9th Annual Science and Engineering Technology Conference/
DoD Technology Expo

15 - 17 April 2008

North Charleston, South Carolina

Agenda

Tuesday, 15 April 2008

Preliminary Session: Opportunities for Collaboration

- The DoD T&E / S&T Program, *Mr. Gerald Christeson*, Defense Test Resource Management Center Deputy Program Manager Test & Evaluation/Science & Technology Program
- DoD Basic Research Program with a Focus on Academia, *Dr. William S. Rees, Jr.*, Deputy Under Secretary of Defense (Laboratories and Basic Sciences) Office of the Director Defense Research and Engineering
- Strategic Initiative on Innovation & Technology Transition, *Ms. Kathleen Harger*, Assistant Deputy Under Secretary of Defense Innovation and Technology Transition

CONFERENCE OPENING:

Keynote Address: *Mr. Alan Shaffer*, Principal Deputy Defense Research and Engineering

Session I: Development and Insertion of Innovative Technologies into Army Systems

- Recent Trends in the Army’s Common Test Support Facility, *Mr. Terry Edwards*, Chief Information Officer (CIO), Chief Technology Officer (CTO), HQ Army Materiel Command, CIO-G6
- The Army Science and Technology Program, *Dr. Thomas Killion*, Deputy Assistant Secretary for Research and Technology/Chief Scientist
- CERDEC Contributions to Army Battle Command Networking Efforts, *Mr. David Jimenez*, Director, Space & Terrestrial Communications Directorate
- Software Certification and Battle Command Interoperability Issues, *BG Nick Justice*, Program Executive Officer, PEO Command, Control, Communications Tactical
- Technology Transition and Insertion Evaluation, *Mr. Brian Simmons*, Director, US Army Evaluation Center

Assault Breaching System Technologies, *Mr. Brian Almquist*, Ocean Engineering & Marine Systems, Office of Naval Research
Wednesday, 16 April 2008

Session II: Development and Insertion of Innovative Technologies into Air Force Systems

- Overview of Air Force Science & Technology Program, *Mr. Terry Jaggers*, Deputy Assistant Secretary (Science, Technology and Engineering)
- Development and Insertion of Innovative Technologies Across the Lifecycle of a Weapon System, *Brig Gen Janet Wolfenbarger*, Brigadier General, USAF Director, Intelligence and Requirements Director, D&SW S AFSO21 Office

Luncheon Speaker—The Challenge of Transitioning Innovative Technology, Dr. Malcom O’Neill, PhD, NAE LTG USA/CTO LMC (ret)

Session III: Development and Insertion of Innovative Technologies into Naval Systems

Innovative Technology Insertion: Systems Command Panel

Panelists:
- *Mr. James Sheehy*, Chief Scientist / Technology Officer Human Systems, AIR-4.6T
- *Mr. Brian Persons*, Executive Director Naval Systems Engineering Directorate (SEA 05) & Corporate Chief Technology Officer
- Mr. Gary Wang, Code 73, SPAWAR Command Overview, SPAWAR S&T OPPORTUNITIES
- *Mr. David Ungar*, Director Program Engineering & Technology

Thursday, 17 April 2008

Session IV: Manufacturing and Affordability of Innovative Technology

- The Need for Manufacturing Innovation and Readiness, *Mr. Mark Gordon*, Director, Defense Programs National Center For Advanced Technologies
- The Navy’s Mantech and Affordability Program, *Mr. John Carney*, Director, Navy ManTech
- The Air Force S&T Manufacturing Readiness Assessment, *Mr. Jim Morgan*, Manufacturing Technology Division
- Inserting Technology Incrementally, *Mr. Daniel Zanini*, LSI Deputy Program Manager, Future Combat Systems Senior Vice President, SAIC

Manufacturing Technology Industry Panel

Moderator: *Mr. Gary Powell*, OUSD(AT&L)

Panelists:
- *Mr. Ed Morris*, Director, Hardware and Manufacturing, Lockheed Martin Corporate Engineering and Technology
- *Mr. Dale Iverson*, Raytheon Missile Systems
- Mr. Jim Lorenz, Manager, Advanced Industrial Engineering
9th Annual Science & Engineering Technology Conference / DoD Tech Exposition

April 15-17, 2008
Charleston Convention Center
North Charleston, SC
Tuesday, April 15, 2008

Opportunities for Collaboration

- 8:15am FY 2008 PB Request for DoD S&T Program
 – Robert Baker
- 8:45am The Advanced Systems & Concepts Portfolio of Opportunities
 – John Kubricky
- 9:15am The DoD T&E / S&T Program – Gerald Christeson
- 9:45am BREAK
- 10:30am Quick Reaction Fund/Rapid Reaction Fund & JIEDDO Capability Needs – Ben Riley
- 11:00am DoD Basic Research Program with a Focus on Academia
 – Dr. William S. Rees, Jr.
- 11:30am Strategic Initiative on Innovation & Technology Transition
 – Kathleen Harger
- 12:00pm LUNCHEON
Tuesday, April 15, 2008

Conference Opening

- 1:00pm Call to Order / Conference Opening – Dr. Raj Aggarwal
 NDIA Welcome – MG Barry D. Bates, USA (Ret)

- 1:15pm Keynote Address – Alan Shaffer

Session I: Development and Insertion of Innovative Technologies into Army Systems

Session II: Development and Insertion of Innovative Technologies into Air Force Systems

Session III: Development and Insertion of Innovative Technologies into Naval Systems

Session IV: Manufacturing and Affordability of Innovative Technology
Tuesday, April 15, 2008

Session I: Development and Insertion of Innovative Technologies into Army Systems

- 2:00pm Recent Trends in the Army’s Common Test Support Facility… – Terry Edwards
- 2:30pm The Army Science and Technology Program – Dr. Thomas Killion
- 3:00pm BREAK
- 3:30pm CERDEC Contributions to Army Battle Command Networking… – David Jimenez
- 4:00pm Software Certification and Battle Command Interoperability Issues – BG Nick Justice
- 4:30pm Army Comm. Technologies, Incl. JTRS – Tim Snodgrass
- 5:00pm Technology Transition and Insertion Evaluation – Brian Simmons
- 5:30-7:30pm RECEPTION (In exhibit hall)
Session II: Development and Insertion of Innovative Technologies into Air Force Systems

- 8:30am Overview of Air Force Science & Technology Program – Terry Jaggers
- 9:00am Development and Insertion of Innovative Technologies Across… – Brig Gen Janet Wolfenbarger
- 9:30am Rapid Prototyping-Leapfrogging into Military Utility – Randall Walden
- 10:00am BREAK
- 10:45am Industry Perspectives on Technology Insertion – Dr. David Whalen
- 11:15am Cyberspace: New Frontiers in Technology Insertion – Dr. John Bay
- 12:00pm LUNCHEON w/Speaker – Dr. Malcom O’Neill
Wednesday, April 16, 2008

Session III: Development and Insertion of Innovative Technologies into Naval Systems

1:30pm Technology Insertion: Naval Science & Technology
 – RADM William Landay

2:00pm Technology Insertion: Fleet / Operating Forces
 – Charlene Rusnak

2:45pm BREAK

3:30pm Technology Insertion: The Anti-Torpedo Torpedo (ATT) Program
 – Brian Almquist & LtCol Tim McLaughlin

4:15pm Innovative Technology Insertion: Systems Command Panel
 – Chair: Dr. John Sommerer
 – Panelists: James Sheehy, Brian Persons, Gary Wang, David Ungar

5:15pm Session Adjourned
9th Annual S&E Technology Conf.

Thursday, April 17, 2008

Session IV: Manufacturing and Affordability of Innovative Technology

- 8:00am Session Introduction – James Chew
- 8:10am The Need for Manufacturing Innovation and Readiness
 – Mark Gordon
- 8:35am The Navy’s Mantech and Affordability Program – John Carney
- 9:00am The Air Force S&T Manufacturing Readiness Assessment
 – Jim Morgan
- 9:25am Inserting Technology Incrementally – Daniel Zanini
- 9:50am BREAK
- 10:25am Best Poster Paper Winner Announcement
- 10:30am Manufacturing Technology Industry Panel
 – Moderator: Gary Powell
 – Panelists: Ed Morris, Bob Schafrik, Al Sanders, Dale Iverson, Jim Lorenz
- 12:00pm Wrap-Up & Adjournment – Alan McLaughlin
- 12:15pm Box Luncheon
Attendees will be sent a link to the proceedings within two weeks

Join us next year!
The 10th Annual S&E Technology Conference / DoD Tech Exposition will be held April 20-23, 2009 in the North Charleston Convention Center
Fiscal Year 2009
President’s Budget Request for
DoD Science & Technology

Mr. Bob Baker
Deputy Director, Plans and Programs
Office of the Director,
Defense Research and Engineering
PBR09 is a continuation of the transition of S&T investment to enable growth of “non-kinetic”, non-platform specific capabilities

Shifting away from an emphasis on ships, tanks, and planes—to focus on protection, information, knowledge, and timely, actionable intelligence
Develop technology to defeat any adversary on any battlefield.
DDR&E Priorities for CY 2008

• Support Global War on Terrorism
• Support Urban Operations Capabilities
• Support WMD Detection & Response Capabilities
• Develop Transformational Power & Energy Technologies
• Develop Manufacturing Technologies
• Enhance Technology Transition
• Enhance National Security S&E Workforce
• Increase funding for Basic Research, plus $270M
White House Guidance

• President Bush acknowledged the importance of science and engineering development in his January 2008 State of the Union address

“To keep America competitive into the future, we must trust in the skill of our scientists and engineers and empower them to pursue the breakthroughs of tomorrow… I ask Congress to double federal support for critical basic research in the physical sciences and ensure America remains the most dynamic nation on Earth."

President George W. Bush, State of the Union address, January 28, 2008
Overview

• PBR 2009 S&T Budget
• Budget Changes and Historical Context
• Strategic foundation and Investment Focus
• Reliance 21 and the R&E Portal
PBR 2009 S&T Budget
FY08 and FY09 RDT&E Budget Request Comparison
- in Then Year Dollars -

FY08 RDT&E request = $75.12B
(Budget Activities 1-7)

FY09 RDT&E request = $79.43B
(Budget Activities 1-7)

Technology Base (BA1 + BA2) = $5.78B

PBR08 S&T is 14.3% of RDT&E

Technology Base (BA1 + BA2) = $5.94B

PBR09 S&T is 14.5% of RDT&E
FY09 DoD R&E Budget Request Comparison

<table>
<thead>
<tr>
<th></th>
<th>FY08 PBR</th>
<th>FY08 Approp</th>
<th>FY09 PBR (Constant Year FY08)</th>
<th>Real Change from PBR (In CY $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Research (BA 1)</td>
<td>1,428</td>
<td>1,634**</td>
<td>1,699 (1,662)</td>
<td>+16.4%</td>
</tr>
<tr>
<td>Applied Research (BA 2)</td>
<td>4,357</td>
<td>5,092</td>
<td>4,245 (4,153)</td>
<td>-4.7%</td>
</tr>
<tr>
<td>Advanced Technology Development (BA 3)</td>
<td>4,987</td>
<td>6,043</td>
<td>5,532 (5,412)</td>
<td>+8.5%</td>
</tr>
<tr>
<td>DoD S&T</td>
<td>10,772</td>
<td>12,768</td>
<td>11,475 (11,227)</td>
<td>+4.2%</td>
</tr>
<tr>
<td>Advanced Component Development and Prototypes (BA 4)</td>
<td>15,662</td>
<td>15,947</td>
<td>15,774 (15,431)</td>
<td>-1.5%</td>
</tr>
<tr>
<td>DoD R&E (BAs 1 – 4)</td>
<td>26,434</td>
<td>28,716</td>
<td>27,249 (26,657)</td>
<td>+0.9%</td>
</tr>
<tr>
<td>DoD Topline</td>
<td>481,554</td>
<td>569,000</td>
<td>515,400 (502,486)</td>
<td>+4.3%</td>
</tr>
</tbody>
</table>
FY09 DoD S&T Budget Request

Total FY09 S&T request = $11.48B

Total FY08 S&T Request = $10.77B
Army = 1,728 Navy = 1,667 AF = 1,964 DARPA = 3,033 ChemBio = 610 DTRA = 401 OSD = 1,166 Other DA = 201
Recipients of DoD S&T Funds

*Includes non-profit institutions, State & local govt., & foreign institutions
Source: National Science Foundation Report (PBR08)
Budget Changes and Historical Context
PBR09 S&T Request Addresses Capability Gaps

• PBR09 S&T Request continues the realignment initiated in FY08 to address capability gaps identified in the 2006 QDR
 – Special (“non-kinetic”/enabling) technologies:
 – Clandestine Tagging, Tracking and Locating
 – Biometrics
 – Human, Cultural, Social Behavior Modeling
 – Networks
 – Persistent Surveillance
 \[\{ $183 \text{M} \}\] $611 \text{M}
 – Technologies to decrease energy consumption and increase alternative sources of energy ($513 \text{M})
 – Active and conventional armor technology for protection against a range of threats ($68 \text{M})
 – Accelerating technology transition to fielded systems

Investment is shifting away from platform-specific technologies
PBR09 S&T Request Addresses Capability Gaps (Cont’d)

• New technology/emphasis areas
 – $270M increase to Basic Research
 – Enhance the science and engineering personnel base
 – Emphasis will be on research to address Grand Capability Challenges, e.g.,
 – Cyber protection and information assurance
 – Network sciences
 – Science of autonomy
 – Information fusion and decision sciences
 – Biosensors and biometrics
 – Human sciences (cultural, cognitive, behavioral, neural)
 – Software sciences and materials
 – Immersive sciences for training and mission rehearsal
 – Power and energy management
 – Counter directed energy weapons
 – Anticipate about 500 focused research efforts
PBR09 S&T Request Addresses Capability Gaps (Cont’d)

- New technology/emphasis areas (Cont’d)
 - Increased protection for dismounted troops and ground forces ($60M)
 - Research in plasma and meta-materials to address emerging threats ($35M)
 - Cyber protection **($50M)
 - Hypersonics/Prompt Global Strike (Blackswift) – New technology prototype **($750M Total)

** Note: Cyber protection is funded in DARPA BA 6
Air Force funding for Blackswift is in BA 7
DoD S&T – Historical Context
- In FY08 Constant Dollars -

FY09 S&T request is among the highest
DoD R&E Funding By Budget Activity
- President’s Budget Requests
(in FY08 Constant Dollars) -
Strategic Context and Investment Focus
Desert Storm

• US dominance over Soviet-era systems “shocked” potential adversaries and combined to give US conventional superiority
 – Precision Weapons
 – Night Vision
 – Low Observability
 – Networked Systems

• The advent of information-based warfare feed the emergence of irregular warfare
Strategic Framework

- US National Security Strategy (March 2006) set national imperative to continue the war on terrorism
- 2006 Quadrennial Defense Review also restated the need for DoD to balance its capabilities across four categories of challenges:
 - Traditional
 - Irregular
 - Catastrophic
 - Disruptive
 \[\text{Transformational} \]
- DDR&E S&T initiatives memorandum to SECDEF (24 Aug 07)
National Defense Strategy—
Types of Programs Needing Technology

Irregular
• Language Translation
• Cultural Awareness
• Combating Terrorism
• Small Unmanned Aerial Vehicles
• Rapid Terrain Mapping
• Constant Surveillance
• Active & Conventional Armor

Traditional
• Conventional Ground, Sea, and Air Vehicles
• Standard Weapons
• Precision Weapons
• Stand Alone (Single Service) Command & Control Systems

Catastrophic
• Ballistic and Cruise Missile Defense
• Chemical Weapon Defense
• Bio Weapons Defense (includes research into state of genetic engineering)
• Remote Detection of Weapons of Mass Destruction Materials and Components

Disruptive
• Nano, Bio, Information Techs.
• Hypersonics
• Directed Energy
• Networks on the Move
• Autonomous Systems
• Distributed Sensors
• Defeat of Speed of Light Weapons
• Metamaterials
• Plasma Research

LIKELIHOOD

VULNERABILITY
QDR Priority Formulation

• Strategic Challenges
 • Traditional
 • Irregular Warfare
 • Catastrophic
 • Disruptive

• Strategic Outcomes
 • Defeat Terrorist Networks
 • Defend the Homeland in-Depth
 • Shape Choices of Countries at Strategic Crossroads
 • Prevent the Use and Proliferation of WMD
Capabilities to Defeat Terrorist Networks

- Persistent surveillance
- Locate, tag, and track terrorists in denied areas
- Human intelligence
- Capabilities to fuse intelligence
- Language and cultural awareness
- Joint coordination, processes and systems

Non-kinetic effects

- Urban warfare capabilities
- Prompt global strike
- Riverine warfare capabilities

Kinetic effects
Capabilities to Defend the Homeland In Depth

- Interoperable, joint command and control
- Enhanced air and maritime awareness
- Consequence management
- Broad spectrum medical countermeasures

Non-kinetic effects

- Tailored deterrence, including prompt global strike
- Air and missile defense

Kinetic effects
Capabilities to Shape the Choices of Countries at Strategic Crossroads

• Improved language and cultural awareness
• Persistent surveillance (penetrate and loiter)
• Cyberspace shaping / defense
• Secure broadband communications

Non-kinetic effects

• Prompt, high-value global strike
• Integrated defense against all missiles
• Air dominance
• Undersea stealth

Kinetic effects
Capabilities to Prevent the use of Weapons of Mass Destruction

- Locate, tag, track, and characterize
- Stand off fissile material detection
- Wide area persistent surveillance
- Fusion of HUMINT, ISR, and open source information

Non-kinetic effects

- Capabilities to “render safe” WMD
- Non-lethal weapons

Kinetic effects
National Defense Strategy Drives S&T Investment

National Defense Strategy

Quadrennial Defense Review
 • Strategic Challenges
 • Strategic Outcomes

Desired Operational Capabilities

Enabling Technologies

Supporting Demonstrations

Progress: Capability Increase
S&T Enabling Technology Priorities
--Supporting the QDR Strategic Outcomes--

- Technology focus areas:
 - Biometrics and Biological exploitation
 - Information Technology and applications
 - Persistent Surveillance Technologies
 - Networks and Communication
 - Human, Social, Cultural, and Behavioral Modeling
 - Language Translation Technologies
 - Manufacturing Technologies
 - Cognitive Enhancement
 - Directed Energy Technologies
 - Autonomous Systems Technologies
 - Hyperspectral Sensors
 - Nanotechnology
 - Advanced Materials
 - Energy and Power Technologies
 - Organization, Fusion, & Mining Data
 - Combating Weapons of Mass Destruction Technologies
 - Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President’s Budget Request
S&T Enabling Technology Priorities
--Supporting DDR&E Investment Initiatives--

• S&T Area Investment Initiatives from 24 Aug 07 memorandum to SECDEF:
 – Foundational Sciences
 – Active & Conventional Armor
 – Defeat of Speed of Light Weapons
 – Adaptive, Interactive, Full Immersion Training for Soldiers/Marines
 – Metamaterials
 – Information Warfare
 – Information Assurance
 – Networking Technologies
 – Manufacturing Science Technologies
 – Neuro-Ergonomics
 – Directed Energy Technologies
 – Autonomous Operation of Networks of Unmanned Vehicles in Complex Envir,
 – Advanced Medical Research
 – Software Development Technology
 – Energy and Power Technologies
 – Organization, Fusion, & Mining of Large Data Sets for Enhanced Decision Making
 – Combating Weapons of Mass Destruction Technologies
 – Energetic Materials
Reliance 21 and the R&E Portal
Defense S&T Reliance provides the framework to enable the DoD S&T community to work together to enhance the Defense S&T program and eliminate unwarranted duplication. It strengthens cooperation among the Services and Agencies thereby improving responsiveness to their warfighting and acquisition customers.
S&T Plans and Reliance 21

Defense Science and Technology Strategy and Plans

- Defense S&T Strategy (Replaced with DDR&E Strategic Plan)
- Basic Research Plan (6.1) - BRP -(As necessary, new plan at printer)
- Defense Technology Area Plan (6.2, 6.3) - DTAP - (Replaced with Technology Focus Teams)
- Joint Warfighting Science and Technology Plan - JWSTP (Biennial, even years)
- Defense Technology Objectives (DTO) Volume that supports JWSTP and DTAP (Replaced by Marquee Programs in JWSTP)
Research & Engineering (R&E) Portal (https://rdte.osd.mil)

• Provide DoD R&E community (civil service, military, approved contractors) with **single-point access** to all current R&E information:
 – Reliance 21 S&T planning documents
 – New E-Gov database
 – R&E Points of Contact
 – Congressional budget query
 – RDT&E budget data
 – DDR&E website
 – Dialog NewsEdge (24/7 breaking news on technology)
 – DoD In-House S&T Activities Report

• Be able to **intelligently search** all data
Welcome to the DoD Research & Engineering Portal

To view a video about the R&E Portal, click here!

The R&E Portal will be the focal point for obtaining information on research and engineering activities within DoD. It is sponsored by the office of the Director of Defense Research & Engineering (DDR&E) and maintained by the Defense Technical Information Center (DTIC). Within the R&E Portal, you will find:

- Data from systems that focus on the areas of Financial Management, Strategic Planning, and Congressional Reporting.
- Information on areas of strategic importance and current initiatives within DDR&E.
- Tools to facilitate collaboration, communication, and reuse of information and artifacts.
- Robust text searching tools to query the wealth of DoD research and engineering information held by DTIC and other government agencies.

