET_Distunce)=Ce 3 ¢!®
> O': &
Variance 2 DA L I
aviance OEY pisne =& €7 €7 | €7~
Standard deviati e
Standard deviation =Ce 218y, Y
OkT Disne =C€ " €7 Ve ” —1
e
All the moments, 1.¢. k-th moment <EI'_Distance"") =Ckeg 3¢ 18
L _03
Mode (= abscissa of the probability density function e = Ty = Ce e ¥
peak)
Peak Value of fpy piyume (1) =
. ,u a
Value of the Mode Peak _ "
= fl 1 I)l\(.mu.{ |1nd<. - C-\/_ € ¢
i
Median (= fifty-fift ili value fo . .
. ( y-fifty  probability e for median =m=Ce 3
ET_Distance)
f_: '.:'(T'? d': AY
eHle? =38 12006
Skewness Ks _
L )
(K4)2 Hez S 107 o° 277 Y2
Clle? =d4¢9 =3¢ 9 +12¢3 —6¢ ¥
K 4gt gi 242
Kurtosis 4? =¢ 9 +2¢3 +3¢ 9 _g
(K, )
7
[in{h,)=1]-a,[n{a,)-1]

b —q;

ab[In(p,)-In(a, )

Expression of o in terms of the lower {e1) and upper
(b)) limits of the Drake uniform input random

J"ai)z

gy

variables D;

Summary of the properties of the probability distribution that applies to the random varizble ET_Distance

Table 3. § ¢ F : :
yielding the (average) distance hetween any two neighboring communicating civilizations in the Galaxy
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In) — |- u
1 m’ 1
—yerf 2 [=— (148}
2 Do 2
\
that is
cl
ln[ ’3:|—;1
n
erf =0 (149

V2o

Since from the definition (147) one obviously has
ert(0)=0, (149) yields

c’
In{?}—- u
——==0 (150)

V2o

whence finally

ra

This is the median of the logrormal distribution of
N. In other words, this is the number of
ExtraTerrestrial civilizations in the Galaxy such
that, with 50% probability the actual vatue of N will
be lower than this median, and with 50% probability
it will be higher.

In conclusion, we feel useful to summarize all the
equations that we derived about the random variable
N in the following Table 2.

NUMERICAL EXAMPLE OF THE
ET_DISTANCE DISTRIBUTION

In this section we provide a nuomerical
example of the analytic calculations carried on so
{ar.

Consider the Drake Equation values reported
in Table 1. Then, the graph of the corresponding
probability density function of the nearest
ET_Distance, fyr piawme(F) 18 shown in Figure 6.

median=m=Ce ¥ (151)
s a1 DISTANCE OF NEAREST ET_CIVILIZA TION
563107

o A5

[

£

£ g™ / N

g

5

z P =

§ 2250 \

=

a Lz \

0

0 500 1000 1300 2000

2500 3000 3500 4000 4500 5000

ET_Distance from Earth (light years)

Figure 6. This is the probability of finding the nearest ExtraTerrestrial Civilization at the distance r from
Earth (in light vears) if the values assumed in the Drake Equation are those shown in Table 1. The relevant
probability density function fir piaame(?) 18 given by equation (113). Its mode {(peak abscissa) cquals 1933
light years. but its mean value is higher since the curve has a high tail on the right: the mean value equals in
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fact 2670 light years. Finally, the standard deviation equals 1309 light years: THIS IS GOOD NEWS FOR
SETY, inasmuch as the nearest ET Civilization might lie ar just 1 sigma = 2670-1309 = 1361 light years

Srom us,

From Figure 6, we see that the probability of
finding ExtraTeirestrials is practically zero up to a
distance of about 500 light years from Earth. Then
it starts increasing with the increasing distance
from Earth, and reaches its maximum at

ﬁ 22

p =Ce ‘e 9 ~1933 light years| (152)

node = ¢ peak

This is the MOST LIKELY VALUE of the
distance at which we can expect to find the
nearest ExtraTerrestrial civilization.

It is not, however, the mean valve of the
probability distribution (113) for fiiy i () - In
tact, the probability density (113) has an infinite
tail on the right, as clearly shown in Figure 6, and
hence ity mean value must be higher than its peak
value. As given by (119), its mean value is

Py
P2

=Ce *e™ =2670 light years| (153)

rlm'rm_ wrliee

This is the MEAN (value of the) DISTANCE
at which we can expect to find ExtraTerrestrials.

After having found the above two distances (1933
and 2670 light years, respectively), the next natural
question that ariscs is: “what is the range, forth and
back around the mean value ol the distance, within
which we can expect to find ExtraTerrestrials with
“the highest hopes 7,” The answer to this question
is piven by the notion of standard deviation. that
we already found to be given by (123)

u oo T

=Ce *eBVe? —1 =139 light years|.
...(154)

Ty Distine

More precisely, this is the so called I-sigma
(distance) level, Probability theory then shows that
the nearest ExtraTerrestrial civilization is expected
to be located within this range, i.e. within the two
distances of (2670-1309) = 1361 light years and
(2670+1309) = 3979 light yecars, with probability
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given by the integral of  fer pisne(?) taken in
between these two lower and upper limits, that is:

3979ligyears
J; fl:"l' Distane (f) dr=075=75% (155)

361lightyears

In plain words: with 75% probability, the nearest
ExtraTerrestrial civilization is located in between
the distances of 1361 and 3979 light years from us,
having assumed the input values to the Drake
Equation given by Table 1. I we change those
input values, then all the numbers change again.