Access to the R&E Portal is controlled by the User Registration Process. If you are not currently registered, click here to learn more.

Sign In

<table>
<thead>
<tr>
<th>DoD CAC Card Sign In</th>
</tr>
</thead>
</table>

or sign in using your user name and password:

| User Name: | |
| Password: | |

Click here to change your password or update your profile.

Click here if you forgot your password or it has expired.

If you wish to bookmark the site, please wait until you have logged in successfully before adding it to your list of favorites.

https://rdte.osd.mil
Research & Engineering (R&E) Portal

The 9th Annual Science and Engineering Technology Conference/DoD Technology Exposition will be held in Charleston, South Carolina from 15-17 April 2008. The conference is sponsored by the National Defense Industrial Association (NDIA). Please visit the Conference website for more details at the following link: http://www.ndia.org/meetings/4728.

The R&E Database Search has been updated to include 2007 submissions. The search capability has also been updated to allow more options and flexibility in searching for data. To use this search, go here or use the link under Research Resources.

The Tennessee Valley Emerging Technologies Conference will be held in Huntsville, Alabama from 25-27 March. The conference is sponsored by the Defense Intelligence Agency / Missile and Space Intelligence Center and the U.S. Army Space and Missile Defense Command / U.S. Army Forces Strategic Command. Abstracts of proposed oral presentations are requested by 15 November. Please visit the Conference website for more details at the following link: https://mapcenter.au.edu/ETC08.

The Known Reference Library is available through the R&E Portal. Check out this useful new service.

News

Aerospace Energy Surveillance Other News

Security Agencies

Alleged CIA Flights in Bratislava are commercial government

BRATISLAVA, March 12, 2008 - Slovakia's foreign ministry
denied Wednesday allegations of CIA planes landing in
Bratislava airport, saying they were "commercial flights" in line with
local and international regulations.

[Agency France Press English Wire]
Summary

• PBR09 S&T investment is driven by:
 – *DoD R&E Strategic Plan (guided by National Security Strategy and the QDR)*
 – S&T Initiatives in 24 Aug 07 memorandum from DDR&E to SECDEF

• PBR09 shows SecDef’s commitment to a strong S&T program – especially basic research
 – PBR09 is 4% higher than PBR08, in real terms
 – PBR09 is within $200M of highest request (PBR07), in real terms
 – SecDef directed increase in Basic Research is 16% higher than PBR08, in real terms
Backup
Director, Defense Research & Engineering
Vacant

Director, Plans & Programs
Mr. Alan R. Shaffer

Defense Technical Information Center
Mr. Paul Ryan

DUSD, Laboratories and Basic Sciences
Dr. Will Rees

DUSD, Science & Technology
Dr. Andre Van Tilborg

DUSD, Advanced Research Projects Agency
Dr. Anthony Tether

DUSD, Advanced Systems & Concepts
Mr. John Kubricky

DUSD, Rapid Reaction Technology Office
Mr. Ben Riley

DUSD, International Technology Security
Mr. Alan Haggerty
FY09 President’s Budget Request

<table>
<thead>
<tr>
<th></th>
<th>FY08 Enacted</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Research</td>
<td>379</td>
<td>379</td>
<td>367</td>
<td>383</td>
<td>395</td>
<td>424</td>
</tr>
<tr>
<td>Applied Research</td>
<td>1,175</td>
<td>724</td>
<td>727</td>
<td>741</td>
<td>736</td>
<td>736</td>
</tr>
<tr>
<td>Advanced Development</td>
<td>1,337</td>
<td>738</td>
<td>730</td>
<td>724</td>
<td>754</td>
<td>782</td>
</tr>
<tr>
<td>Total S&T</td>
<td>2,891</td>
<td>1,842</td>
<td>1,824</td>
<td>1,848</td>
<td>1,885</td>
<td>1,943</td>
</tr>
<tr>
<td>NAVY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Research</td>
<td>498</td>
<td>528</td>
<td>539</td>
<td>548</td>
<td>576</td>
<td>608</td>
</tr>
<tr>
<td>Applied Research</td>
<td>801</td>
<td>633</td>
<td>612</td>
<td>660</td>
<td>732</td>
<td>787</td>
</tr>
<tr>
<td>Advanced Development</td>
<td>722</td>
<td>679</td>
<td>649</td>
<td>663</td>
<td>6264</td>
<td>596</td>
</tr>
<tr>
<td>Total S&T</td>
<td>2,021</td>
<td>1,840</td>
<td>1,800</td>
<td>1,871</td>
<td>1,935</td>
<td>1,991</td>
</tr>
<tr>
<td>AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Research</td>
<td>421</td>
<td>452</td>
<td>470</td>
<td>493</td>
<td>502</td>
<td>513</td>
</tr>
<tr>
<td>Applied Research</td>
<td>1,170</td>
<td>1,044</td>
<td>1,103</td>
<td>1,059</td>
<td>1,096</td>
<td>1,112</td>
</tr>
<tr>
<td>Advanced Development</td>
<td>664</td>
<td>578</td>
<td>669</td>
<td>632</td>
<td>642</td>
<td>659</td>
</tr>
<tr>
<td>Total S&T</td>
<td>2,255</td>
<td>2,075</td>
<td>2,242</td>
<td>2,184</td>
<td>2,240</td>
<td>2,284</td>
</tr>
<tr>
<td>DEFENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Research</td>
<td>336</td>
<td>339</td>
<td>392</td>
<td>417</td>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>Applied Research</td>
<td>1,912</td>
<td>1,844</td>
<td>1,770</td>
<td>1,700</td>
<td>1,720</td>
<td>1,721</td>
</tr>
<tr>
<td>Advanced Development</td>
<td>3,264</td>
<td>3,536</td>
<td>3,594</td>
<td>3,408</td>
<td>3,498</td>
<td>3,563</td>
</tr>
<tr>
<td>Total S&T</td>
<td>5,512</td>
<td>5,718</td>
<td>5,756</td>
<td>5,525</td>
<td>5,659</td>
<td>5,730</td>
</tr>
<tr>
<td>DoD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Research</td>
<td>1,634</td>
<td>1,698</td>
<td>1,768</td>
<td>1,840</td>
<td>1,914</td>
<td>1,990</td>
</tr>
<tr>
<td>Applied Research</td>
<td>5,058</td>
<td>4,245</td>
<td>4,213</td>
<td>4,160</td>
<td>4,284</td>
<td>4,357</td>
</tr>
<tr>
<td>Advanced Development</td>
<td>5,987</td>
<td>5,532</td>
<td>5,642</td>
<td>5,427</td>
<td>5,520</td>
<td>5,600</td>
</tr>
<tr>
<td>Total S&T</td>
<td>12,679</td>
<td>11,475</td>
<td>11,623</td>
<td>11,428</td>
<td>11,718</td>
<td>11,947</td>
</tr>
</tbody>
</table>
Characterization of the FY09 DoD S&T Program

- **Funding**
 - Current year S&T dollars: $10.77B FY08 to $11.48B FY09
 - Percent of DoD funding: 2.24% FY08 to 2.22% FY09
 - Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)

DoD S&T program is focused on “sensing and shooting”
S&T Breakout
- Services and Defense Agencies as % of Total S&T -

President's Budget Requests

Services as % of S&T

Defense Agencies as % of S&T

Percent of Funding

30% 40% 50% 60% 70%

FY90 FY91 FY92 FY93 FY94 FY95 FY96 FY97 FY98 FY99 FY00 FY01 FY02 FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 FY13

Services

Defense Agencies

Devolvement
Marquee Program Count

- Army – 25
- Navy – 65
- Air Force – 26
- DARPA – 44
- DTRA – 4
- MDA – 1
- AS&C – 28

Total = 193
The Need for Manufacturing Innovation and Readiness

Mark Gordon
Director, Defense Programs
National Center For Advanced Technologies

NDIA Science and Engineering Technology Conference
April 17, 2008
Topics

- Why Manufacturing is Key to Technology Transition
- The DoD Manufacturing Technology Program
- Current ManTech Priorities
 - Manufacturing Science and Technology
 - Manufacturing Readiness Levels
- MRL Implementation & Policy
- Questions
Why Consider Manufacturing In Transition?

• **The ability to manufacture a component:**
 – Is not subservient to technology development cycle, but central to it.
 – Determines a large percentage of the total cost and schedule.
 – Can in itself bring about innovative technologies (MEMS, LAM, Flexible Displays, Complex Dimensional Composites, CMCs)

• **The capability to produce a technology/material is often not seen as part of technology transition or innovation, and may be ignored by the Science and Technology community.**
 – However, it is a core focus in highly competitive commercial markets (Aerospace, Automotive, IT, & Transportation.)
 – System engineering models require the maturation of technology along with the ability to manufacture, support, and test.

• **In Defense, practice is often to demonstrate the performance of complex systems, then change the design late in development for production / support.**
 – Customer priorities requirements.
 – Contracting structure allows cost increases.

The foundation of affordable transition is the access for program manager to technology with demonstrated levels of performance, producibility and support. These attributes allow for effective design trades with knowledge about cost.
GAO: Knowledge Based Acquisition

- During GAO assessments of Acquisition Programs, a disturbing trend of growing cost and schedule overruns led to a conclusion that poorly performing DoD programs did not possess the knowledge required to achieve a successful design at key points during development.

- They determined best practices in successful DoD and commercial development and defined three Knowledge Points:
 - Knowledge point 1: Resources and needs match [Best practice: MS B]
 - Knowledge point 2: Product design is stable [Best practice: CDR]
 - Knowledge point 3: Production processes are mature [Best Practice: MS C]

- In multiple assessments (2000-2008) of the DoD acquisition portfolio, there was found to be a strong correlation between delayed knowledge points and poor performance.

- In typical defense program practices, these knowledge points were achieved significantly later in the development process, meaning that system design changes continued far into integration and production.

- Reversing this practices resulted in a strong policy requiring Technology Readiness at MS B, Configuration Control Boards and increasing use of Prototypes in competition.
Finding: Most Programs Proceed With Low Levels of Knowledge Resulting in Cost/Schedule Increases

In a recent annual review of DoD programs (n=62), GAO found:

- Only 16% of programs achieved mature technology at MS B.
 - programs that demonstrated mature technologies averaged 2.6% cost growth and a 1 month schedule delay
 - programs that did not have mature technologies averaged 32% cost growth and a 20 month schedule delay

- At critical design review:
 - 44% of programs achieved technology maturity
 - 27% of programs demonstrated design stability (90% drawings releasable)

- At MS C, the start of Production:
 - Only 67% of programs achieved technology maturity
 - 33% of programs had still not achieved design stability
 - 10% of programs were collecting data on process control. (0% in control)
 - 47% reported they have already conducted or planned to conduct a developmental test of a production representative article (i.e., prototype)

<table>
<thead>
<tr>
<th>Technology Status at Beginning of Development</th>
<th>Based on 62 programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>2.6% RDT&E Cost Increase</td>
</tr>
<tr>
<td>-immature</td>
<td>32.3% Acquisition Unit Cost Increase</td>
</tr>
<tr>
<td></td>
<td><1% Average Schedule Delay</td>
</tr>
<tr>
<td></td>
<td>>30%</td>
</tr>
<tr>
<td></td>
<td>1 month</td>
</tr>
<tr>
<td></td>
<td>20 months</td>
</tr>
</tbody>
</table>

The DoD Manufacturing Technology Program

- ManTech is critical for moving disruptive technologies into disruptive capabilities
- If you can’t build it, build it affordably, reliably, and in a timely manner, you don’t have IT.
- To have true capability, must be able to move beyond the prototype “One-Off”

- Operates Under Title 10 (Section 2521)
 - Manufacturing process investments that provide product performance, operational, & affordability improvements

- All About Affordable & Timely Equipping of the Warfighter
 - Defense essential needs beyond normal risk / interest of industry
 - Pervasive needs across systems, platforms, or components

- Transition of Validated Technology
 - Scale-up of processes for S&T, ATDs, IR&D, & ACTD products
 - Focus: Manufacturing process investments

ManTech Addresses Major QDR Issues – Affordability, Sustainability, Decreased Logistical Footprint
Joint Defense ManTech Panel - (JDMTP)

ManTech Principals (Army, Navy, AF, DLA, MDA)

- Metals Processing & Fabrication
 - Specialty Materials
 - Processing & Joining
 - Inspection & Compliance
- Composites Processing & Fabrication
 - Performance Improvements
 - Life Cycle Affordability
- Electronics Processing & Fabrication
 - Packaging & Assembly
 - RF Electronics
 - Electro-Optics

Ex Officio:
- OSD, Army, Air Force Staff
- Agencies, Dept of Energy, Dept of Commerce (NIST)
- Industry

Sustainment

Focus – Joint Collaboration
Solved #1 B-2 Mission Capable MX Issue
New capability will have the greatest impact on B-2 Fleet Availability
Developed new LO Magnetic Radar Absorbing Material (MagRAM) for B-2, reduced mx downtime for LO materials from 36 hrs to 7 hrs.

Solved #1 C-17 MX Issue – Structural Damage to Doors on undeveloped runways
AF – ManTech developed new stitched resin infusion process to prevent delamination.

Met Tank Tread Demand Surge for OIF
- Vital Track component experienced accelerated failures
- Advanced casting tooling method enabled industry to meet surge and demand

Created force multiplier for battle tanks
- Improved Accuracy through Cannon Tube Reshaping
- 20 fold tighter tolerance; 65% reduction of shot group dispersion;
- Resulted in greatest increase in “loss exchange ratio” in 20-plus years

Developed New Capability - New Marine Composite-to-Steel Joining Capability - Reduces Logistics Footprint and enables DD(X) to meet Program Requirements
New Adhesive Joint replaces 5120 bolts that failed to meet technical req’ts of DD(X)
Manufacturing Technology Program
Top Priorities

- OSD Manufacturing S&T Program
- SBIR- Manufacturing
- MRL/MRA Implementation
- Strategic Planning
Pulling Manufacturing Back into S&T

Manufacturing Science and Technology: Concurrently develop and mature cross-cutting manufacturing processes with new and emerging technologies.
- Align R&D investments
- Accelerate Transition

Disruptive Manufacturing Technology: Radically alter the defense industrial base through development of “disruptive” manufacturing processes. Provide faster and more affordable access to low-volume production capabilities for defense unique technologies. Transition emerging, disruptive technologies

High Performance Manufacturing: Identify and transition advanced manufacturing processes. Includes development of test beds and prototypes, and creation of technology roadmaps.

Traditional ManTech: Develop and mature manufacturing processes for acquisition programs, and specifically for affordable production and capacity.
MRL: Background

- Immature technology and unstable manufacturing processes are major acquisition drivers

- **Manufacturing Readiness Levels (MRL) Developed**
 - In collaboration with industry
 - Common Standard and framework for identifying, communicating, and managing manufacturing risks
 - Reconciled with TRLs

- **Policy Required**
 - Establish and promote manufacturing risk management as basic principal of technology development and acquisition programs
 - Plan and budget for incorporating manufacturing readiness to support successful transition
 - Establish **DoD standard** for manufacturing readiness at key milestones
 - Milestone A – MRL 4
 - Milestone B – MRL 6
 - Milestone C – MRL 8
 - FRP Decision – MRL 9
 - Support the development and maintenance of necessary knowledge and skills within the DoD workforce to support this best practice already used by key U.S. defense industries
 - Provide guidance for the new DoD standard

- **MRL Process Owner: DDR&E**
MRL Definitions & Descriptions

<table>
<thead>
<tr>
<th>MRL</th>
<th>Definition</th>
<th>Description</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manufacturing Feasibility Assessed</td>
<td>This is the lowest level of manufacturing readiness. The focus is on a top level assessment of feasibility and manufacturing shortfalls. Basic manufacturing principles are defined and observed. Begin basic research in the form of studies (i.e. Pre Concept funds) to identify producibility and material solutions.</td>
<td>Pre Concept</td>
</tr>
<tr>
<td>2</td>
<td>Manufacturing Concepts Defined</td>
<td>This level is characterized by developing new manufacturing approaches or capabilities. Applied Research translates basic research into solutions for broadly defined military needs. Begin demonstrating the feasibility of producing a prototype product/component with very little data available. Typically this is applied research (i.e. Refinement in the S&T environment and includes identification and study of material and process approaches, including modeling and simulation.</td>
<td>Refinement</td>
</tr>
<tr>
<td>3</td>
<td>Manufacturing Concepts Developed</td>
<td>This begins the first real demonstrations of the manufacturing concepts. This level of readiness is typical of technologies in Pre Concept Development.</td>
<td>Definition</td>
</tr>
<tr>
<td>4</td>
<td>Capability to produce the technology in a laboratory environment.</td>
<td>This is the highest level of production readiness. Engineering/design changes are few and generally limited to quality and cost improvements. System, components or items are in rate production and meet all engineering, performance, quality and reliability requirements. All materials, manufacturing processes and procedures, inspection and test equipment are in production and controlled to six-sigma or some other appropriate quality level. FRP unit cost meets goal, funding sufficient for production at required rates. Lean practices well established and continuous process improvements ongoing.</td>
<td>Production/R&D (PRO) decision</td>
</tr>
<tr>
<td>5</td>
<td>Capability to produce prototype components in a production relevant environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Capability to produce a prototype system or subsystem in a production relevant environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Capability to produce systems, subsystems or components in a production representative environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pilot line capability demonstrated. Ready to begin low rate production.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Low Rate Production demonstrated. Capability in place to begin Full Rate Production.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Full Rate Production demonstrated and lean production practices in place.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: MRL stands for Manufacturing Readiness Level.
MRL Criteria Matrix / Threads

MRL Criteria Matrix Threads

Technology and Industrial base

Design

Cost and Funding

Materials (Raw Materials, Components, Sub-assemblies and Sub-systems)

Producibility assessments of key technologies/components and producibility trade studies completed. Results used to shape System Development Strategy and plans for SDD or technology insertion.
Implementation: MRL/MRA Experience in Industry

- Industry Associations and companies are supportive of DoD Manufacturing Readiness efforts and support policy
 - Participated in Three DoD-Industry Workshops

- OEMs and Second Tier Suppliers are using the first or second generation definitions, published in the Technology Readiness Assessment Guide

- Many companies have developed their own manufacturing maturity measures.
 - Rockwell Collins Manufacturing Maturity Index
 - Sikorsky Production Readiness Index

- Other companies have adopted our MRLs, and are using them within the company’s gated development process.
 - Lockheed Martin Missiles and Fire Control
 - Raytheon (Tuscon)
 - Pratt & Whitney
 - General Electric Power Systems
 - Boeing (EMRLs for MDA, MRLs for FCS)
 - Goodrich
 - ... and the list is growing
Implementation: MRL/MRA Experience in DoD

- Air Force
 - MRAs completed on 21 Air Force Advanced Technology Demonstrations using the manufacturing readiness level (MRL) criteria; additional 12 are in process
 - Used MRL criteria to perform MRAs on two ACAT 1 Programs

- Army
 - Uses MRLs on all 6.3 Programs that have manufacturing or producibility issues tied to Army Technology Objectives- Manufacturing (ATO-M)
 - Army also uses MRLs and MRAs on selected SBIR Projects
 - Army to incorporate MRLs and MRAs into the management aspect of planned Commercialization Pilot Program.

- MDA
 - Applies related scale (EMRLs) to manage high risk prototype- production technologies.
Implementation – Statute and Policy

• Manufacturing Readiness Levels
 • Definitions and framework developed, socialized with industry, Services
 • Criteria Matrix developed, piloted, revised, and posted (Version 6.5, April 2008)

• Developed AT&L Policy
 • Coordinating with DAU on Defense Acquisition Guidebook Inputs
 • Signed Policy triggers 5000 updates

• Manufacturing Readiness Guidebook – “Why” posted 2006

• Manufacturing Readiness Deskbook - “How”
 • Piloted under AF
 • Lessons Captured
 • DoD MRA Deskbook Developed
 • DoD MRA Deskbook Red Teamed
 • SOO/SOW language
 • DoD MRA Deskbook – Post on DAU Website – April 2008

• Coordination with TRA
 • Incorporated MRL into TRA Deskbook Revision – Appendix I
 • Mapping MRA Deskbook to TRA Deskbook – Coordinating with OSD
 • De-conflicting existing policies
Summary

• Manufacturing is a core attribute for transition of Innovative Technology, particularly for affordability!

• There is an obvious need for pacing development and demonstration of manufacturing processes concurrent with technology.

• DoD ManTech Program is shifting forward to include disruptive / high performance topics.

• Manufacturing Readiness Levels represent a stable, proven tool for tracking either a technology's or system’s manufacturing maturity, and will be adopted by DoD Policy this year.
Questions?

Mark Gordon
Mark.gordon@ncat.com
813-899-4545
https://www.dodmantech.com
Agenda

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary
AF S&T Overview

- AF executing $1.7B core in FY08 with 2,200 Scientists & Engineers in 10 core technical areas
- FY09 budget on Hill is $2.1B, increasing focus on:
 - AF Tech Vision
 - Basic Research
 - MANTECH
 - Cyber
 - Defensive Counterspace
 - Directed Energy
 - Revolutionary Propulsion
 - Thermal Management
 - Alternative Energy
 - Composites
 - Sense & Avoid for UAVs
- Improving Tech Transition is 1 of 5 guiding principles for AF S&T
 - SAE Commitment, OSD Initiatives, and JCTDs changes within AF
 - Organizing to align R&D development to 3 AF priorities, and tech transition efforts to 20-year AF roadmap
- Imperative for AF S&T tech transition to be synergized and leveraged with other tech transition efforts
Agenda

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary
Winning the Current War

The Nation must maintain technological superiority to win the GWOT

- Winning the GWOT is the top priority of the AF
- Terrorists exploit available technology faster than we can adapt and field ours
- The AF leverages over $200M per year in transition assistance programs aimed at rapid technology transfer
- **Effective** transition of technology is needed to maintain technology superiority and win the GWOT
History has shown that Nations fail without modern militaries

- Modernization is one of the top 3 priorities of the USAF, second only to GWOT and people
- The AF has a 20-year modernization roadmap
- The AF will spend over $15B in non-system specific managed 6.3/6.4 tech development over next 20 years
- **Efficient** transition of this technology is a key enabler to AF modernization success and National Security
Agenda

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary
AF Tech Transition Program

Cohesive Tech Transition Policy (SAE)

- AC/JCTDs
 (OSD & Various AF PEs, ~$130M/yr)
- CP3
 (AFRL S&T PEs, ~$5M/yr)
- RCO
 (SAF/AQ)
- Lifecycle Processes (D&SWS)
 (SAE & AFMC/CC)
- AFRL ATDs
 (S&T PEs, ~$125M/yr)
- DAC
 (AQP, Various PEs, ~$10M/yr)
- R&D Strategic Plan
 (AQR, AFMC & AFSPC)
- Development Planning
 (AFMC, AFSPC)
- IRAD
 (Industry)
- ManTech
 (AQR PEM, PE0603680F, ~$40M/yr)
- WRAP
 (AQX PEM, PE0203761F, $15-30M/yr)
- SBIR/STTR
 (AF RDT&E PEs, ~$370M/yr)
- AC/JCTDs
 (OSD & Various AF PEs, ~$130M/yr)
- TTI, QRF, FCT, RR/NS, RRTO
 (OSD & Various AF PEs, ~$5M/yr)
- AF CSB
 (Chief Eng)
- SII Fund
 (SECAF)
- DAC
 (AQP, Various PEs, ~$10M/yr)
- SBIR/STTR
 (AF RDT&E PEs, ~$370M/yr)
- IRAD
 (Industry)
- Development Planning
 (AFMC, AFSPC)
- SII Fund
 (SECAF)
- AFCSB
 (Chief Eng)
- DAC
 (AQP, Various PEs, ~$10M/yr)
- R&D Strategic Plan
 (AQR, AFMC & AFSPC)
- SBIR/STTR
 (AF RDT&E PEs, ~$370M/yr)
- IRAD
 (Industry)
- Development Planning
 (AFMC, AFSPC)
Agenda

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary
AF Transition Policy

- Tech transition office created on Air Staff to coordinate myriad of policy, processes & programs across AF
- Developing AF R&D policy for tech development and transition
- Key linkages to systems engineering policy for system developer insertion planning and corporate AF configuration control
- Policy recognizes differences in transition for air, space and cyber domains and adjusts for differences
- Tailored transition plans applied to achieve desired end-state for type of tech transition (to warfighter, to prime, to subtier) and life-cycle insertion point
- Tech transition requires risk identification, management, and acceptance by the customer and leadership

Full spectrum of tech transition across the life-cycle including policy, people and resources
Agenda

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary
Technology transition is a key enabler to winning the GWOT, while preparing to fight and win the next war.

Technology transition program consists of multiple programs, processes and overarching policy.

Tech Transition office developing policy that aligns the right programs/processes to the right domain and end-state.
Transition Technology

- Stand-up AF Technology Transition office
- Small Business Innovation Research (SBIR) Commercial Pilot Program (CPP) implementation
- Management/coordination of AF Joint Capability Technology Demonstrations (JCTDs)
- Policy for S&T Advanced Technology Demonstrations (ATDs)/JCTD transition to acquisition
- Policy/coordination of lab urgent needs (Core Process 3) with AF Rapid Response Program
- Clearinghouse for Quick Reaction Funds, Technology Transition Initiatives, etc.
- Advanced development, prototyping, and risk reduction BA 4 initiative
Successful Transitions

- Certified 50/50 blend of Fischer-Tropsch alternative fuel on B-52
- Provided PNT support to SOCOM Joint Precision Air Drop System
- Demonstrated Automated Air Refueling for ACC
- Completed all TACSAT-2 S&T experimental objectives for USSTRATCOM
- Transitioned Angel Fire into a USMC Operational Assessment for IED detection
- Deployed Spiral 2 of PANACIA to NASIC and the 480th MASINT Cell
- Inserted adaptive optics technology at Starfire and began transition to MSSS for AFSPC
- Successfully tested Focused Lethality Munitions technologies and transitioned to Small Diameter Bomb Program
Navy Manufacturing Technology and Affordability Programs

John Carney
Director, Navy ManTech
ONR 03T MT
17 April 2008
Office of Naval Research
03T Organization

Director of Transition
Deputy Director of Transition

FNCs
- Coordination of FNC Process and Execution Monitoring

JCTDs
- Coordination of DON JCTD Process and JCTD Execution Monitoring

Transition Initiatives
- Coordination of response to OSD and DON DAC/TTI/RTT/QRF/TIPS, etc.

ManTech
- Execution of Manufacturing Technology

SBIR
- Mgmt control of DON SBIR and Execution Oversight of ONR SBIR/STTR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.
Examples Addressing Manufacturing Early Cross ONR Spectrum

1. Innovative Naval Prototypes (INPs)
2. Future Naval Capabilities (FNCs)
3. Manufacturing Technology (ManTech)

Hi
Focus
Mid
Lo
Near

Discovery & Invention
(Basic and Applied Science)
Leap Ahead Innovations
Acquisition Enablers
Quick Reaction S&T

10%
30%
10%

OSD Partnered / Quick Reaction S&T ($223M, 12%)
Acquisition Enablers ($655M, 36%)
Leap-ahead Innovations ($197M, 11%)
Discovery & Invention ($765M, 41%)

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.
Innovative Naval Prototypes (INP) Overview

- Investments planned with critical mass to achieve a level of maturity suitable for transition within 4-8 years
- Likely disruptive
- A primary goal is to move the risk from Acquisition (Billions of $$) back to S&T (Millions of $$)
- Higher technological risk than Future Naval Capabilities
- INPs are approved by the Navy Corporate Board (Assistant SecNav Research Development Acquisition, Vice Chief of Naval Operations, Assistant Commandant of the Marine Corps)
 - INPs with a technology focus:
 - Electromagnetic Rail Gun
 - Free Electron Laser
 - Integrated Topside
 - INPs with a capability focus:
 - PLUS
 - Seabasing
 - Tactical Satellite
Integrated Topside Vision

- Dominate the RF spectrum
- Enable innovation through a RF Open Architecture (hardware and software)
- Create affordable systems that are scalable across platforms
What is Integrated Topside?

Current State of The Art	**Integrated Topside**
Overcrowded | Combined apertures (multi-function, multi-beam)
Poor performance due to blockage and EMI | Optimally placed apertures, integration of RF functions to control EMI
Expensive to acquire and maintain | Reduced acquisition and total ownership cost
Significant Size, Weight and Power requirements (SWaP) | Significantly reduced SWaP

RF functions simultaneously share apertures and signal processing
Topside continually optimized to meet highest priority needs
Integrated Topside (INTOP) Objective

- Develop and demonstrate an integrated, multi-function, multi-beam top-side aperture construct that has:
 - A scalable family of EW, RADAR (not high power) & communications capability to support multiple classes of ships
 - Modular open RF design (apertures and electronics) to facilitate best of breed technology and cost effective upgrades
 - Shared apertures for multiple functions
 - Software defined functionality
 - Cost effectiveness up front and over the life cycle
 - Increased operational capability
 - Spiral development to reduce risk and costs and have high probability for transition of technology to the fleet
• The FNC Program:
 – Composed of Enabling Capabilities (ECs) which develop and deliver quantifiable products (i.e., prototype systems, knowledge products, and technology improvements)
 – In response to validated requirements
 – For insertion into acquisition programs after meeting agreed upon exit criteria within five years

• ECs
 – Currently aligned with four of the pillars of Naval Power 21 (Sea Shield, Sea Strike, Sea Base, and FORCEnet)
 – Additional group for crosscutting technology improvements (Enterprise and Platform Enablers) for operations and maintenance cost savings

Aligns requirements, acquisition, Fleet, and S&T Communities to increase impact of S&T investment
• S&T passes mature technology to acquisition into development and production programs
• Agreement must exist on the maturity and readiness at the stage this happens (Technology Transition Agreement or TTA)
• Key components agreed upon in a TTA:
 -- Description of Product
 -- Completion/Transition Year
 -- Level of Risk (Technology Readiness Level)
 -- Demonstration of TRL
 -- Exit Criteria

Annual Transition Assessment

FNC Product: X/Ka/Q-Band Phased Array

Transition is the responsibility of all stakeholders
Objectives
- Common scalable architecture for:
 - USMC HELRASR/USAF KMDS
- Emphasize scalability and open architecture for procurement and life cycle affordability

S&T Design Issues
- Affordable OA core relevant to afloat & expeditionary systems
- Extended reliability by design
- Address permanent and near-land use prohibitions from spectrum loss
- Address mid-latitude ducting limitations
- Fixed or rotator TBD depending upon procurement and life-cycle costs
 - If rotator, address Doppler resolution limitations
- ECCM
- High resolution for NCID and closely spaced objects
- Affordable scalable architecture meeting joint needs

Budget ($M)

<table>
<thead>
<tr>
<th></th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRA</td>
<td>2.75</td>
<td>7.26</td>
<td>8.25</td>
<td>5.39</td>
<td>3.3</td>
<td>26.95</td>
</tr>
</tbody>
</table>

Affordable, Reliable, Mobile
Manufacturing Technology (ManTech) Overview

Mission:
- Develop enabling manufacturing technology -- new processes and equipment -- for implementation on DoD weapon system production lines
- DoD 4200.15 states investments should:
 - Transition emerging S&T results to acquisition programs
 - Improve industrial capabilities in production, maintenance, repair and industrial base responsiveness
 - Advance manufacturing technology to reduce cost, improve performance, and responsiveness

Budget:
- Stable at approx. $60M

Execution:
- Nine Centers of Excellence (COEs)
 - 8 Contracted, 1 Government
Navy ManTech is executed through nine Centers of Excellence (COEs):

- Execute projects; manage project teams
- Serve as corporate expertise in technological areas
- Collaborate with acquisition program offices / industry to identify and resolve mfg issues
- Develop and demo mfg technology solutions for identified Navy requirements
- Provide consulting services to Naval industrial activities and industry
- Facilitate transfer of developed technologies
• **Focused Shipbuilding Affordability Initiatives**
 – Concentrate resources on few high priority naval platforms for maximum benefit
 – Working with Program Offices and industry to select and execute projects to reduce acquisition cost
 – Acquisition Program Office prioritizes projects for platform portfolio
 – Platform IPTs oversee platform portfolios (ONR, COEs, Program Office, industry)

Primary Emphasis - Affordability

- **PEO (Ships)**
 - DDG 1000
 - LPD 17
 - DDG 51
- **PEO (Carriers)**
 - CVN 21
- **PEO (Ships)**
 - LCS
- **PEO (Subs)**
 - SSN
- **PEO (T)**
 - F-18 Family
 - EA-18G
- **PEO (IWS)**
 - Missiles
 - Weapons
 - Munitions
- **PEO (W)**
 - N-UCAS
LCS Build Strategy (LCS)

• LCS Program Office asked ManTech for suggestions for improving acquisition process for Littoral Combat Ships
 – Recommendation - LCS bidders be required to include a Build Strategy in proposal

• LCS Program Office agreed and requested that ManTech develop -
 1. Draft build strategy requirements that could be included in the LCS solicitation and
 2. Evaluation criteria that the Navy could use to assess strategies submitted

• CNST teamed with First Marine International (internationally recognized leader in providing specialist services to marine industry) to develop requested documents
 – Delivered to ONR and forwarded to LCS Program Office on 10 Jan 08

Build Strategy should:
 – Describe how the ship is going to be built:
 • Block and unit definition
 • Outfit module definition
 • Interim product definition
 • Assembly methods and processes
 – Demonstrate that there are sufficient resources to the build the vessel as described:
 • Labor, facilities and infrastructure
 – Demonstrate that the shipyard has the capability to carry out project as proposed:
 • Realistic schedule
 • Alignment of resources to schedule
 • Material acquisition plan
 – Describe overall plan:
 • From principal product breakdown and supply chain plans to test and commissioning plans

Done properly, build strategies will reduce cost by matching the production approach to the shipyard process capabilities and will reduce risk to Navy and industry
ManTech Project Highlight
Laser Image Projection (VCS)

• **Goal:** Automate the layout of attachments during early outfitting

• **Benefits:**
 – Automate layout process
 – Eliminate paper templates and string measurements wherever possible

• **Background:**
 – Technology made possible by EB’s One-Stop tool, developed under CNST’s Product Centric project
 – One-Stop enables extraction of attachment data from EB’s 3-D Product Model

• **Impact**
 – Partially implemented on Hull 781 (8 cylinders)
 • ~2000 hangers (~4000 studs) for Electrical & HVAC attachments
 • 2,910 hours saved (~84% savings) on partial use
 • $650,000 saved per hull (conservatively estimated at $65/hour)
 • **Project cost ($622K) re-couped in one hull**
 • Additional application being evaluated

Retro-reflective targets placed on already marked ship’s grid system points can be used to position projection system.

Projector marks center-point location of stud (green laser light dot). Technician punch-marks & labels attachment point on face of frame flange.
• **Background:**
 – CVN 78 requires improved performance and higher strength for reducing weight and to meet application requirements
 – Implement HSLA-115 at higher strength level and acceptable protection, toughness, welding and structural performance for weight reduction and increased factors of safety

• **Payoff:**
 – Potential weight savings of 100 - 200 long tons per hull for one application
 – Cost neutral to $1M savings impact anticipated
 – Reduced top-side weight, lower center of gravity 0.2-ft
 – Potential for additional future applications that require high strength and toughness

• **Achievements:**
 – NAVSEA / PMS 378 issued official letter to NGNN approving the use of HSLA-115 in baseline design and requiring successful completion of this project
 – NNS Management and Technical Review Board (TRB) officially approved incorporation of HSLA-115 into CVN 78 design (2 Nov 2007)
Goal: Develop and implement Design for Production (DfP) techniques for VIRGINIA Class submarine construction cost reduction

Background:
- 4 inter-related DfP projects at Electric Boat

Payoff:
- Reduced design costs
- Improved configuration management
- Ability to consider design alternatives based on mfg costs
- Standardized best mfg practices for re-use in design
- Improved build sequencing
- Reduced construction costs
- Total est. cost savings of $4.8M/hull

Identifying design / process drivers to reduce construction costs

ManTech Project Highlight

Design for Production (DfP) Projects (VCS)

- **DfP1 – Design & Prototype**
 Development of Knowledge Tools to Enable Re-use of Data

- **DfP2 – Design and Prototype**
 Schemes for Linking, Layering, and Expanding the 3D Model to Enable Automation of Seamless Deliverables identified by DfP0

- **DfP3 – Prototype the Process**
 for Extracting Standards and Cost Metrics for Critical Processes by Work Cell

DfP0 – Overall Process / Methodology Development

<table>
<thead>
<tr>
<th>Standards & Costs</th>
<th>Seamless Deliverables</th>
</tr>
</thead>
</table>

Process Dev’t

Requirements, Validation, & Implementation
Summary

• **Affordability is a key Navy theme**

• **Navy Science and Technology programs starting to address affordability and manufacturability**

• **Affordability needs to be addressed while developing next generation capability**
 – Affordability as part of the technology development concept (open systems, modular)
 – Difficult to insert affordability once technology has been developed

• **Navy ManTech addressing shipbuilding affordability**
 – High return on investment from areas such as Design for Production and Outfitting Process Improvement
Deputy Under Secretary of Defense
Advanced Systems & Concepts

9th Annual Science & Engineering Conference

The Advanced Systems and Concepts Portfolio of Opportunities

OSD/AT&L/DDR&E/AS&C

John J. Kubricky
DUSD(AS&C)
15 April 2008

UNCLASSIFIED
OSD/AT&L/DDR&E/AS&C Mission

• **Find, Integrate, Demonstrate, and Transition** operational concepts and technologies for **multi-Service, Joint & Coalition Warfare Needs**

• Leverage RDT&E Defense-wide resources through partnerships with Services and Agencies to meet the **Most Critical Needs** of the joint warfighter as defined by **Combatant Commanders** (COCOMs)

• **Induct Innovative Technologies** inside the traditional Planning, Programming, Budgeting, and Execution (PPBE) process that result in an enduring **Capabilities-based Portfolio** to defeat asymmetric threats

Thrusts: Agile, Adaptive, Affordable, Relevant, Urgent, Enduring, Transition
How Advanced Systems & Concepts Functions

• **Multi-Service Needs-Driven**
 – Monthly meetings with COCOMs - Progress on Deliverables
 – Frequent meetings with Intel Community
 – Participation in JCIDS and in JS/StratCom/DDR&E-sponsored studies

• **Technological Awareness**
 – Formal searches, pursuits and harvests of specified critical technologies
 – Briefings from industry (Domestic and International)
 – Intimate with technology development and assessment organizations
 • Services, Agencies, Intel Community, DHS, DOE, etc.

• **Program Oversight**
 – Organize, vet, select, and defend programs and projects
 – Validated Service and CoCom Priorities; IPLs and Most Pressing Needs
 – Wholly or partially funding projects – a core function
 – Closely monitor program and project execution

• **Transitioning Capabilities and Transferring Technologies**
 – Identify transfer and transition partners, pathways, PORs and POMs
 – Oversee transition process and progress; stimulate as necessary
 – Fund select game-changing technology enablers and transformation
Advanced Systems & Concepts Portfolio

OSD/Advanced Systems & Concepts

<table>
<thead>
<tr>
<th>TRL 1</th>
<th>TRL 2</th>
<th>TRL 3</th>
<th>TRL 4</th>
<th>TRL 5</th>
<th>TRL 6</th>
<th>TRL 7</th>
<th>TRL 8</th>
<th>TRL 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Science & Technology

- Concept & Technology Development
- Product/Process Development
- Product/Process Insertion

Research & Engineering

- System Development & Demonstration
- Production & Deployment

Production & O&M

- O&M

MRL

- MRL 1
- MRL 2
- MRL 3
- MRL 4 Lab or Modeling Environment
- MRL 5 Prototypical Environment
- MRL 6 Pre-production Representative Environment
- MRL 7 Transition into LRIP
- MRL 8 Low Rate Initial Production
- MRL 9 Full Rate Production
- MRL 10 Lean Production

COCOM/Joint/Coalition focused

- Joint Capability Technology Demonstrations
- Demo 1-3 yrs

AC/JCTDs Transition Enabler – “joint peculiar” capabilities

- JCTD Transition & DAE Pilot Program

Industry “On” Ramp – Test to Procure Tech Refresh

- Defense Acquisition Challenge
- Foreign Comparative Testing

Service, SOCOM Nominated - Test to Procure

- Tech Transition Initiative

DOD S&T Push

- Formerly TechLink

DoD Technology Transfer

- to Private Sector

Domestic Technologies Critical to National Security

- Defense Production Act (Title III)

ManTech Joint Investments

- Defense Manufacturing Technology – Next-Gen Multi-Service Enablers
MRLs - - a Technology Transition Risk Reducer

for the latest on MRLs, see http://www.ml.afrl.af.mil/mlm/about_manufacturing_readiness_levels.html
Current D-ManTech Program Drives 6 New Initiatives (examples):

- **Ceramic Matrix Composites Manufacturing Initiative**: to reduce cost and establish manufacturing technologies needed to develop and sustain advanced turbine engines

- **System-on-Chip Manufacturing Initiative**: advance manufacturing processes for packaging of system-on-chip systems; initial applications in communication and precision guided weapons

- **Prosthetics and Orthotics Manufacturing Initiative**: to integrate advanced manufacturing processes and materials that result in custom composite orthotics and prosthetics for wounded warrior amputees

Out-year and Potential FY08 D-wide ManTech Rolling Starts:

- Identify/transition advanced manufacturing processes/technologies to create significant productivity/efficiency in defense manufacturing base

- Radically alter defense industrial base through “disruptive” manufacturing

- Examples: solder-free electronics, advanced fixed and rotary wing aircraft structures, ballistic protection, conformal load bearing antennas
Defense Acquisition Challenge (DAC)...
...DoD’s On-Ramp to Industry

Scope:
- Allows anyone to propose innovations that could quickly improve -
 - Affordability, manufacturability, performance, or capabilities at a system, subsystem or component level
- Competitive: Annual BAA in Federal Business opportunities and unsolicited proposals
- Proposals “challenge” existing technology
 - Evaluated for merit & feasibility
 - If testing successful, innovations inserted into a program of record
 - Provides industry entry into DoD acquisition