Y. THE “DATA ENRICHMENT
PRINCIPLE™ AS THE BEST CLT
CONSEQUENCE UPON THE
STATISTICAL DRAKE EQUATION
(ANY NUMBER OF FACTORS
ALLOWED)

As a fitting climax to all the statistical
equations developed so far, let us now state our

“DATA ENRICHMENT PRINCIPLE,” It simply states that

“The Higher the Number of Factors in the
Statistical Drake equation, The Better,”

Put in this simple way, it simply looks like a
new way of saying that the CLT lets the random
variable Y approach the normal distribution when
the number of terms in the sum (4) approaches
infinity. And this is the case, indeed. However, cur
“Data Enrichment Principle” has more profound
methodological consequences that we cannot
explain now, but hope to describe more precisely
in one or more coming papers.

CONCLUSIONS

We have sought to extend the classical Drake
equation to let it encompass Statistics and
Probability.

This approach appears to pave the way to
{uture, more profound investigations intended not
only to associate “error bars” to each factor in the
Drake equation, but especially to increase the
number of factors themselves. In fact, this seems to
be the only way to incorporate into the Drake
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equation more and more new scientific information
as soon as it becomes available. In the long run,
the Statistical Drake equation might just become a
huge computer code, growing up in size and
especially in the depth of the scientific information
it contained. It would thus be Humanity's first
“Encyclopacdia Galactica.”

Unfortunately, to extend the Drake equation to
Statistics, it was necessary to use a mathematical
apparatus that is more sophisticated than just the
simple product of seven numbers,

When this author had the honour and privilege
to present his results at the SETI Institute on April
11t 2008, in front of an audience also including
Professor Frank Drake, he felt he had to add these
words: “My apologies, Frank, for disrupting the
beuwntiful simplicity of your equation,”

ACKNOWLEDGEMENTS

The author is grateful to Drs. Jill Tarter, Paul
Davies, Seth Shostak, Doug Vakoch, Tom Pierson,
Carol Oliver. Paul Shuch and Kathryn Denning lor
attendling his first presentation ever aboul these
topics at the “Beyond” Center of the University of
Arizona at Phoenix on February 8", 2008. He also
would like to thank Dan Werthimer and his School
of SETI young experts for keeping alive the

54

interplay between experimental and theoretical
SETI. But the greatest “thanks™ goes of course to
the Teacher to all of us: Professor Frank D. Drake,
whose equation opened a new way of thinking
about the past and the future of Humans in the
Galaxy.

REFERENCES

[1]1 http:/en.wikipedia.org/wiki/Drake equation

2] hup:/en.wikipedia.org/wiki/SET]

[3] http:/fen.wikipedia.org/wiki/Astrobiolagy

(4] http:/fen.wikipedia.org/wikifFrank Drake

[5] Athanasios Papoulis and S. Unnikrishna Piliai,
“Probability, Random Variables and Stochastic
Processes”, Fourth Edition, Tata McGraw-Hill,
New Delhi, 2002, ISBN §-07-048658-1.

[6] hitp:/en. wikipedia.ocpfwiki/Gamma_distribution

7
hup:ffen. wikipedia.org/wiki/Central _limil_theore
m

[81 hup:/fen.wikipedia.org/wiki/Cumulants

[91 hup:/fenwikipedia.org/wiki/Median

[101Jeftrey Bennett and Seth Shostak, “Life in the
Universe”, Sccond Edition, Pearson - Addison-
Wesley, San Francisco. 2007. ISBN 0-8053-
4753-4, Sce in particular page 404.

UNCLASSIFIED/ / FOR-GFFICIAi-U6E-GhizY



UNCLASSIFIED / /fFeR-OFERSifirbl S0 bhlrif

References

[1] Benford, Gregory, Jim and Dominic, “Cost Optimized Interstellar Beacons: SETI”,
arXiv.org web site (22 Oct. 2008).

[2] Carl Sagan, "Cosmos”, Random House, New York, 1983. See in particular the pages
298-302.

[3] Bennet, Jeffrey, and Shostak, Seth, "Life in the Universe”, second edition, Pearson -
Addison Wesley, San Francisco, 2007. See in particular page 404.

[4] C. Maccone, "The Statistical Drake Equation”, paper #IAC-08-A4.1.4 presented on
October 1%, 2008, at the 59% International Astronautical Congress (IAC) held in
Glasgow, Scotland, UK, September 29 thru October 34, 2008.

35
UNCLASSIFIED/ /fFOR-GFFICIik=ESE-S ikl



	d25
	dird25