Metrics & Measures
- Over 1200 proposals submitted
- 68 projects awarded & ongoing
- 70 companies from 26 states
- 70% are small / medium enterprise technology providers
- ROI (14 completed projects) is > 9:1

Spray Cool Technology: Electronics Sprayed with Non-Corrosive Coolant in a Hermetically Sealed Housing

Before SprayCool: 482 Pounds & 17 Cubic feet

After SprayCool: 100 Pounds & 2.6 Cubic feet

Employed in Counter Targeting System - Part of OVERWATCH ACTD

4 units deployed to Iraq

Mini Combat Trauma Patient Simulation System: Training medics at Camp Pendleton

Casualty simulator improves skills of medical personnel in mass casualty & triage - over 3500 medics trained & deployed to Iraq; attrition rate of trainees reduced from over 20% to 6%

Enhanced Performance Location Report System Tactical Data Network: Replaces manual network planning with automated system

Reduces complexity and need for manpower redundancy, deployed to 900 users (MEF II) in Iraq, enabling rapid and accurate information flow and data priority on the joint/coalition battlefield
CTO* FY08 Emerging Opportunities
Defense Acquisition Challenge (DAC) Program

Current DAC (Examples) - Supports 13 continuing projects ($13M)

- **Omni-directional Antenna for M156 Magneto-Inductive Remote Activation Munition System (MI-RAMS)**...Test 3-Axis Antenna for Army/SOF MI-RAMS allows placement of demolition charges and their initiator in any attitude (vice vertical only)

- **Mobile IP Interface to Tactical Data Links (TDL)**...Test TDL to enable uninterrupted and real-time coordination/re-tasking of combat missions, challenging current system that requires manual reconfiguration

- **Sinuous Spiral Antenna for AN/ALQ211 EW System**...Test antenna candidate that may enable warfighter to better identify enemy transmission signals, improving threat geo-location and threat detection and defeat in all aircraft attitudes

Out-year / Potential DACs: Estimate 8 to 12 new start FY09 projects ($15M)

- Address warfighter operational issues / functional capabilities (effectiveness, employment, survivability, force protection, and/or sustainability)
 - How: ‘Challenge’ existing legacy systems/equipment by testing mature technology for use in acquisition programs-of-record
 - Examples: Improved medical trauma simulation equipment; rapid armor or composites repair kits at unit level; better chemical / biological protective clothing; improved, lighter-weight, longer-lasting sources of power

Comparative Testing Office
Foreign Comparative Testing (FCT)…
…the search for world-class technologies

Scope:
- Seeks international technologies for US warfighting needs
- Leverages mature technologies for economic/speedy buys
- Provides US Forces with new capabilities
- Technologies assessed for use, bought from foreign source or manufactured under license in US

Program Measures & Metrics (1980-2007)
- OSD investment of $1.1B has avoided $7B in costs
- 567 projects started, 488 completed, 266 met test req's
- 184 projects resulted in procurements worth about $8B
- Accelerated fielding averaging 5–7 years
- Participation from 27 allied and coalition partners
- Vendor partnerships in 33 U.S. states
- Past 5 years: Transition rate from test-to-procure > 80%

- Russian erosion-resistant coating triples life of compressor blades in MH-53 helicopter, avoiding $1.6 million annually
- Korean fiber optic mesh detects breaks and enhances perimeter security
- Italian venture, the Joint Service Combat Shotgun, used in Iraq as a “door-buster”
- Swedish bunker buster system fired from confined spaces, used in Afghanistan and Iraq

UK system can refuel two aircraft at once, avoiding $40 million in R&D

South-African developed Buffalo mine clearing vehicle probing & clearing mines & IEDs in Iraq
CTO* FY08 Emerging Opportunities
Foreign Comparative Testing (FCT) Program

Current FCTs (Examples) - - Supports 12 continuing projects ($17M)

• **Fire Control System for SOF Combat Assault Rifle (SCAR) Grenade Launcher**
 - Test fire control and ammunition programming systems for enhanced grenade launch module for SCAR, improving range and suppressing hostile fire and other threats

• **A/C Arresting System for F-22 and JSF** - Test computer-controlled caliper-disk aircraft arresting system that increases functionality and capability to arrest both heavy aircraft and lightweight fighters

• **Advanced Airborne Expendable Infrared Countermeasures (IRCM)** - Test the effectiveness of expendable IR countermeasures to counter emerging advanced infrared Man-Portable Air Defense Systems

Out-year / Potential FCTs - - Support 8 to 12 new start FY09 projects ($16M)

• Address warfighter operational issues / functional capabilities (effectiveness, employment, survivability, force protection, and/or sustainability)
 – How: Test mature, non-development allied equipment and technology for use in acquisition programs-of-record
 – Examples: Light-weight, high-energy density batteries; health monitoring systems; improved active and passive armor protection; real-time, persistent surveillance

Comparative Testing Office
The Technology Transition Initiative (TTI)

Objectives
- Accelerate transition of new technologies from DoD S&T programs into acquisition for production and deployment to US Armed Forces
- Demonstrate new technologies in relevant environments

Partners and Processes
- Technology Transition Council
- Technology Transition Working Group

Countermeasures Protection System
- Improves force protection against radio-controlled IEDs
- Deployed in GWOT

Water Purification Pen
- Eliminates risk of exposure to diseases and bio-chemical pollutants
- Deployed in IRAQ with each of the Services
- Sent as part of Tsunami relief effort in S.E. Asia

Semantic Web Network
- Incorporated into Marine Link
- Deployed w/1st and 2d MEF in Iraq
- Saves Analyst 4-5 hours per manual query
Technology Transfer Programs

➢ Objectives
 • Ensure full use of the Nation’s investment in R&D (15 USC 3710)
 • Rapidly enhance warfighter capabilities via technology exploitation

➢ Benefits
 • Clear path from DoD S&T to application of technology
 • Commercial source for DoD items using DoD-developed technologies
 • Speed to deployment and cost-saving advantages

➢ Partners
 • US Industry (as opposed to contractual relationship)
 • Funds to support joint R&D efforts (funds from CRADAs)
 • Royalties on licensed inventions to reward inventors and perform R&D
FY08 Technology Transfer & Transition Initiatives

Current TTI Projects (Examples): 12 continuing projects ($20M)

• **Accelerate Extremely Insensitive Detonating Substances (EIDS) and Insensitive Munitions (IM) Solution in 155mm Artillery Ammunition:** Greater soldier survivability and reduced ammo storage/relocation detonation risk while retaining weapon lethality

• **Improved Heating Technology (IHT) for the Unitized Group Ration:** Self-heating group ration that sustains warfighters in remote, austere locations

• **Joint Service General Purpose Mask (JSGPM) Filter End-of-Service-Life Indicator:** $10M/yr savings in reducing unnecessary filter exchanges

• **Solid State Laser Igniter for Artillery Applications:** Safer, cheaper, more reliable means of firing 155mm artillery

• **Tactical Idle Reduction Equipment for Heavy Tactical Vehicles:** Saves 15M gallons/year in fuel with associated reduced fuel convoy personnel risks

Out-year/Potential TTI Projects: 6 to 8 new start FY09 projects ($10M)

Focus on TTI projects that enable affordable and decisive military superiority

• **Address the following high-level mission areas:** Battlespace Awareness; Stability of Operations; Cultural Awareness; Force Management; Command, Control and Information Management; Net-Centric Operations; Protection; Joint Training; Tailored Force Application
FY08 Defense Production Act Title III Initiatives

Current DPA/T3s:

Atomic Layer Deposition Hermetic Coatings: ...domestic ALD for electronic components; transition to fabrication process for DDG-1000.

ALON/ Spinel: ...domestic source of durable ceramics for transparent armor and apertures used in IR equipment and ballistic windows.

Beryllium Production: ...domestic source of high purity beryllium for defense sensors, missiles and satellites, avionics, weapon applications.

Boron Fiber: ...modernizing manufacturing processes of sole domestic source of boron fiber.

Coal-based Carbon Foam: ...establishing high-volume production for carbon foam materials in light weight tooling & non-structural components.

Reactive Plastic CO2 Absorbent: ...expanding production of reactive plastic CO2 absorbent to reduce hazards/increase diver mission duration.

Lithium Ion Batteries for Space: ...long-life cells for space systems using assured domestically produced materials.

Military Lens Systems: ...advanced optics for multi-spectral fused imagery.
FY08 Defense Production Act Title III Initiatives

Emerging/Imminent DPA/T3s:

Armstrong Titanium Production...project aims to develop capabilities that lead to domestic production of low-cost titanium (RFP in-process).

Methanol Fuel Cells:...components for soldier-portable equipment power.

SWORDS Safety Confirmation Testing and Production...establish capability to produce a modified robotic system for confirmation testing.

Life Cycle Support Center for Unmanned Systems...expanded capacity to support unmanned systems upgrade and repair for DoD and first responders.

Light-Weight Ammunition & Armor...establish production capacity for rigid polymer ammo cartridges to reduce weight for warfighters and transportation.

Out-year/Potential DPA/T3s:

Gallium Nitride (GaN) Radar Monolithic Microwave Integrated Circuits
- S-Band radar: affordable production capability for GaN MMICs on SiC (fy09)
- X-Band radar: affordable production capability for GaN MMICs on SiC (fy10)
Joint Capability Technology Demonstrations

• Enable Combatant Commanders to fill seams and gaps in core warfighting capabilities…particularly multi-Service operations
• Deliver new and relevant technology to warfighters quickly
 – *The JCT Demonstration Program is not a procurement program*
 – *JCTDs provide options that can lead to accelerated procurement*
• Overcome resistance to transformational concepts (eg, tech risk)
• Integrate technology, joint doctrine and coalition operations
• Chartered to bypass delays in fielding innovative capabilities…
 …requires Transition Planning upfront.

A Deliberate Technology Transition Strategy is Required to Begin a JCTD
JCTDs are not developmental projects...

- Development (Integrate to Demonstrate)

...JCTDs integrate, demonstrate and deliver new capabilities for urgent COCOM needs within 1 - 3 years and become enduring warfighter resources.

- Adaptation, Modification, Refinement, Prototype, Tech Insertion, Improvement, Revision, etc. to enable Joint, Coalition or multi-Service operations

JCTDs apply, integrate, prototype, modify, adapt and deliver new capabilities to satisfy validated COCOM urgent needs.
FY08+ JCTD Initiatives & Emerging Opportunities

Current JCTDs:

Communications Air-Borne Layer Expansion (CABLE) (STRATCOM/USAF): Airborne communications backbone network for IP-based, high capacity data transfer with secure gateways to interconnect data links and voice

Joint Force Protection Advanced Security System (JFPASS) (STRATCOM / USN / USAF): Integrated system protects expeditionary military installations

Hard Target Void Sensing Fuze (HTVS) (STRATCOM / USAF): Competitive prototype of survivable, void sensing fuze to destroy deeply buried targets

Shadow Harvest (SOUTHCOM / USAF): Demonstrate a rapidly configurable non-traditional ISR pod on a C-130 aircraft to find obscured targets

Out-year/Potential JCTDs:

Net Zero Plus (CENTCOM / USA): Utilizes alternative energy technologies to reduce energy footprint at military facilities and forward operating bases

Cross Domain Collaborative Information Environment (CD-CIE) (JFCOM / DISA): Open standards, non-proprietary, secure, scalable, cross domain collaborative info environment for multinational information exchange

Collaborative Security Environment (CSE) (SOUTHCOM / JFCOM): Integrated decision and assessment tool to support coalition security

Joint Recovery and Distribution System (JRADS) (TRANSCOM / Army): Integrates joint cargo handling system for intermodal load and recovery ops
Strategic Initiative on Innovation and Tech Transfer

• Technology access has changed throughout the world; proliferation of potentially disruptive technologies is the new way of global competition and economic success; DoD is no longer at the forefront of most tech research; fewer sources for growing numbers of warfighter-relevant technologies with shorter threat/refresh/support cycles

• The Strategic Initiative for Innovation and Technology Transition is tasked to create an action plan that will accelerate the movement of technology to Warfighters
 – particular emphasis on global outreach, flexible contracting, and strategic linking of the Department's agile acquisition initiatives to set conditions for an "outward looking" culture ... a transformation!
References and Discussion

Joint Capability Tech Demo (JCTD) www.acq.osd.mil/actd 703-697-5558
Comparative Test Office (FCTs) www.acq.osd.mil/cto 703-602-3740
Office of Technology Transition www.acq.osd.mil/ott/tti 703-607-5316
Considering Warfighter R&D Investments…

...questions should be answered affirmatively:

1. Does the action address the COCOM’s needs1?
2. Is a significant Joint capability or military advantage gained?
3. Do we have a clearly stated and attainable goal/outcome?
4. Have risks and costs been fully and frankly analyzed?
5. Have all other DOTMLPF means been fully explored?
6. Is there an exit strategy to avoid endless development?
7. Have consequences of inaction been fully considered?
8. Can support be garnered from the Services3 and Congress?
9. Are experienced people available to execute the effort?
10. Can results be demonstrated to project champions (<PCS)4?

1 Integrated Priority Lists and Most Pressing Military Issues – as validated by JCS J8
2 DOTMLPF: Doctrine, Organization, Training, Materiel, Leadership, Personnel and Facilities
3 Enduring outcomes are all about timely transition to an affordable and sustainable capability
4 Demonstrate 80% capability before CoCom champion/sponsor moves to next assignment

Criteria proposed by John Kubricky for selecting project candidates to support CoCom needs.
Development and Insertion of Innovative Technologies Across the Lifecycle of a Weapon System

Janet C. Wolfenbarger
Brigadier General, USAF
Director, Intelligence and Requirements
Director, D&SWS AFSO21 Office
Overview

• Ongoing AF/AFMC initiatives to improve technology insertion:

 – Pre-MS B: AFSO21 Develop and Sustain Warfighting Systems (D&SWS) Technology Development (TD) Initiatives

 – Sustainment: Sustainment Technology Process (STP) to develop focused sustainment technology investments
Integrated Life Cycle Management

Development and Sustainment of Warfighter Systems
“Technology Development Process”

War-Winning Capabilities ... On Time, On Cost
Air Force Special Operations for the 21st Century (AFSO21)/D&SWS

Funding Our Priorities

“We will fund transformation through ... organizational efficiencies, process efficiencies, reduction of legacy systems and manpower while sustaining GWOT and ongoing operations in support of the Joint Fight.”
- Michael W. Wynne, SECAF

The Status Quo is Out

AFSO21

-- The USAF will do less with less
-- Do what is valued by our customers
-- Employ tools and techniques smartly to reduce waste and non-value-added work, to maximize value to the warriors

Part of the Answer

AF Smart Ops 21

Air Force Smart Ops 21

AF S O 2 1

Who

How

Where

When

Process Improvement Tools

Lever

Theory of Constraints

Learning & Signaling

Creating

Analytic Focus on CPI

Enterprize

Dynamics

AF-wide Results

Process Efficiency

Innovation for Recapitalization

Measurably improved support

CSAF Approved Process Owners

Develop and Sustain Warfighting Systems (D&SWS)
D&SWS Sub-Processes

Sub-Process Owners, Co-Leads, Design Team Leads

Process Owner/Co-Lead
- Gen Carlson/Lt Gen Hoffman

Chief Process Officer
- Brig Gen Janet Wolfenbarger

War-Winning Capabilities ... On Time, On Cost
As-Is Technology Development Process

- Too many tactical (and adhoc) engagements with AF customers of S&T
- Local prioritization at best

- Capability Planning Community has insufficient knowledge of S&T breakthroughs
- Gov’t has insufficient knowledge of industry IR&D

- Tech maturation activities viewed as distinct from tech transition activities—big mistake!

- Tech maturity assessed once at MS-B
- TRLs necessary but not sufficient measure of tech maturity
- TRLs not universally understood & applied
- TDS (Tech Dev Strategy) often not created

- Tech Transition often an afterthought - too late to work the issues

War-Winning Capabilities ... On Time, On Cost
D&SWS Technology Development Initiatives

AF-wide process to identify and prioritize tech needs linked to capability gaps and program requirements.

Benefits: Best technologies needed to achieve AF’s highest priorities receive highest investment priority. “Tech Push” better influences capability planning.

Establish comprehensive “yardstick” to assess maturity of technologies (more than technology readiness levels: include testability, manufacturability, integratability, supportability, etc).

Establish disciplined and collaborative “stage-gating” process to ensure highest confidence in successful technology transition.

Benefits: Reverse the trend of starting SDD with immature technologies which cause RDT&E and production cost growth and schedule slips.

War-Winning Capabilities ... On Time, On Cost
Integrated Life Cycle Management

Development and Sustainment of Warfighter Systems
“Technology Development Process”

War-Winning Capabilities ... On Time, On Cost
Strategy Development

Top Down Capability Driven Process to Support Strategic Sustainment Technology Investments

Strategic Drivers
- **E-Log21**
 - Reduced O&S Costs and increase system availability
- **AFMC Balance Scorecard**
 - Sustain Weapon Systems
 - Improve equipment availability at reduced cost
 - Enhance Sys Reliability
- **Customer Needs**
 - MAJCOMs
 - AFMC
- **AFRL FLTC**
 - Affordable Mission
 - Generation & Sust
- **Agile Combat Support**
 - Agile, Responsive & Effective Sustainment

Strategic Thrusts
- Improve the sustainability of weapon systems, and influence the sustainability of new systems in development
- Improved Inspection, Fault Detection, Prognostics and Diagnostics Capability (Sense and Respond)
- Apply Advanced Practices for Maintenance, Repair & Overhaul, Production Processes, and Supply Chain management

Focus Areas
- Crack & Corrosion Detection
- Coat/Decoat
- NDI
- LO Maintainability
- CBM + Integrity
- Maintenance Shop Improvements
- Aircraft Subsystem Diagnostics
- AGE, Test Equip & Avionics
- Obsolescence Management
- Supply Chain Enhancements

Technology Working Groups
- **Airframe Sustainment - TWG**
- **Propulsion Sustainment - TWG**
- **MRO&P Sustainment - TWG**
- **Combat Sustainment - TWG**
Governance Structure

Senior Sustainment Steering Committee (S3C)
Chair: AFMC/A4
Co-Chair: AFMC/A2/5
Members
- AAC/CA
- ACC/A4/A8
- AEDC/CA
- AETC/A4
- AF/A4 M/A4RC
- AFMC/A3/A8/EN/FM
- AFRL/CA
- AFMC/CMPs
- AMC/A4
- AFSOC/A4
- AFSPC/A4
- AOCC
- OA-ALC/CA
- SAF/AQR
- SAF/IEM
- ESC/CA

Sustainment Review Group
Chair: AFMC/A4D
Deputy: AFMC/A5S
Members
- SAF/AQRC
- AQQT
- IEL
- AF/A4MM
- HQ AFMC/A2/5
- A3
- A4
- A8
- EN
- FM
- AFMC Centers
- EN
- XR
- XP
- AFRL/PR
- MAJCOMs
- A4
- A8
- O-6 & GS-15

Internal Resources
- AFRL
- AFMC Centers
- AFMC Corporate Process
- AFMC CMPs

External Funding Sources
- MAJCOM, OSD
- Programs

AFMC CMPs

Technology Working Groups

AFMC Centers

MAJCOMS

Requirements Generation/Transition Agents

Outputs
- High Priority Sustainment Tech Needs
- Planning Documents
- ID Funding Source

Strategic Vision & Sustainment Thrust

Guidance

Advocacy
Accomplishments

- Expanded S3C membership to include MAJCOMs
- S3C approved sustainment technology needs:
 - Submitted for OSD transition/sustainment funding sources, i.e., Quick Reaction Funds, Reduction in Total Ownership Cost (RTOC)
 - Guided FY09 APOM and FY10 POM (Aging Aircraft and S&T supporting Affordable Mission Generation & Sustainment)
 - Funded projects include: Condition Based Maintenance Plus, Non-destructive Inspections, LO Maintainability, and Improved Depot Processes
STP Next Steps

• Leverage Industry Research & Development (IR&D) and Small Business Innovation Research (SBIR) Commercialization Pilot Program (CPP)

• Technology Roadmap Development
 – Provides a WBS structured approach to acquire, test, and implement critical sustainment technology to meet a specified capability
 – Utilizing A2/5 modified Capability Based Roadmap Tool

• STP Performance measures being developed and implemented ECD: Jun 08

• Finalizing governance document: AFMCI 61-103; S&T and Technology Transition Planning
Objective is to develop and insert innovative technologies across the lifecycle of a weapon system

• Pre-MS B: D&SWS initiatives focus on identifying highest priority needs, improved technology maturity assessments and establishing high confidence gated technology transition

• Sustainment: Strategy-to-task driven process to support cross-cutting sustainment technology investments

AFMC and the AF are pressing forward with revolutionary initiatives to
Develop & Insert Innovative Technologies into AF Weapons Systems
JANET C. WOLFENBARGER
Brigadier General, USAF
Director, Intelligence and Requirements
Director, D&SWS AFSO21 Office
HQ AFMC/A2/5 and CCO
937-257-3024 or DSN 787-3024
janet.wolfenbarger@wpafb.af.mil

Approved for Public Release IAW AFI 35-101: AFMC 08-070
The DoD T&E / S&T Program

Gerry Christeson

Defense Test Resource Management Center
Deputy Program Manager
Test & Evaluation / Science & Technology Program

NDIA 9TH Annual Science & Engineering Technology Conference
• **DoD Field Activity**
 – Established to ensure that the DoD T&E infrastructure is adequate to support the development and acquisition of defense systems

• **Annually certify that the T&E budgets of the military departments and defense agencies are adequate**

• **Develop a biennial strategic plan that assesses T&E requirements for a period of ten years and identifies required T&E infrastructure investments**

• **Responsible for T&E infrastructure policy for DoD’s Major Range and Test Facility Base (MRTFB)**

• **Administer three major T&E investment programs:**
 – Joint Mission Environment Test Capability Program (JMETC)
 – Central Test and Evaluation Investment Program (CTEIP)
 – Test and Evaluation/Science and Technology (T&E/S&T) Program
Synergy through Aligned Investment

Quadrennial Defense Review
Strategic Planning Guidance

Service T&E/S&T Working Groups

DoD Strategic Plan for T&E Resources

Service T&E Needs and Solutions Process

TRMC Joint Investment Programs

Risk mitigation needs Technology shortfalls

Risk mitigation solutions Advanced development

Requirements Capabilities

Transit Programs

Service Modernization / Improvement Programs

Acquisition Programs / Advanced Concept Technology Demonstrations

T&E Multi-Service / Agency Capabilities

DoD Corporate Distributed Test Capability

NDIA 9TH Annual Science & Engineering Technology Conference, 15-17 April 2008
T&E/S&T Program
Overview

• Test & Evaluation / Science & Technology (T&E/S&T) Program started in FY 2002
 – Joint DDR&E / DOT&E initiative

• Mission
 – Investigate and develop new technologies required to test and evaluate our transforming military capabilities
 ➢ Include any system that makes our warfighters more survivable and effective in combat
 ➢ Mature test technologies from TRL 3 to 6

• Goal
 – Transition emerging technologies into test capabilities in time to verify warfighting performance
Why a T&E/S&T Program?

- Nanotechnology
- Biometrics
- Genetic algorithms
- Microelectromechanical systems
- Adaptive optics
- High power microwaves
- High energy lasers
- Synthetic instrumentation
- Multispectral seekers
- Autonomous systems
- Hypersonics
- Intelligent agents
T&E/S&T Program Office

• What We Do?
 – Fund high risk / high pay-off T&E R&D projects
 – Foster technology transition to MRTFB and other DoD T&E field activities

• How We Do It?
 – Issue annual Broad Agency Announcement (BAA)
 – Tri-Service working groups draft BAAs and participate in proposal evaluation
 – Award T&E R&D projects starting at TRL3 and mature to TRL6
 – Executing Agents (EA) manage test technology Focus Areas

• Who Do We Fund?
 – Academia
 – Industry
 – Government laboratories
 – Teams of academia / industry / government labs
Technology Readiness Level

<table>
<thead>
<tr>
<th>TRL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL 9</td>
<td>Actual system 'flight proven' through successful mission operations</td>
</tr>
<tr>
<td>TRL 8</td>
<td>Actual system completed and 'flight qualified' through test and demonstration</td>
</tr>
<tr>
<td>TRL 7</td>
<td>System prototype demonstration in an operational environment</td>
</tr>
<tr>
<td>TRL 6</td>
<td>System/subsystem model or prototype demonstration in a relevant environment</td>
</tr>
<tr>
<td>TRL 5</td>
<td>Component and/or breadboard validation in relevant environment</td>
</tr>
<tr>
<td>TRL 4</td>
<td>Component and/or breadboard validation in laboratory environment</td>
</tr>
<tr>
<td>TRL 3</td>
<td>Analytical and experimental critical function and/or characteristic proof of concept</td>
</tr>
<tr>
<td>TRL 2</td>
<td>Technology concept and/or application formulated</td>
</tr>
<tr>
<td>TRL 1</td>
<td>Basic principles observed and reported</td>
</tr>
</tbody>
</table>
FY 2008 Funding Distribution

Industry 64%

University 12%

Government Org/Labs 24%

Note: numbers apply only to FY08 funding profile
FY 2008 Project Distribution

Industry: 47 Projects

University: 13 Projects

Government Org/Labs: 27 Projects

Note: numbers apply only to FY08 funding profile
FY08 T&E/S&T Focus Areas

• **Directed Energy Test (DET)** – On-board and off-board technologies to assess performance of high energy laser and high power microwave weapon systems

• **Hypersonic Test (HST)** – Technologies to provide high fidelity environments, M&S and instrumentation for testing of air breathing hypersonic vehicle propulsion and flight systems

• **Multi-Spectral Test (MST)** – Technologies to enable real-time, realistic T&E of multi-spectral and hyperspectral seekers and sensors through scene injection and projection

• **Non-Intrusive Instrumentation (NII)** – Technologies for non intrusive sensors, data storage, and power sources to provide continuous, non-obtrusive T&E
FY08 T&E/S&T Focus Areas (cont.)

• **Netcentric Systems Test (NST)** – Technologies to measure and assess the performance of the physical, information and cognitive domains of Joint, integrated architectures

• **Spectrum Efficient Technology (SET)** – Technologies to enable more efficient use of legacy telemetry bands and expand into non-traditional areas of the RF spectrum and the optical spectrum

• **Unmanned Autonomous Systems Test (UAST)** – Technologies for T&E of unmanned systems ranging from full tele-operation to totally autonomous, learning performance

111 active projects
T&E/S&T Program Management

TRMC HQ
Air Force
Army
Navy

NII: Naval Undersea Warfare Center
Newport, RI

MST: Aberdeen Test Center
Aberdeen Proving Ground, MD

PM: TRMC HQ
Arlington, VA

DET: PEO for Simulation, Training and Instrumentation
Orlando, FL

HSHT: Arnold Engineering and Development Center
Tullahoma, TN

UAST: White Sands Missile Range
Las Cruces, NM

NST: Naval Air Warfare Center
Pt. Mugu, CA

SET: Edwards AFB
Lancaster, CA

NDIA 9TH Annual Science & Engineering Technology Conference, 15-17 April 2008
Working Groups

<table>
<thead>
<tr>
<th>Army</th>
<th>AMRDEC</th>
<th>IEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMSAA</td>
<td>NVESD</td>
</tr>
<tr>
<td></td>
<td>ARL</td>
<td>OTC</td>
</tr>
<tr>
<td></td>
<td>ATC</td>
<td>PEO STRI</td>
</tr>
<tr>
<td></td>
<td>ATEC</td>
<td>RDEC</td>
</tr>
<tr>
<td></td>
<td>ATTC</td>
<td>RTTC</td>
</tr>
<tr>
<td></td>
<td>HELSTF</td>
<td>TRADOC</td>
</tr>
<tr>
<td>Navy</td>
<td>NAVAIR</td>
<td>NAWC</td>
</tr>
<tr>
<td></td>
<td>NAVSEA</td>
<td>NUWC</td>
</tr>
<tr>
<td></td>
<td>NRL</td>
<td>SPAWAR</td>
</tr>
<tr>
<td>Air Force</td>
<td>AEDC</td>
<td>AFRL</td>
</tr>
<tr>
<td></td>
<td>AFEWES</td>
<td>AFWDC</td>
</tr>
<tr>
<td></td>
<td>AFFTC</td>
<td>46th TW</td>
</tr>
<tr>
<td></td>
<td>AFOTEC</td>
<td>452nd FLTS</td>
</tr>
<tr>
<td>DoD</td>
<td>DDR&E</td>
<td>JCS</td>
</tr>
<tr>
<td></td>
<td>DISA / JITC</td>
<td>JFCOM</td>
</tr>
<tr>
<td></td>
<td>DOT&E</td>
<td></td>
</tr>
</tbody>
</table>
T&E/S&T Program
Project Selection Process

Drivers

Tri-Service Focus Area Working Group
- Executing Agent
- T&E Community Reps
- S&T Community Reps
- Subject Matter Experts

Needs/Requirements

Roadmaps and Solicitations

Proposals

Solicitations are issued through http://www.fedbizopps.gov

Final Selections

Recommendations

Source Selection Evaluation Team
- Working Group
- Subject Matter Expert
- Contracting Reps

Funding Decision

NDIA 9TH Annual Science & Engineering Technology Conference, 15-17 April 2008
BAA Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Govt FY 2008</th>
<th>Govt FY 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan-08</td>
<td>Feb-08</td>
</tr>
<tr>
<td>FY09 Project and Study Selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA's Draft BAA Topic Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry/Academia Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMO Topic Area Approval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA's Issue Solicitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offeror White Paper Submissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA WG's White Paper Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMO/EA Coordinate Selected White Papers / Develop Clarifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter RFP Issued to Selected Offerors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offeror Proposal Submissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA WG's Proposal Review & Recommendations to PMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMO Proposal Recommendations Review & Decisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifications, Negotiations & Contract Awards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BAA – Broad Agency Announcement
EA – Executing Agent
PMO – Program Management Office
RFP – Request for Proposal
WG – Working Group
FY – Fiscal Year

NDIA 9TH Annual Science & Engineering Technology Conference, 15-17 April 2008
The Proposal — Key Criteria

• Meets a T&E Need
• Requires S&T work
• High Risk / High Payoff
• Broad application (more than one DoD test activity)
• High potential for transition to development of a test capability
Technology Development Framework

War-Fighting Systems

T&E Needs

T&E Capability Needs

T&E Technology Needs

Fill gaps in existing T&E capabilities

Develop new & integrated T&E capabilities

Field components of T&E capabilities

NDIA 9TH Annual Science & Engineering Technology Conference, 15-17 April 2008
Partnerships

• Partnerships between universities, industry & DoD laboratories
 – Form the best research teams possible
• Collaborate to pursue bigger opportunities
 – Leverage each others’ core competencies
 – Share resources
• Increase transition opportunities through increased involvement in the T&E/S&T Program
Success Stories

• In-Situ Pressure Measurement
 – Transitioned to the hypersonic HyFly program which is sponsored by the Office of Naval Research and the Defense Advanced Research Projects Agency

• Tactical-Report Generation Test Bed
 – Transitioned to the CTEIP Interoperability Test and Evaluation Capability (InterTEC) program and to Joint Forces Command for automated netcentric test planning and scenario development

• Steerable Beam, Directional Antenna Concepts
 – Transitioned technology to the CTEIP integrated Network Enhanced Telemetry (iNET)
Success Stories (cont.)

• Heat Flux Sensor
 – Transitioned to Arnold Engineering Development Center for aerothermal measurements by miniaturized heat flux sensors at high temperatures—used in the Shuttle Return-to-Fly Program

• Directed Energy Data Acquisition Transformation
 – Transitioned to Naval Surface Warfare Center, Dahlgren for conducting T&E of High Power Microwave Systems

• Multi-Spectral Stimulator Injection Test Method
 – Transitioned to U.S. Army Redstone Technical Test Center Future Force/Future Combat Systems for hardware-in-the-loop testing of multispectral systems
Summary

• Only DoD S&T program for T&E

• Tri-Service participations

• Focus on transition

• Partnerships
 – Government labs / ranges
 – Industry
 – academia
Questions?

Contact Information:

Mr. Gerry Christeson
Defense Test Resource Management Center
Deputy Program Manager
T&E / S&T Program
Gerald.Christeson@osd.mil
Back Up
T&E Needs

The R&D project:

- Addresses the T&E requirements
- Fills known T&E gaps
- Articulates how the above are to be achieved

Example: T&E Need

Ground test facilities generally use combustion processes to create representative flight conditions for hypersonic engine testing. The effects of vitiates on the engine performance is not well known. Ground test facilities need a clean air test capability to more realistically simulate actual flight conditions to accurately predict engine performance in flight.
S&T Challenges

The R&D project:
• Develops new test & evaluation capabilities that do not currently exist
• Utilizes /develops beyond state-of-the-art technologies that can be high-risk
• Pushes technology to new limits

Example: S&T Challenges
• Develop resistively heated elements to routinely operate between 2200 to 2400 Kelvin (4535 to 4927 deg F)
• Develop electrical interface materials that can maintain high current (60 Amp or greater) electrical and mechanical connection at extreme temperatures
• Develop element materials and shapes that can withstand temporal temperature cooling gradients of at least a thousand degrees a minute and maintain air seal to prevent internal cooling air from leaking into external airflow and cooling it
Manufacturing Readiness Levels (MRLs)
Manufacturing Readiness Assessments (MRAs)
In an S&T Environment

Jim Morgan
Manufacturing Technology Division
Phone # 937-904-4600
Jim.Morgan@wpafb.af.mil

Integrity - Service - Excellence
Why MRLs?

“Advanced weapon systems cost too much, take too long to field, and are too expensive to sustain” -- Congress, OSD, CSAF, GAO

• Production/manufacturing processes are major contributor
 – A GAO study of core set of 26 programs: RDT&E costs up by 42% and schedule slipped by 20%
 • $42.7B total cost growth
 • 2.5 years average schedule slip
 – Characteristics of successful programs:
 • Mature technologies, stable designs, production processes in control
 • S&T organization responsible for maturing technologies, rather than program or product development manager

• Need way to mitigate impact of diminishing manufacturing infrastructure
 – People, policy, programs gutted
 – Lost recipe on how to manage manufacturing risk
 – Won’t get infrastructure back but still need to manage manufacturing risk
Technology Readiness Levels (TRLs)

Provide a common language and widely-understood standard for:

- Assessing the *performance maturity* of a technology and plans for its future maturation
- Understanding the level of performance risk in trying to transition the technology into a weapon system application

TRLs leave major transition questions unanswered:

- Is the technology producible? Reproducible?
- What will these cost in production?
- Can these be made in a production environment?
- Are key materials and components available?
• Common language and standard for
 – Assessing the *manufacturing maturity* of a technology or product and plans for its future maturation
 – Understanding the level of manufacturing risk in trying to produce a weapon system or transition the technology into a weapon system application
• Designed to complement TRLs
• Designed to help set the agenda for manufacturing risk mitigation
• Usage
 – Army, for Future Combat Systems development efforts
 – Missile Defense Agency using EMRLs on all development programs
 – Several defense primes using on weapon system programs
 – *Mandated by AFRL on all hardware CAT I ATDs*
Relationship to System Acquisition Milestones

<table>
<thead>
<tr>
<th>Pre-Concept Refinement</th>
<th>Concept Refinement</th>
<th>Technology Development</th>
<th>System Development & Demonstration</th>
<th>Production & Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRL 3</td>
<td>MRL 4</td>
<td>MRL 5</td>
<td>MRL 6</td>
<td>MRL 7</td>
</tr>
<tr>
<td>Mfg. Concepts Identified</td>
<td>Mfg Processes In Lab Environment</td>
<td>Components In Production Relevant Environment</td>
<td>System or Subsystem In Production Relevant Environment</td>
<td>Pilot Line Demonstrated Ready for LRIP</td>
</tr>
<tr>
<td>MRL 8</td>
<td>MRL 9</td>
<td>MRL 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRIP Demonstrated Ready for FRP</td>
<td>FRP Demonstrated Lean Production Practices in place</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRL 1</th>
<th>TRL 2</th>
<th>TRL 3</th>
<th>TRL 4</th>
<th>TRL 5</th>
<th>TRL 6</th>
<th>TRL 7</th>
<th>TRL 8</th>
<th>TRL 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Principles Observed</td>
<td>Concept Formulation</td>
<td>Proof of Concept</td>
<td>Breadboard in Lab</td>
<td>Breadboard in Rep Environment</td>
<td>Prototype in Rep Environment</td>
<td>Prototype in Ops Environment</td>
<td>System Qual</td>
<td>Mission Proven</td>
</tr>
</tbody>
</table>

Relationship to Technology Readiness Levels
MRL Evaluation Criteria (Threads)

- Technology and Industrial Base
- Design
- Materials
- Cost and Funding
- Process Capability and Control
- Quality Management
- Manufacturing Personnel
- Facilities
- Manufacturing Management
MRL Evaluation Criteria (Threads)

<table>
<thead>
<tr>
<th>S&T Phase</th>
<th>6.2 / 6.3</th>
<th>6.3 / 6.4</th>
<th>6.3 / 6.4 / 7.8</th>
<th>6.4 / 6.8 / 7.8</th>
<th>7.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq Phase</td>
<td>Pre CR</td>
<td>TD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread</td>
<td>Sub-Thread</td>
<td>MRL 3</td>
<td>MRL 4</td>
<td>MRL 5</td>
<td>MRL 6</td>
</tr>
<tr>
<td>Technology Maturity</td>
<td>TRL 3</td>
<td>Should be assessed at TRL 4.</td>
<td>Should be assessed at TRL 5.</td>
<td>Should be assessed at TRL 6.</td>
<td>Should be assessed at TRL 7</td>
</tr>
<tr>
<td>Technology Transition to Production</td>
<td>Potential manufacturing sources identified for technology needs. (Commercial/Government, Domestic/Foreign)</td>
<td>Industrial Base capabilities and gaps/risks identified for key technologies, components, and/or key processes.</td>
<td>Industrial Base assessed to identify potential manufacturing sources.</td>
<td>Industrial Capability Assessment (ICA) for MS B has been completed. Industrial capability in place to support mfg of development articles. Plans to minimize sole/foreign sources complete. Need for sole/foreign sources justified. Potential alternative sources identified.</td>
<td>Industrial capability to support production has been analyzed. Sole/foreign sources stability is assessed/monitored. Developing potential alternate sources as necessary.</td>
</tr>
<tr>
<td>Design Maturity</td>
<td>Evaluate product lifecycle requirements and product performance requirements.</td>
<td>Systems Engineering Plans and the Test and Evaluation Strategy recognize the need for the establishment/validation of manufacturing capability and management of manufacturing risk for the product lifecycle. Initial Key Performance Parameters (KPPs) identified.</td>
<td>Identification of enabling/critical technologies and components is complete and includes the product lifecycle. Evaluation of design Key Characteristics (KC) initiated.</td>
<td>Basic system design requirements defined. All enabling/critical technologies/components have been tested and validated. Product data required for prototype manufacturing released. A preliminary performance as well as focused logistics specification is in place. Key Characteristics and tolerances have been established.</td>
<td>Product requirements and features are well enough defined to support detailed systems design. All product data essential for manufacturing of component design demonstration released. Potential KC risk issues have been identified and mitigation plan is in place. Design change traffic may be significant.</td>
</tr>
</tbody>
</table>

TRL stands for Technology Readiness Level.
Air Force MRL Implementation Approach

In partnership with Joint Defense Manufacturing Technology Panel (JDMTP)

- **Conduct pilot MRAs on various programs**
 - Advanced Technology Demonstration programs
 - Weapon system acquisition programs
 - Demonstrate benefits of using MRLs

- **Conduct training for key program personnel**
 - What are MRLs, how to conduct an MRA
 - Air Force ManTech personnel
 - Category I ATD IPTs and ACAT pilot program personnel
 - Utilize various training materials that can be tailored
 - Transition to DAU once MRLs are in policy

- **Put MRLs into policy documents**
 - AFRL, AFMC, AF, DoD
MRL Incorporation into AFRL ATDs

• AFRL/RXM conducted ATD pilot assessments on five ATDs, Nov 04 – May 05
 – Identified gaps in manufacturing maturity that would delay technology transition upon ATD graduation
 • Highlighted what was required to turn technologies into products
 – Tasked by AFRL/CA to implement MRLs into all “hardware” intensive ATDs
 • Developed three year plan to reach steady state
 • Developed basic MRL implementation process
 • Developed training for ATD IPTs and ManTech personnel

• Identified core ManTech funding for MRAs and selected follow-on MRL maturation

• Now taking on all CAT I “hardware” intensive ATDs
Manufacturing Readiness Level Implementation Approach (ATDs)

INTRODUCE
- Meet with PM to get buy-in and gather program info
- Customize MRL approach for program

TRAIN
- Train program IPT on manufacturing tools to support manufacturing maturity efforts

OBJECTIVE
STATEMENT
DEFINED
- Define objective of program
- Define what is to be assessed and why

ASSESS
- Determine current MRL
- Develop plan, actions, and estimate costs to get to target MRL
- Schedule for implementation

INCORPORATE
- Incorporate MRL into program baseline

MANAGE
- Manage overall process
- Manage risk identification and reduction process
- Manage manufacturing maturity to target MRL
- Reassess as appropriate
MRA Deliverables

• Identification of **current MRL**
• Identification of key factors where manufacturing readiness falls short of **target MRL**
 – Define driving issues
 – Define high risk areas
• Identify programs and plans to reach target MRL
 – *Generate the manufacturing maturation plan (MMP)*
• Assess type and significance of risk to cost, schedule and/or performance
Emerging MRA Successes

High Durability Hot Exhaust Structures
- Provided identification of high risk processes and single point failures driving scale-up from MRL 3
- Maturation plan provides awareness of issues relating to move to new production facility
- Follow-on MRA at new facility will help ensure transition success

F135
- Enabling opportunity to accelerate transition for F135 thrust improvement by ~4 years
- Advanced feature high cost driver: must overcome producibility issues
- Developed plan to mature from MRL 3 to 5 leveraging commercial and military IR&D, F135 program, and ManTech funding
Emerging MRA Success

Sensor Hardening for Tactical Systems

(Two contractors)

• Identified common manufacturing readiness driver among both contractors -- Optical Power Limiter (OPL) -- MRL 3
• Drilling down into OPL supplier processes to identify root issues -- OPL also likely driver on Sensor Hardening for UAS ATD
• MRA enabling identification of common manufacturing issues and ManTech investment opportunity
ACAT MRA Pilot

- Translate the successful MRL ATD process to acquisition programs
- Common themes
 - Utilize approximately the same process
 - Utilize current MRL definitions to assess against
 - 3-5 people per MRA
- What is different
 - ATDs focus on MRL 3 – MRL 6
 - Assess manufacturing maturity with a goal of transition/implementation
 - ACATs focus on MRL 4 – MRL 9
 - Schedule, cost, manning considerations
 - Milestone decisions
 - Production planning process
 - Will require a more rigorous approach
- Develop and document a structured ACAT assessment approach
 - MRA Deskbook
 - First draft completed Mar 07 based on ATD and limited ACAT experience
 - Drafted with SAF/AQRE, MRL Working Group, and ASC/EN
 - Test drive on acquisition programs
 - Update based on lessons learned
Manufacturing Readiness Implementation Approach (ACATs)

INTRODUCE

Meet with Wing/Program Management Team and Other Stakeholders

TRAIN

Define Objectives
- Yield Improvement
- New Variant (eg Spiral)
- Increased Capacity (Surge)

OBJECTIVE STATEMENT DEFINED

Decompose the Problem Space
- By Technology (ie Component)
- By Supplier
- Handle Assembly & Test

ASSESS

Wing/PM Team owns the plan

INCORPORATE

MANAGE

Meet with Wing/Program Management Team and Other Stakeholders

Define Objectives
- Yield Improvement
- New Variant (eg Spiral)
- Increased Capacity (Surge)

Decompose the Problem Space
- By Technology (ie Component)
- By Supplier
- Handle Assembly & Test

Wing/PM Team owns the plan
ACAT MRA Process

Determine taxonomy of MRA
- What?
- How?
- When?
- Agree on ground rules

Examine targeted cells
- Determine threads that apply?

Assess targeted cells
- Examine cell w.r.t threads
- Review process maps, VSA, etc.
- Determine MRL
- Determine if deeper dives are required

Conduct deep dives?
- Determine weak links in process

Summarize cell MRLs
- Develop initial scoring
- Develop plan to reach target MRL
- Outbrief GA
- Discuss lessons learned
- Develop government outbriefs
AMRAAM

- **What:** Performed a system-level MRA on the AMRAAM C-7 variant
 - Looked at all test and assembly steps, including FACO
 - Fourteen key suppliers; over thirty-five technology areas examined

- **Impact:** Based on independent assessment, AMRAAM Group received go-ahead to proceed to next production lot for C-7 variant; reduced testing cycle time in particular cell by 90%
Some MRA Thoughts

• MRLs are not a report card
 – *MRL 7 might not be good*
 – *MRL 3 might not be bad*

• MRLs are a tool to manage and mitigate manufacturing risk
 – *A common language used to assess manufacturing maturity*
 – *Provide insight not oversight*
Some MRA Lessons Learned

• Process is more effective if company is actively engaged in the assessment
• System integration and test operations are often ripe for maturation efforts
• Resources required to conduct an MRA will vary significantly
 – Not all programs are equal
• Subject matter expertise is needed to “do it right”
• Templates and guidelines developed
 – Not a one size fits all solution
 – Engineering skills/judgment still need to be used
 – Avoid a checklist mentality
Future Steady State

• Programs utilizing MRLs
 – Funding MRL maturation
 – Understanding of manufacturing concepts

• Use of MRLs in policy
 – Program offices staffed/trained
 – Manufacturing a key component for milestone reviews

• Training
 – DAU acts as the primary DoD training agent
 – AFIT supports detailed manufacturing training
Additional Information

• MRL definitions can be found at DAU web site:
 • Look for MR definitions
 • Look for MR matrix (threads)
 • Look for MRL tutorial
 • Look for MRA Deskbook

• Google – manufacturing readiness assessments
In Closing

• Using a three-pronged approach to implementation
 – Piloting and incorporating into various programs
 – Training
 – Policy insertion

• Overall implementation is progressing
 – Air Force
 – DoD

• We are still learning and applying lessons learned

Air Force is Leading DoD-wide Implementation
Rapid Prototyping: Leapfrogging into Military Utility

Mr. Randy Walden
Air Force Rapid Capabilities Office
(SAF/RCO)

9th Annual NDIA Science & Engineering Technology Conference
16 April 2008
Rapid Prototyping Needed

- Asymmetric threat has a very short timeline for change
 - COTS timeline available to threats
 - WWW used by threat
- DoD Acquisition has relatively long timeline
 - Limited access to COTS
 - Budget process is multi-year
- Complex systems stress definition of requirements/architecture
 - Requirement trade-offs delay system
 - Only as fast as slowest element

Force Protection (e.g., IEDs)

Homeland Defense concerns

Faster evolution of traditional threats
SAF/RCO Rapid Prototyping

Objectives

- Rapidly develop new capabilities to counter the increasing pace of threat evolution
- Improve acquisition process; facilitate faster transition of S&T to warfighter
- Realistic definition of requirements & architectures for complex problems; prototype to innovate

Enablers

- Mindset: acceptance of 80% solution
- Team: leadership support, warfighter involvement, “A-team” executing
- Investments for the future: open architectures, etc.
- Experience: practice to improve
“Rapid Prototyping” in Commercial Industry

A tool for rapid design & manufacturing …

A way to rapidly get products to market …

A way to innovate …

Not a new idea; approaches well established in commercial industry
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Air Force Rapid Capabilities Office

- Established April 2003

- Mission: Expedite development and fielding of select DoD systems
 - Leveraging defense wide technology development efforts and existing operational capabilities

- Reports directly to Board of Directors
 - SecAF, CSAF, SAF/AQ, and USD(AT&L) chairs
 - Responds to Combat Air Force (CAF) and Combatant Command (COCOM) requirements

- Rapid Prototyping Example: National Capital Region (NCR) IADS
 - Enhanced Regional Situational Awareness (ERSA)
 - Norwegian Advanced SAM System (NASAMS)
National Capital Region Airspace

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
National Capital Region Airspace

1300 beacon tracks within ADIZ for one hour time period

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
RCO Rapid Developments

Enhanced Regional Situational Awareness (ERSA)
- Integrated air defense system for National Capital Region (NCR) in 2 years
- Operational for Jan 2005 Presidential Inauguration
- Developed and Fielded
 - Tower Mounted Radars
 - Aircraft ID
 - Visual Warning

Norwegian Advanced Surface to Air Missile System (NASAMS)
- Developed & integrated system into NCR IADS
- 9 months from Chairman JCS tasking to IOC

NDIA 2008 Walden-Rapid Prototyping - 9
Rapid Prototyping
Visual Warning System (VWS)

Visual Warning System developed by rapidly integrating COTS to create a new capability
Visual Warning System (VWS)

- Provide visual warning to errant pilots entering NCR airspace
- Eye safe system at aperture and beyond
- Precision pointing at single aircraft
- Special Flight Advisory has been published on meaning of lights
- Operational on 21 May 2005

• Warning Sequence with translucent covers on

• Nighttime aircraft view from 3 nm, 28 Jan 05
A NORAD spokesman cites the use of the Visible Warning System

AIR SAFETY
Small Plane Enters Restricted Space
2nd Incident in a Week Prompts Calls to Refine Evacuation Process at Capitol

By Mary Beth Sheridan
Washington Post Staff Writer
Thursday, March 13, 2008; Page B06

A small plane penetrated restricted air space and flew within six miles of the U.S. Capitol yesterday before being intercepted without incident, officials said.

When air-traffic controllers couldn't reach the pilot by radio, military personnel on the ground aimed red and green warning lights at the cockpit, said Maj. Brian Martin, a spokesman for the North American Aerospace Defense Command, or NORAD. That prompted the pilot to veer west, Martin said.

Two F-16 jets from Andrews Air Force Base and a Coast Guard helicopter escorted the plane to Leesburg airport, where the pilot was questioned by the Secret Service and the FAA, officials said. He was not considered a threat, they said.
A Cessna 177 crosses the Air Defense Identification Zone (ADIZ) in violation of airspace rules.

NORAD warns pilot using the Visible Warning System.

The Cessna is escorted to Leesburg Airport by F-16 interceptors.
NASAMS Integration Timeline

<table>
<thead>
<tr>
<th>FY04</th>
<th>FY05</th>
</tr>
</thead>
<tbody>
<tr>
<td>A M J</td>
<td>O N D</td>
</tr>
<tr>
<td>J A S</td>
<td>J F M</td>
</tr>
</tbody>
</table>

- Chairman JCS Direction ▲
- AT&L funding ▲
- Fire Control Cue Developed ▲
- Integration with fire control unit ▲
- Live Fire Tests ▲ ▲
- NORAD Validation and Acceptance Testing ▲ ▲
- NASAMS IOC in NRC ▲

NASAMS developed, deployed and operational in nine months
Key Attributes for Rapid Fielding

- Clear Charter with Clear Priorities
 - Schedule was #1; field ERSA by inauguration day 2005 (18 months)

- Senior DoD, Joint Staff, US Air Force, & US Army leadership buy-in
 - Short chain of command facilitated quick decisions

- Small, Focused, Empowered Team; 5 – Program Office, 7 Contractor, plus key external POC’s
 - Experienced, solution oriented, A-team type personnel
 - QRC focus – Long hours, 6 & 7 days/week were routine

- Recognition of Need for After-Fielding Clean Up
 - Formalized needed leases and MOAs/MOUs
 - Minor safety adds to installed equipment
 - Long-term transition planning
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
• Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Enablers to Rapid Development

• Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Open System Architecture

Advantages

- **Commonality allows lower cost ...**
 - Plug and play pieces reusable from system to system

- **Innovation enabler ...**
 - Allows entrance of “smaller” players, often with innovative ideas

- **Rapid development & rapid upgrades ...**
 - Open design allows replacement of individual components
 - Allows isolation of components that evolve technically at differing rates (e.g., rapid Moore’s Law advance in computing)
 - Upgrades vs. replace; more responsive to agile threats
Open Systems Support
“Leverage Adapt” Strategy

“Leverage & adapt”
- Good for rapidly changing technology
- Good for rapidly changing requirements
- Built-in refresh and improvements
- More difficult to manage

“Freeze & build”
- Freezes technology and builds to fixed design
- Acceptable for slow moving technologies
- Requires stable requirements throughout lifecycle
- Easier to manage with current acquisition strategy

- Open Systems supports “leverage and adapt” strategy; allows DoD to leverage commercial industry’s investment
- Continuous upgrade/refresh possible to meet evolving threats and obsolescence
Layered Open System Architecture Approach

- Change with technology and readily add new capabilities
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Prototyping Facilitates Innovation

“It is far easier for [users] to articulate what they want by playing with prototypes than by enumerating requirements.”†

• Key additional use of rapid prototyping is for innovation; “simulate to innovate” concept
Development Approaches

Linear / “Waterfall” Approach

Fixed Design

- **Problem**
- **Design**
- **Build**
- **Use**

- Assumes “design” can be accomplished apriori
- No developer / user co-design

Rapid Prototype Approach

Inherent Feedback

- **Problem**
- **Use**
- **Prototype**
- **Design**

- Build prototypes to explore “design” approach
- Iterate based on user feedback; design influenced by user response

- Get user feedback
- Define requirements through “play”

- Understand problem
- Generate idea

- Use prototype to understand better approach

NDIA 2008 Walden-Rapid Prototyping - 24
Prototype to Innovate

National Capital Region IADS

- Integrated Air Defense for protection of the National Capital Region

Touch Table

- Vehicle for novel data extraction / representation and action

X-37B Orbital Test Vehicle

- Unmanned reusable vehicle test platform for new space technologies
Summary

- Rapid prototyping permits timely, cost effective military capability development
 - Strongly motivated by increasing pace of threat cycle

- Air Force Rapid Capabilities Office (SAF/RCO) established to expedite development of selected DoD systems
 - Number of successful projects (e.g., ERSA, NASAMS)

- Success of rapid developments dependent on variety of factors
 - 80% solution mindset, strong team, enabling investments (e.g., Open system architectures)

- Additional rapid prototyping role in innovating new military capabilities
 - Rapid prototyping cycle allows refinement of solution
Challenge to S&T Community

- Traditional “S&T Gap” still exists; greater warfighter interchange needed

- Apply rapid prototyping approach earlier in S&T development

```
Early insertion of new technologies
Faster innovation
Discovery of new / advanced capabilities
```

Mr. Randy Walden / (703)696-2407 / safcrowsworkflow@pentagon.af.mil
Boeing’s Approach to Innovation & Technology Integration

Dr. David Whelan
Vice President & Deputy GM, Advanced Systems & Chief Scientist, Integrated Defense Systems
The Boeing Company

April 16, 2008
The Boeing Company Today

Boeing Commercial Airplanes

Integrated Defense Systems

Copyright © 2007 Boeing. All rights reserved.
Boeing is balancing a customer pull for integrated systems with technology push for “Innovation”
• Leverage Boeing technology to find & develop growth platforms:
 • Markets & businesses that meet Boeing criteria
• Create competitive advantage in new markets and businesses
 • Leverage Boeing’s differentiated assets
 • Focus on Breakthrough Technology
 • Create new verticals via development/acquire
• Leverage outside R&D resources (DARPA, military labs, universities,…)
• Efficient Stage/Gate Innovation Process
 • Migrating growth opportunities to comfort zone
The Key was to move FCS toward the core by:

- **Partnersing**
 1. Experimentation & Customer Feedback
 2. Teamed with SAIC
 - Army Land Combat domain knowledge
 3. Army LSI for FCS
 - UDLP & GD added

- **Spiral Development**
 4. Phased Technology Increments

- **Spiral Out**
 5. To Current Force

Customer / Market
Technology Integration Driven by Customer Requirements (Pull) and Innovation (Push)

Understand Customers Most Important & Deficient Capability Needs

Technology Sources

- Phantom Works
- IDS Businesses
- Strategic Partners
- Suppliers
- CRAD
- Government Labs
- Strategic Universities

Identify Technology Needs (Technology, processes, skills)

Competitor Analysis

State of the Art Analysis*

Prioritize & Allocate Investments

Transition and Insert Technically Superior Solutions For Achieving Growth And Productivity

- Technology Watch and Disruptive Technologies - STFs

Develop, Integrate & Protect Technologies

* - Technology Watch and Disruptive Technologies - STFs

Spin-off to Adjacent Markets (Next Square²)

Develop Market-Driving Growth Strategies

Identify Capability Needs & IP Considerations

Capability Gap

Capability Currently Available
Integrated Defense Systems

21st Century Defense Technology Vectors

Key Vectors

Precision Sensing, Navigation & Timing
- ICBM-IMU
- JDAM
- GPS-II
- SDB
- GMD
- GPS-III
- Very Small SDB
- iGPS (Comm & Nav)

Integrated C4ISR
- FCS SOSCOE
- EP-X
- Un-blinking Eye
- P-8A
- TSAT
- Foliage Penetration

Info Assurance
- EA-18G
- JTRS
- Railhead
- Secure Network Server (SNS)
- High Integrity Knowledge Mgmt

Nano-electronics & Nano Technology
- G-bytes/sec Analog-Digital
- ASIC Processors
- RF & Digital Systems on Chip
- Mission Specific Processors
- Carbon-X

Laser & Photonics
- ABL
- ATL
- Laser Comms
- Solid State HE Lasers

Unmanned Systems & Robotics
- ScanEagle
- A-160
- FCS Robotics
- Orbital Express
- Variably Manned Systems

Energy & Environment
- Space Solar Cells
- Terrestrial Solar Cells
- Bio-Fuels
- BWB
- H² Powered UAVs

Boeing Perspective Development

Boeing Technology

Imperatives

10x improvement, Integrate Comms & Navigation

No Stovepipes between ISR Systems
Ad-Hoc Task/Exploit

High Integrity Networks & Computer Systems

Intelligence at the edge, 20 yrs till Silicon = Human

Communicate, Tag and Engage at the Speed of Light

High Integrity Zero “Pilot” Operations

High Efficiency, Zero Emissions, Alternate Energy
Successful Technology Integration Requires M&S, Experimentation, and Rapid Prototyping

- Build a Little
- Test a Little
- Think a Lot

Key Components for Successful Technology Integration

Conceptual Idea

Modeling & Simulation

Experimentation

Lessons Learned

Rapid Prototyping
Virtual Warfighter integrates Boeing LABNET infrastructure with JEFX infrastructure enabling additional virtual assets as well as enhanced M&S and assessment capabilities in JEFX2006.

Virtual Assets to be used during JEFX2006 events:
1. F/A-18
2. F-15E
3. system of 4 aircraft J-UCAS
4. B-1B
5. F-16
6. AWACS 40/45
7. BIC Viewing Centers
8. Mobile Connexion Van (MCV)

Live-Virtual-Constructive enables Pilots to fly real hardware in live events without live fly costs.
Technology Evaluation through Experimentation

- Experimentation, using M&S, enables exploring the impact of new technology at every level of insertion...before building or buying
 - For example, improved sensor and data link capability in A&M aircraft supporting BP counter drug operations (existing military or entirely new)
 - Or new counter cruise missile radar/sensor capabilities
 - Or better forest firefighting equipment
 - Or new WMD detection capabilities
 - Or direct hospital to first responder medical support technologies
 - Or ...
Boeing’s & Iridium’s “Group Call” On-Orbit Upgrade

Enables Iridium Cellular system to function a “UHF Satcom Radio”

- **Service(s)**
 - Support DOD customers
 - Encrypted service, does not require call intercept
 - Three types of Services
 - Push to talk (PTT)
 - Broadcast
 - Position Location Information (PLI)
 - GC shall not impact the call performance of non-GC users
- **Security**
 - All group calls shall be encrypted
 - System shall have the capability of disabling specific users if equipment is lost or stolen
 - Encryption key management shall be provided
 - All group members shall have the latest encryption update prior to joining a GC

Boeing has already been able to upgrade the constellation to offer new services with Army utility
High Integrity GPS (iGPS Enhancement via Iridium)

Enabled by Horizontal (ground) Integration of Iridium Nav-Com System & GPS
- Disruptive innovation opportunity to address unmet needs
 - Antijam, Accuracy, Integrity, Availability
- Creates a more Robust PNT Constellation
- Integrates GPS’s Psuedorange multilateraltion with Transit’s FDOA
- Initial capability deployable by 2010

iGPS Promotes Continued U.S. PNT Leadership
Application: Early SOF iGPS Capability to SOCOM

US Opportunity: Decisive Navigation Superiority that is Secure and Dependable

- More Robust GPS
 - Accuracy, integrity, and availability
- Keep GPS During Electronic Countermeasures
 - iGPS AJ Prevents ECCM from interfering with DAGR
- Improve GPS Availability in Restrictive Environments
 - Forests, Mountainous, Urban
 - iGPS Redundant Dynamic Ranging Counteracts Sky Blockage in spite of High Mask Angles
- Support Global JBFSA
 - iGPS offers 2-way satellite data link and JBFSA GUI embedded in DAGR
 - Network of DAGRs can triangulate enemy jammer locations
- Rapid (<2 min) Time to First Fix under Severe Jamming (>70 dB J/S)
 - Improves battery life for extended missions
• Autonomous Vertical-UAS utilizing Optimum Speed Rotor technology coupled with other design features to achieve long endurance and long range with significant payload capability

• Wide mission range
 • C4ISR
 • Organic armed ISR
 • Utility missions

• DARPA-Army program, began in 1998 – presently in Phase I (started Aug 2003)
Technical Approach

• Advanced Rotor
 • Optimum (Variable) Speed Rotor (OSR), 50-100% RPM
 • Low Disk Loading
 • High Lift/Drag Blade Airfoils
 • Hinge-less Rigid In-Plane Rotor for Precision Control

• Fuselage
 • Aerodynamically clean retractable main gear

• Autonomous Vehicle Flight Control
 • Flight Waypoint Control
 • Auto take-off and land

• Structure
 • Lightweight high stiffness blades
 • Lightweight fuselage

• High Fuel Fraction
A160 Phase I Performance Goals

- 20 hrs (sea level) endurance with 300 lb payload
- HOGE of 15,000 ft altitude; flight at 30,000 ft altitude
- >2,200 nm range
- Airspeed to 140 knots
- Re-supply delivery of 1000 lb payload to a radius of 500 km
- System reliability to enable 1,000 flight hours between air vehicle losses
DARPA & Boeing’s Orbital Express:
On-orbit servicing enhances space missions

Autonomous Rendezvous & Soft Docking allows:
- Inspect & service satellites / spacecraft
- Deliver commodity consumables / cargo
- Assemble large space structures
Future Systems Enabled by Orbital Express

Demonstrated key technologies to build a future operational system.

The concept of operations provides:
- A servicing vehicle to rendezvous with client vehicle.
- Required services.
- Rendezvous with a commodities depot to replenish supplies before servicing the next client vehicle.

Capabilities enabled by servicing include:
- Refueling
 - Maneuverability
 - Resolution
 - Time over target
 - Repeated access
 - Increased life
 - Randomization
- Replace or upgrade component
 - P3I – new technology infusion
 - Contingency replacement or repair
- On-orbit assembly, test, and checkout
 - Large space optics
 - NASA exploration concepts
- Asset Inspection
Two vehicles built at Cranfield Aerospace

- Dynamic 8.5% scale – 20.4-foot wing span
- Remotely piloted, dynamically scaled
- NASA/AFRL contributions include testing in 30x60 wind tunnel and at Dryden
• BWB Low Speed Vehicle (X-48B)

Investigate
 - Stall characteristics & departure boundaries
 - Asymmetric thrust controllability
 - Control surface hinge moments
 - Dynamic ground effects

Vehicle Characteristics
 • Max Equiv Airspeed: 118 kts
 • Max Altitude: 10,000 ft MSL
 • Vertical Load Factor Limits: +4.5 to -3.0 g’s
 • Flight Duration: 30 to 50 min
 • Emergency Recovery System (Drogue, Parachute, and Air Bags)
X-48B As Initial Flight Mechanics Risk Reduction

Boeing Technology | Phantom Works

Blended Wing Body – Multi-Role Platform

- First flight July 20, 2007; 11 flights completed
- Addressing risk reduction
 - Low speed flight environment
 - Flight mechanics (flight control laws, stability and control characteristics)
 - Secondary Power (control surface / actuator power)
Summary: Transitioning Technology

- Fulfilling Customer Needs via Technology Innovation
- Balance of Technology Push and Systems Pull
- M&S, Experimentation and Demonstrations Critical
Inserting Technology Incrementally: Introducing FCS Technology into the Current Force

NDIA Conference

Dan Zanini
LSI Deputy Program Manager, Future Combat Systems
Senior Vice President, SAIC

17 April 2008
Connect – Detect – Protect – Project...FCS

- Mounted Combat System (MCS) XM1202
- Infantry Combat Vehicle (ICV) XM1206
- Non-Line of Sight Cannon (NLOS-C) XM1203
- Non-Line of Sight Mortar (NLOS-M) XM1204
- Armed Robotic Vehicle – Assault Light (ARV-AL) XM1219
- Non-Line of Sight Launch System (NLOS-LS) XM501
- Mounted Combat System (MCS) XM1202
- Medical Vehicle Treatment (MV-T) XM1208
- Medical Vehicle Evacuation (MV-E) XM1207
- Field Recovery and Maintenance Vehicle (FRMV) XM1205
- Multifunctional Utility/Logistics and Equipment Countermine and Transport MULE-T XM1217
- Unmanned Air Vehicle (UAV) XM 156
- Unmanned Air Vehicle (UAV) XM 157
- Reconnaissance and Surveillance Vehicle (RSV) XM1201
- Command and Control Vehicle (C2V) XM1209
- Small UGV (SUGV) XM1216
- Network
- Class I Unmanned Air Vehicle (UAV) XM 156
- Class IV Unmanned Air Vehicle (UAV) XM 157

Approved for public release; distribution unlimited. PM FCS case 08-051, 15 April 2008
Potential for Inserting Technology/Capabilities

Tech Development & Growth Strategy

- Gap Analysis
- Tech Forecast/Roadmaps
- Tech Maturation/Analyses
- Design Integration & Test

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
FCS Technology to the Force

Current Force Gap Analysis

FCS “Portfolio” Analysis

Recommended Spin Outs

Unit Set Capabilities

Subsystem Capabilities

Component Capabilities

Fielding 6 current force BCTs/yr (76)

Current

Future

Fielding 15 FCS BCTs

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
B-Kit Spin Out 1 Status

KEY ACCOMPLISHMENTS:

- Abrams, Bradley and HMMWV NET
- SO1 B-Kit FQT SW to Current Force Vehicles
- B-Kitted HMMWV, Abrams and Bradley delivered for test

FY08-09:

- AETF Evaluation Events
 - PTRR: 2Q FY08
 - TFT Dry Runs Start: 2Q FY08
 - TFT: 2Q FY08
 - FDT&E: 3Q FY08
 - LUT: 3Q/4Q FY08
- Abrams and Bradley Final Safety Release: 2Q FY08
- Complete Abrams and Bradley IQT at APG: 3Q FY08
- SO 1 Milestone C: 2Q FY09

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
UGS Spin Out 1 Status

KEY ACCOMPLISHMENTS:
- UGS NET
- T/U UGS prototypes delivered for test

FY08-09:
- AETF Evaluation Events
 - PTRR: 2Q FY08
 - IQT: 2Q FY08
 - TFT Dry Runs Start: 2Q FY08
 - TFT: 2Q FY08
 - FDT&E: 3Q FY08
 - LUT: 3Q/4Q FY08
- SO 1 Milestone C: 2Q FY09

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
Non Line of Sight Launch System (NLOS-LS) Spin Out 1 Status

KEY ACCOMPLISHMENTS:

✓ Current Forces Integration
✓ (AFATDS (FA Control Cell), FOS, CFFT)
✓ Container Launch Units (CLUs) Delivery
✓ Five prototype CLUs delivered
 - One additional CLU in Feb
✓ Conducted NLOS-LS NET
✓ Conducted NLOS-LS LOG Demo

FY08-09:

• NLOS-LS Flight Testing
 - CFT-12: 2Q FY08
 - CTV-2: 2Q FY08
 - CFT-13: 3Q FY08
 - NLOS-LS GTV 1-9: 4Q FY08 - 1Q FY09
• AETF Evaluation Events
 - TFT: 2Q FY08
 - FDT&E: 3Q FY08
 - LUT: 4Q FY08
• Award of Long Lead Items Contract: 2Q FY08
• SO 1 Milestone C: 2Q FY09
• NLOS-LS Flight LUT: 2Q FY09
• Production Decision/LRIP I Award: 3Q FY09

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
Class I Unmanned Aerial Vehicle (UAV) Block 0 Acceleration

Key Accomplishments
✓ AETF NET
✓ Acceleration Reviews
✓ MAV Deployed with EOD and other units

FY08-09:
- Continue in theater assessment: pres-FY09
- C4 Network Integration: 1Q-3Q FY08
- E3 and Environmental Safety Tests: 3Q FY08
- Blk 0 Delta NET: 3Q-4Q FY08
- Proceed decision: 4Q FY08
Small Unmanned Ground Vehicle (SUGV) Block 1 Acceleration

Key Accomplishments:
- Mobility testing
- Drop test
- EMI testing
- Water resistance
- Safety release
- AETF NET Soldiers Trained
- 3 Prototypes delivered

FY08-09:
- NET: 2Q FY08
- User events/test: 3Q/4Q FY08
- C4 Network Integration: 2Q/3Q FY08
- Deliver 22 units to the AETF (3Q FY08) for experimentation testing scheduled for the Summer of 2008.
- Proceed Decision: 4Q FY08
NLOS-Cannon Status

KEY ACCOMPLISHMENTS:

✓ July 07 Completed Stability Testing
✓ Nov 07 Completed ROF/ACCS/DI Testing
✓ Dec 07 Fired Excalibur Mass Simulators w/Tactical Bases
✓ >1500 Rounds Fired on the Firing Platform as of 18 Feb 08

FY08-10:

• Safety Release - Maintenance & Re-Arm: 3Q FY08
• NLOS-C P1 Roll Out at Army Ball: 3Q FY08
• NLOS-C Congressional MS C: 1Q FY09
• Soldiers Driving/Firing NLOS-C at YPG: 2Q FY09
• NLOS-C Fielded to AETF: 4Q FY09
FCS Technology to the Force

Current Force Gap Analysis

FCS "Portfolio" Analysis

Recommended Spin Outs

Unmet Capabilities

Subsystem Capabilities

Component Capabilities

Fielding 6 current force BCTs/yr (76)

Current

Fielding 15 FCS BCTs

Future

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
FCS – Reducing the “Log FOOTPRINT”
FCS Increment 1 Threshold Design (2012-2014)

Current Force Maintenance
- 58 Abrams
- 109 Bradley
- 27 Hercules
- 78 = Field Level
- 19 = Sustainment

FCS Maintenance
- 60 MCS
- 102 ICV
- 10 FRMV
- 10 = Field Level
- <11 = Sustainment

Fewer soldiers required for logistics

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
Mean Times Between System Abort (MTBSA) in Hours

(More is Better)

Maintenance Ratio (MR)
(Less is Better)

Commonality maintains high, consistent component reliability across FCS platforms

- MTBSA Source: RAM-T Cases, Sept 04
- MR Source: Affordability and Strategic Integration IPT
- All costs based on LSI estimates, not the Army Cost Position.

Approved for public release, distribution unlimited, PM FCS case 08-051, 15 April 2008
The Future is Now
Cyberspace: New Frontiers in Technology Insertion

Dr. John S. Bay, ST
Chief Scientist,
Air Force Research Laboratory,
Information Directorate
AFRL Structure

AFRL
Maj Gen C Bedke

Staff

XP

Air Vehicles

Space Vehicles

Information

Munitions

Directed Energy

AFOSR

Materials & Manufacturing

Sensors

Propulsion

Human Effectiveness

Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520
Information Exploitation
Information Fusion & Understanding
Information Management
Advanced Computing Architectures
Cyber Operations
Connectivity
Command & Control
DoD Definition: Cyberspace is a domain characterized by the use of electronics and the electromagnetic spectrum to store, modify, and exchange data via networked systems and associated infrastructures.

CyberSpace Operations

DoD Definition: Cyberspace is a domain characterized by the use of electronics and the electromagnetic spectrum to store, modify, and exchange data via networked systems and associated infrastructures.
Some Important Characteristics of Cyber Operations

• Low cost of entry
 – The enemy can be a disgruntled individual with a cheap computer

• Not characterized by physical or geographic boundaries
 – The enemy can be anywhere and everywhere, outside *and inside*

• R&D and Operations are done in highly classified environment
 – Makes information sharing difficult

• Often relies on exploits that are easily discovered and repaired
 – Sometimes, we only get “one shot”
 – Offense and defense are tightly coupled
 – Technology turnover/refresh
Characteristics of AFCYBER that Catch Our Attention

• Effects, C2, and assessment are to be implemented as integrated capabilities
 – Integrated with other kinetic and non-kinetic capabilities

• The 8th AF capabilities will be organized around an AOC
 – Implies known structure, CONOPs, and doctrine, but only for air and space domains

• The executing authority is the COMAFFOR/JFACC
 – Implies known resources, training, responsibilities, but only for air and space domains

The parity of Cyber with Air and Space domains suggests parallel concepts in C2, battle management, and intelligence technologies
Cyber Operations Technology Thrusts

<table>
<thead>
<tr>
<th>Thrust</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Access</td>
<td></td>
</tr>
<tr>
<td>2. Stealth & Persistence</td>
<td>CYBER</td>
</tr>
<tr>
<td>3. Cyber Intelligence</td>
<td>OFFENSE</td>
</tr>
<tr>
<td>4. Effects (D5) Deny, Disrupt, Degrade, Deceive & Destroy</td>
<td></td>
</tr>
<tr>
<td>5. Avoid</td>
<td></td>
</tr>
<tr>
<td>6. Defeat</td>
<td>CYBER</td>
</tr>
<tr>
<td>7. Survive</td>
<td>DEFENSE</td>
</tr>
<tr>
<td>8. Recover</td>
<td></td>
</tr>
<tr>
<td>9. Situational Awareness</td>
<td>CYBER</td>
</tr>
<tr>
<td>10. Education</td>
<td>SUPPORT</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520
Warfighting Concepts with a Cyber Twist

- **ATR**
 - What is a “target” in cyberspace?
 - How do we recognize it when we see it?

- **ISR**
 - What sensors can we deploy, and how are these assets shared?

- **EBO/EBA**
 - In cyberspace, the observability of effects is tenuous
 - Second-order effects and cause/effect relationships even more so

- **BDA**
 - Cyber effects propagate in hard-to-detect ways; including in peoples’ behaviors. What is total effect? Can we determine in real-time?

- **AOR**
 - Can cyberspace be sensibly decomposed into manageable combatant commands?

- **SA and PBA**
 - “Situation” is an abstract concept in cyberspace.
 - Visualizations and dynamics (motion, patterns) are ill-defined

- **C2 tools**
 - Can kinetic and cyber tools be controlled with a single toolset?
 - Can kinetic and cyber tools be integrated/synchronized in a single operation?
AFCYBER Key Areas

• FY 07
 – Cyber ORM
 – Software Assurance
 – Critical Infrastructure Identification
 – Offensive Cyber Program Research

• FY08
 – Mission Assurance
 – Security Enhancements (Full CAC compliance)
 – Expanded data encryption (at rest and in transit)
 – Sensitive data offline storage
 – Globally Linked AOCs
 – Offensive Cyber Program Development (Integrated with Air and Space C2)
 – DIB IA

• FY09
 – Expeditionary Networks
 – Counter IO: Data protection
 – IP camouflage
 – Active Defense
 – Critical Infrastructure Protect
 – Boundary monitoring
 – Cyber Control

• FY10
 – Network Survivability
 – Cyber Attack
 – Cyber Interdiction
 – Sensor Disruption
 – C2 Disruption
 – Cyber enabled weapons degradation
 – Electronic Sys Attack (w/ DE)
“Traditional” AFRL Transition

- 6.1 → 6.2 → 6.3, Critical Experiments and Advanced Technology Demonstrations
- Advanced Technology Council

Lab (⭐⭐)*
- Identify ATD Candidates
- Budget for Technology Programs
- Develop Transitionable Technologies

User (⭐⭐⭐⭐)*
- Define Requirements
- Budget Transition Funds

Center (⭐⭐⭐⭐)*
- Interpret Requirements
- Build Transition Program
- Integrate Into Systems
POM-Oriented Transition

ATD Categories

- **Category 1:** MAJCOM or Agency supports and has programmed required funding for transition *within the FYDP*

- **Category 2A:** MAJCOM or Agency supports and is committed to identify transition funding *in the next Program Objective Memorandum (POM) cycle or Amended POM*

- **Category 2B:** MAJCOM or Agency supports but is not currently able to program for transition funding
Traditional acquisition practices support the development, deployment, and sustainment of long term, highly capable systems

- Focus on minimum risk
- Stable requirements (or a known roadmap)
- Dedicated development and test cycles
- Refined over years based on large body of experience
- 10 year cycle typical for development to transition & Integration
Technology Readiness Levels

- **TRL 9**: Actual system “Flight Proven” through successful mission operations
- **TRL 8**: Actual system completed and “flight qualified” through test and demonstration
- **TRL 7**: System prototype demonstration in an operational environment
- **TRL 6**: System/subsystem model or prototype demonstration in a relevant environment
- **TRL 5**: Component and/or breadboard validation in a relevant environment - environment can be simulated
- **TRL 4**: Component and/or breadboard validation in a laboratory environment
- **TRL 3**: Analytical & experimental critical function and/or characteristic proof-of-concept
- **TRL 2**: Technology concept and/or application formulated
- **TRL 1**: Basic principles observed and reported
The Current Landscape

Bridging The Technology Transition Gap

Source: AFC2ISRC GCIC AFISR ATC

Means for Tech Transition
- Advanced Technology Demo (ATD)
- Advanced Concept Tech Demo (ACTD)
- Technology Planning IPT
- Technical Events (JEFX, CWID etc.)
- SPD Initiative
- Industry Initiative
- Senior Leader Initiative

Tech Transition “Seam”

Emphasis is Necessary on Technology Transition
- Sustained Senior Leader Emphasis
- Continuous Communication
- Integrated Process
- Budget For Production Incorporation
The S&T Transition Struggle

Technology Standards

New Ideas

Tech. Push

Strategic

• Meets Planners Projections
 – General Technology
 – Future Capability

• General Applicability
 – Enhances Performance
 – Foundation (i.e. Open Syst.)
 – Lead Industry

• Expandability – General

• Flexibility – General

Acquisition Standards

Tactical

• Meets User Need
 – Specific Capability

• GOTS/COTS Avail.

• TRL Level Validated

• Production Capable

• Allows COTS Prod. Integration

Transition Gap

Req Pull

Current Needs

Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520
CYBER Transition Requires new Acquisition Processes

• Cyber Acquisitions may require:
 – Very rapid, urgent fielding needs (days to weeks)
 – Agile development and fielding (months)
 – Traditional development, fielding, and sustainment (months to years) with regular capability “releases” or spirals

• Application to very short cycle times requires alternative approaches
 – Decreased research & development time
 – Limited test and verification
 – “Short tail” logistics

• Strategies to continually innovate and assess
 – Threats and emerging technology,
 – Rapid prototyping
 – Supporting AFCYBER stated capability needs
 – Develop key partnerships

• Migration of some development and assessment efforts to “pre-need” phase
 – Emerging threat R&D strategy to complement reactive acquisition strategy
Full Spectrum Acquisition

Rapid Deployment Agile/Rapid Acquisition Traditional Acquisition

Urgent Non-Time Critical
Simple Complex
Short Lived Enduring
Stand-Alone
Limited Deployment

Approved for public release; distribution unlimited. Document number WPAFB 08-2520
Alternative Transition Paths

- Support to Manufacturing & Industrial Base
- Support to Industry Partners
- Support to National or International Partners
- Technologies Direct to Warfighter
- DoD Weapon Systems

Air Force Research Laboratory

Transition
Conclusions: The Changing Battlefield of CyberSpace

“Transition to WHAT?”

Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520
Summary

• Rapid research & development strategies

• Constant reassessment of changing landscape resulting in short duration R&D efforts and rapid technology transition

• New acquisition strategies required

• New relationship between research and acquisition

• Innovative challenges/opportunities for community to develop a responsive cyber research and development strategy to work with a full spectrum acquisition capability

• AFRL/RI to lead R&D for the cyber big “A” team
Questions?
The Battle in Cyberspace

Observe

Act

Decide

Orient

Battlespace Awareness

Influence Ops

Command Control

Sensor Ops (Surveillance & Reconnaissance)

Conventional Ops

Land/Sea Aerospace Domains

Cyber Domain

Cognitive Domain

Intelligence

Integrated Effects (EMS, EA, Net-A)

GIG Ops

Offense, Defense, Infrastructure Elements

Lt Gen Bob Elder

Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520
NDIA Science and Engineering Technology Conference/DoD Technology Exposition

April 17, 2008

Gary Powell
OUSD(AT&L)
gary.powell@osd.mil
Defense Budget Trends
(DoD Budget Authority)

Source: USD (Comptroller) National Defense Budget Estimates for the FY 2009 Budget (Green Book)
"...total costs for the fiscal year 2007 portfolio of major defense acquisition programs increased 26 percent from first estimates ...development costs ... increased by 40 percent ... In most cases, programs also failed to deliver capabilities when promised - often forcing warfighters to spend additional funds on maintaining legacy systems...Of the 72 weapon programs we assessed this year, no program had proceeded through system development meeting the best practices standards for mature technologies, stable design, and mature production processes – all prerequisites for achieving planned costs, schedule, and performance outcomes."
Why Should DoD Invest in Basic Research?

A Presentation for

The 9th Annual NDIA Science & Engineering Technology Conference/DoD Tech Exposition

Dr. William S. Rees, Jr.
Deputy Under Secretary of Defense (Laboratories and Basic Sciences)
Office of the Director
Defense Research and Engineering,
April 15-17, 2008
Context

- The growth rate of the world population is declining
- 90% of population growth is in developing and poorer countries
- 40% of the world’s population — 2.5 billion people — live on less than $2 per day
- Proportion of working age adults (15-59) is expected to decrease in every area except Africa
- 880 million people were illiterate, 250 million children worked and 110 million school age children did not attend school, as of 2000

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007,
Context

- By 2030, China is expected to have 348 million people over 60, nearly as many as the entire projected population of the US.
- 13% of the global population lived in cities in 1900. Today the global proportion of the urban population is 49%. 60% of the globe’s population - 4.9 billion people - will live in urban areas by 2030.
- Massive urbanization – 17 of 22 “mega cities” will be in the developing world by 2015.

Context

- Since the 1970’s, weather/climate-related losses have increased about 10% per year and accounted for 88% of all property losses covered by insurers from 1980 to 2005
- India and China will develop “first world” energy appetites
- Many oil exporting countries may use production for their own economies

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

• Current major supplies of petrochemical products will not keep pace with projected demand

• Only 12 years from now, machine intelligence could equal or surpass that of humans – eventually, it will become impossible to differentiate between man and machine

• Weapons of mass effect will shrink and proliferate: nuclear, bio, directed energy, nanotechnology, and CYBER

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

- Science, technology, and engineering are available globally
- US scientific leadership is at risk
- Multi-disciplinary technologies will have revolutionary impact - 70% of world R&D is conducted outside the US
- China is now the third largest investor in R&D (adjusted for purchasing power), behind only the US and Japan

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
Context

- The United States is today a net importer of high technology products (+$54B in 1990 to -$50B in 2001)

Source: “Joint Operating Environment” United States Joint Forces Command, December 2007
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
Leaders support Basic Research

• President Bush:

“...double federal support for critical basic research in the physical sciences...”

• The Secretary of Defense supports Basic Research

“... greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget.”
Basic Research

- Basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts *without specific applications towards processes or products in mind.*

It is farsighted high payoff research that provides the basis for technological progress.

Why Does DoD fund Basic Research?

- DoD is perpetually, permanently in the capability business
- By design, DoD’s capabilities depend on technology
- Technologies move rapidly across borders
- If technology exists, it will be used, first in weapons
- We cannot know when a discovery will become a capability but we know with absolute certainty that without discovery, our capabilities remain static.
Why Does DoD fund Basic Research?

• Generates discoveries, new knowledge, and improved understanding
• Achieves technological superiority
• Prevents technological surprise
• Educates scientists and engineers in physical science disciplines
• Ensures that scientific expertise and engineering rigor supports DoD technical decisions
• Sustains the human talent and research infrastructure
Don't expect Basic Research to solve all problems.
DoD S&T Requests

- Applied Research
- Basic Research
- Advanced Technology Development

Note: Advanced Technology Development funding began in FY78
DoD Basic Research Funding FY1998-2009

(President’s Budget Request & Appropriated)

Appropriated

+28%

Requested

Source: DOD, DDR&E
RDT&E Budget Request Growth

FY09 Compared to FY08

(TY Dollars in Millions)

-500 0 500 1,000 1,500 2,000 2,500

BA-1 BA-2 BA-3 BA-4 BA-5 BA-6 BA-7

+271 +543 +112 +1,439 +231 +2,185

-102

FY09 Compared to FY08

RDT&E Budget Request Growth
RDT&E Budget Request Growth

FY09 Compared to FY01

(Yearly Dollars in Millions)

<table>
<thead>
<tr>
<th>BA-1</th>
<th>BA-2</th>
<th>BA-3</th>
<th>BA-4</th>
<th>BA-5</th>
<th>BA-6</th>
<th>BA-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+482</td>
<td>+1,111</td>
<td>+2,350</td>
<td>+8,964</td>
<td>+10,876</td>
<td>+1,746</td>
<td>+16,046</td>
</tr>
</tbody>
</table>
Sources & Destinations of Defense Basic Research Funding

Sources
- 80% of Defense Basic Research is Investments by Military Departments
- Army, 22%
- Navy, 31%
- DARPA, 12%
- Air Force, 27%
- DTRA, 1%
- CBD, 3%
- OSD, 4%
- Other, 2%
- FFRDCs, 1%

Destinations
- Performers of Defense Basic Research
- 65% to Universities & Industry
- Universities, 53%
- Industry, 12%
- Intramural, 25%
- Non-profits, Other, 2%

Sources: FY09 President’s Budget & DoD component inputs to NSF
Federal Funds for R&D survey (FY06 – latest available)
Recipients of DoD S&T Funds

DoD S&T Funding Recipients by Percentage (PBR08)

- Universities
- In-house Labs
- Industry
- Other

*Includes non-profit institutions, State & local govt., & foreign institutions
Source: National Science Foundation Report (PBR08)
FY09 President’s Budget Request for DoD Basic Research

- DEFENSE RESEARCH SCIENCES
- UNIVERSITY RESEARCH INITIATIVES
- NATIONAL DEFENSE EDUCATION PROGRAM
- UNIVERSITY & INDUSTRY RESEARCH CENTERS

$K

- DTRA
- OSD
- DARPA
- Air Force
- Navy
- Army

Chem/bio↓

ILIR

6.1
Conceptual Strategic Planning Process

- **Joint Operational Capability Gaps**
 - QDR, SPG
 - Not all joint operational capability gaps will have S&T capability gaps

- **Joint S&T Capability Gaps**
 - JWSTP
 - Not all joint S&T capability gaps will demand basic research investment

- **Map S&T Gaps Against Services’ Basic Research Programs**
 - Some Service basic research initiatives address enterprise-wide issues

- **Department-level Basic Research Investment Guidance**
 - Joint, Basic Research investment gaps
 - Extant Service specific Basic Research program

Dr. William S. Rees, Jr. DUSD(LABS) NDIA CHASN.ppt 17Apr 08
Quadrennial Defense Review

Irregular
- Defeat
- Terrorist
- Extremism

Catastrophic
- Counter
- WMD
- Defend
- Homeland

“Shifting Our Weight”

Today’s Capability Portfolio

Traditional

Disruptive

Shape Choices
Desired S&T Investment Areas

(Joint Training is Ubiquitous)
FY07 DoD Basic Research
(by Taxonomy Category)

Total
$1.548B
Addition to DoD Basic Research

<table>
<thead>
<tr>
<th>$M</th>
<th>FY08 PBR</th>
<th>FY08 Appropriation</th>
<th>FY09 PBR</th>
<th>Change from PBR 08</th>
<th>Real Change from PBR 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army</td>
<td>305.8</td>
<td>381.5</td>
<td>379.4</td>
<td>24.06%</td>
<td>21.36%</td>
</tr>
<tr>
<td>Navy</td>
<td>467.2</td>
<td>506.1</td>
<td>528.3</td>
<td>13.06%</td>
<td>10.61%</td>
</tr>
<tr>
<td>Air Force</td>
<td>375.2</td>
<td>407.7</td>
<td>452.3</td>
<td>20.55%</td>
<td>17.93%</td>
</tr>
<tr>
<td>Defense-Wide</td>
<td>279.9</td>
<td>338.3</td>
<td>338.7</td>
<td>21.00%</td>
<td>18.37%</td>
</tr>
<tr>
<td>Total Basic Research</td>
<td>1,428.1</td>
<td>1,633.7</td>
<td>1,698.6</td>
<td>18.94%</td>
<td>16.36%</td>
</tr>
</tbody>
</table>
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
A Unique National Security Problem

High

Desired Employees

Job Applicants

Clearable at highest level

Clearability

Low

Not Clearable

Job Applicants
Opportunities

• “The development of a strategic S&T scouting effort linked to the US university and private technology, and engineering education in the United States.”

“When I compare our high schools to what I see when traveling abroad, I am terrified for our workforce of tomorrow.”

- Bill Gates

Rising Above the Gathering Storm, National Academy of Sciences, 2006
Millennials are tomorrow’s workforce

• They watch wars and revolutions live on TV and the Internet
• Elvis died 20 years before they were born
• Satellite radio has been around since they were 5 years old
• They have only known two presidents
• WWI started nearly a century before they were born
• They have never seen a film camera
• There have always been hybrid cars

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

- They have always been online
- They have never known a world without digital phones or DVDs
- Soviet Union fell 7 years before they were born
- When Sputnik was launched, their parents were in kindergarten
- Their buddy lists span the globe.
- There has always been one Germany
- One electronic device does it all: TV, Internet, Phone, Music, Data, Computing

Source: "Millennial: About them" Navy Recruiting Command briefing, 7 Feb 2008
Globalism

- Millennials grew up seeing everything in the world as:
 - Global
 - Connected
 - Open for business 24/7

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

• They are taking longer to graduate from college

• Only 37% of first-time freshmen at four-year schools earned their bachelor’s degrees in four years

• Another 6% took up to six years

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
Millennials are tomorrow’s workforce

• They are technology sophisticates
• Through media multitasking kids are spending 6.5 hours a day with media, but are packing more than 8.5 hours worth of exposure into that time

Younger kids have more and more media devices; of those 8-14 years old -
 – 39% have cell phones
 – 24% have a hand-held Internet device or PDA
 – 12% have a laptop computer

Source: “Millennial: About them” Navy Recruiting Command briefing, 7 Feb 2008
NDEP Portfolio Components

Pre-College (K-12)
- DoD Comm
- DoDEA
- Air Force
- Other Gvmt
- Digital Delivery
- Other Org’s
- STAR BASE
- Navy
- Math Content

Undergraduate Graduate
- SMART

Post-Graduate
- NSSEFF

DoD Employees

STEM Interest… Potential DoD Employees

DoD Affiliated Faculty
SMART’s National Impact

Note: Student awards (by state of residence)
NDSEG – Fellows’ Undergraduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers

KEY:
- 2003 Data
- 2004 Data
- 2005 Data
- 2006 Data
- 2007 Data

Schools:
- MIT
- Harvard
- Stanford
- U of IL
- Caltech
- PA State
- Columbia
- Cornell
- N’western
- UC Berkley
- VA Polytech
NDSEG – Fellows’ Graduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers

KEY:
- 2004 Data
- 2005 Data
- 2006 Data
- 2007 Data

Bar chart showing the distribution of NDSEG fellows among various graduate schools from 2004 to 2007.
OUTLINE

• DoD Basic Research

• DoD STEM Education

• Prize Competition
Wearable Power Prize

- 1st Prize $1M, 2nd prize 500K, 3rd prize: $250K
- Goal: Reduce weight of Warfighters’ power systems
- Competitors will produce prototypes that provide 20W average electric power continuously for 4 days, attach to a vest, and weigh 4 kg or less
- Capstone event will be held on October 4th, 2008, at the Marine Corps Air-Ground Combat Center, Twentynine Palms, California. See: http://www.dod.mil/ddre/prize
Wearable Power Prize Team Registrations

169 Teams Registered
Dr. William S. Rees, Jr.
Deputy Under Secretary of Defense (Laboratories and Basic Sciences)

Office of the Director
Defense Research and Engineering

(703)-692-4592
william.rees@osd.mil
DOD Technology Innovation & Transition

Strategic Initiative for Innovation and Technology Transition

Kathleen L. Harger
Assistant Deputy Under Secretary of Defense
Innovation and Technology Transition

Science and Engineering Technology Conference
15 April 2008
The Landscape Has Changed

Drivers Behind the Change
- Technology access now on a global scale
- Proliferation of potentially disruptive technologies
- Greater uncertainty of security challenges
- Fewer resources
- DoD no longer at forefront of most technology research
- Warfighting-relevant technologies have short refresh cycle
 ➔ “Time-to-market” is the imperative

But...
- Linear acquisition process
- “Inward-looking” culture
- Barriers to entry for non-traditional businesses
The Call to Change

Congress

- Public Law 107-314, Dec 2, 2002 Technology Transition Initiative

- Section 255 of the FY06 Defense Authorization Act Requesting DOD Report on Technology Transition Barriers and Challenges

- Public Law 109-163, Jan 6, 2006 Technology Transition

Advisory Committees

The Call to Change

Office of the Secretary of Defense

- Defense Acquisition Performance Assessment, Jan 2006
- Advocate for Innovation & Technology Transition created in Mar 2007
- DoD Report to Congress on Technology Transition, Sep 2007
- Strategic Initiative on Innovation and Technology Transition, Dec 2007

DepSecDef: “Breakdown the walls…that inhibit the efficient transfer of commercial technology into Warfighter hands”

USD (AT&L): “Drive the capability to defeat any adversary on any battlefield”
Create an Enterprise-wide strategy for accelerating the movement of technology from any source to our warfighters
Innovation and transition must be inextricably linked in the Technology Life Cycle to address both urgent wartime needs and long-term military requirements.
Solution Focal Points

6.1 Proc
6.2 O&M

United States Universities

Gov’t Labs

Defense Contractors

Commercial Companies

Foreign Sources

Blur the lines between commercial and defense

Create a “culture of harvesting” in defense infrastructure

Buy direct commercial

Primary Pathway

Secondary/Tertiary Pathway

Militarily Superior Capability

Relative magnitude of Relevant Technology

6.3
6.4
6.5
6.6
Front End
Aggressive Communications And Business Practices To Attract Non-Traditionals (Selected Technologies)

Back End
Leverage Selected Pathways To Move Solutions Through the System

Cross-Cutting
Maximize Use of Existing Tools, Increase Rotations, Strengthen CTO

Near Term	Mid Term	Far Term
FY 08 | FY 09 | FY 10
FY 11 | FY 12 | FY 13
FY 14 | FY 15 | FY 16
FY 17 | FY 18

Finding Outward
End-to-end existence proof, Seeds of acquisition reform And 21st century leadership

Beginning of turning outward, End-to-end existence proof, Seeds of acquisition reform And 21st century leadership

Expansion of outward focus, Leverage defense base for harvesting, remove global barriers

Routine outreach, defense industry walls porous with routine commercial access, globally-savvy, entrepreneurial leadership
Near-Term Initiatives

Global Outreach: Harvest technology and innovation in the private/global marketplace through collaborative venues whereby non-traditional sources can access information concerning DoD needs, opportunities for interactions, and streamlined approaches to doing business with DoD.

Barriers to Entry for Non-Traditional Suppliers: Promote flexible contracting instruments through creation of a “non-traditional business cell” pilot program.

Strategic Linking of Agile Acquisition Programs: Create enterprise-level strategy for deliberate and aggressive use of authorities and investment opportunities associated with agile acquisition.

Culture of Harvesting: Create environment that rewards global outreach and attracts the best and brightest to collaborate with/work in our S&T and acquisition communities.
How Will We Know We’ve Succeeded?

- When we have an ‘outward’ looking culture in which we seek and access innovation from any source.
- When it becomes standard practice to collaborate inside and outside the Department.
- When we embrace the use of flexible contracting as a way of doing business.
- When the linking of our agile acquisition authorities and investments, driven by a corporate strategy, results in more affordable and effective capabilities.
- When our Warfighters can defeat any adversary on any battlefield.
Contact Information

Ms. Kathleen L. Harger
Assistant Deputy Under Secretary of Defense
(Innovation & Technology Transition)
Office: 703.607.5311
Email: Kathleen.Harger@osd.mil
Innovation at a Large Scale

Ed Morris
Director, Hardware and Manufacturing

Lockheed Martin
Corporate Engineering and Technology

April 17, 2008
Partners to Help Customers Meet Their Defining Moments

- 140,000 Employees
- 70,000 Scientists and Engineers
 - 25,000 IT Professionals
- Operations in 1,000 Facilities, 500 Cities, 50 States and 75 Countries

The Men and Women of Lockheed Martin

Partners to Help Customers Meet Their Defining Moments
Redefining What Is Possible

Hypersonics

Biometrics

Return of Crew Space Exploration

Persistent Surveillance

Information Fusion

Unmanned and Autonomous Systems

A Passion for Invention
Large Scale Friction Stir Welding (FSW) for Performance & Cost

LO2 Barrel Welds (OB)
4 each 8-feet long
Tapered Thickness

LH2 Barrel 1 Welds (HB1)
6 each 15-feet long
Tapered Thickness

Barrel Welds
8000 inches out of 36,000 total inches

Space Shuttle External Tank FSW Longitudinal Barrel Welds

LH2 Barrels 2, 3 and 4 Welds
24 each 20-feet long

LH2 Barrel 1 (Longeron Welds)
4 each 15-feet long
Tapered Thickness

LH2 Barrel 1 Welds (HB1)
6 each 15-feet long
Friction Stir Welding

The Concept

Produced by Graphic Services
Lockheed Martin Space Systems Company
Michoud Operations
Friction Stir Welding vastly reduces and simplifies the process variables.
FSW Barrel Weld Tool

Manufacturing Process Simplicity on a Large Scale
Shop Floor Innovation: Flexible, Reconfigurable Factories

- Modular workstations with quick-connect utilities wired underneath the floor
- The workstations are daisy chained together forming work cells
- The stations are mobile, can be customized, and can be set to a variety of heights and configured with numerous shelving options
- They can be converted to class 10K flow booths to meet production needs
- The workstations and cells are so flexible that entire cells can be reconfigured in two hours
Fire Control Factory
Engineered Workstations

- Standardized approach and design engineered for flexibility and functionality
- Integrated casters and utility chase allow workstations to be disconnected, relocated and reconnected in a matter of minutes
- Utility chase for power, air, phone and LAN
- Need a class 10K flow booth? Simply wheel the portable flow booth to the workstation

Lean + Agility = Affordability
Fire Control Factory
Engineered Equipment

- Factory equipment designed to support rapid rearrangement & flexibility

- Custom designed oven set-up and mix station incorporate filtration system eliminating need to vent to the outside environment

- Casters and standard 110v power operation further simplifies rearrangement

Self-contained Oven and Mix Booth
Integrated Composite Technology for Large Aircraft Structures

- Variable Stiffness Tailored Laminates
 - Increased design freedom
 - Load path optimization

- Future High Altitude UAV

- Future Mobility Platforms

- Vacuum Assisted Resin Transfer Molding
 - Integrated caps
 - Sandwich stiffened
 - Elimination of fasteners

- Optimized Cured Laminate Compensation (CLC) Process
 - Highly Accurate Thickness Control
 - Integral to Cure Process
 - No Machining Required
 - Supports LO

- CLC Software
 - Highly Accurate Thickness Control
 - Integral to Cure Process
 - No Machining Required
 - Supports LO
Common “Digital Thread” Is Key to Reduced Cost, Schedule and Risk

- **Solid Model Data Source**
 - *Single Exact Definition*
 - Reduces Span Time for Creation
- **Data Re-Use**
 - *Eliminates Interpretation Error*
 - Reduces Task Span Times
- **Digital Product / Process Verification**
 - *Form, Fit, & Producibility Verified Prior to Build*
 - Improves Quality
 - Reduces Cost and Risk
- **Concurrent Development Process**
 - Reduces Program Span Time

Form, Fit and Producibility of Parts and Tools To Be Verified in the Digital Mock-up Prior to BTP Release
Exploiting the “Digital Thread” Begins with Modeling & Simulation
Large Scale Assembly Innovations
Using Common Digital Thread

Automated Drilling Systems
- Optically Identifies Connector Locations for discrete Wire locations
- Reduces Assembly Span Time by 50%
- Reduces Error in FACT Test Errors by over 100%
- Eliminates Massive / Inflexible Tools

Digital/Optical Wire Harness Assy.
- Accurately Identifies Connector Locations for discrete Wire locations
- Reduces Assembly Span Time by 50%
- Reduces Error in FACT Test Errors by over 100%
- Digitally Driven from Engineering Data

Electronic Mate / Assy.
- Laser Tracking / Real Time Location
- High Tolerance Servo-Driven Jacks
- Eliminates Massive / Inflexible Tools

Laser Projection Systems
- Real Time Updates to Associated Data
- Projected at the Point-of-use
- Eliminates Need for Discreet Work Instructions/Drawing Access

Automated Robotic Paint/Coating Systems
- Accurate / Repeatable Application
- Digitally Driven from Engineering Data
Ed Morris
Director, Hardware and Manufacturing
Lockheed Martin Corporate Engineering and Technology
973-603-9710
ed.morris@lmco.com
Industry Perspective:
The Challenge of Transitioning Innovative Technology

NDIA-Charleston
15 Apr 08

Mal O’Neill, PhD, NAE
LTG USA/CTO LMC (ret)
Agenda:

• Situation
• People
• Difficulties
• Successes
• Actions
What’s happening to our products?

- Complexity is following Moore’s law
- Transformational system requirements are daunting
- Customers’ expectations increasing and expanding
Innovative Modernization is 4-D

- New customer
- New developer
- New process
- New product
Innovative Technology:

- Promises major long term improvements in performance, cost, quality, and/or totally new capabilities
 - Largely unproven
 - Faces competition/adversaries
 - Lacks advocates, especially with customer
 - Forces change
 - Adds risk for industry, developer and user
People Create Innovation

- Aging workforce – experience lost
- HS Math/Science scores poor
- Engineering enrollments down
- System Engineering only On-job
- Growing Demand for Engineers

Where are tomorrow’s innovators?
Why is Transitioning So Difficult?

- Uneducated decisionmakers
- New customers
- Acceptable legacy systems
- Monies needed
- Unknown unknowns
- Doctrine/Force Structure threatened
- Community of Practice damaged
Warfighter is Critical

• Operational Insights
• Value/impact of potential capability
• When/how much new capability is needed
• But he ---
 • Doesn’t understand the technology/potential
 • Might be wrong customer
 • Can’t articulate key knowledge to developer

“If I’d asked my customers what they wanted – they would have asked for a faster horse” Henry Ford
Industry Reluctant To Lead Transition

• Prefers incremental modernization

• Hesitates to provide leadership and resources

• Doubts credibility of innovators
Success – Nano Testimony

- Don’t say “innovative” – avoid frontal assault
- Engage suppliers in modernization strategy
- Worst vice is overselling!!! Credibility is Key!!

Interview, Dr. Tom Cellucci, Pres/COO, Zyvex Corp.
Nanomaterials Hit the Field
Success: DOD Nanomaterial

- Multifunctional Nano-Structures
 - Ultra Light Weight
 - Strength, rigidity
 - Producibility
 - Mission Adaptability

Extended Wing LOCAAS

Courtesy of Dr. Les Kramer, LMMFC
Success – JSF Lift Fan

- Lean team ‘87: USMC, DARPA and Lockheed
- USMC stayed in-charge
- DARPA support before IRAD $
- PM designed/advocated “lift fan”
- Competitor influenced final “lift fan” decision
- AF code convinced engine teams
- AF added strong staff/tech support

Interview, Dr. P. Bevilaqua, NAE
Skunk-PM, Invented Lift Fan
FIRST: STO-SSDash-VL

Courtesy of LMAero
Action: Materiel Developer

- Engage the internal R&D community
- Strengthen focus on new ideas
- Refresh labs/RDECs to ensure in-house capabilities in SE and across new domains

Reference: Mike Marshall, “From Science to Seapower”
Action: DOD AT&L

- Fund designated innovative technologies
- Add strong system engineering discipline
- Hire/support new S&Es
- Engage Industry/DOE/DHS/NSF
Action: Warfighter

- Include industry in Combat Developments
- Train cadre to examine capability options
- Use concept of “pilot” operations in field to evaluate new hardware
- Be willing to revise Doctrine, TOEs, TTPs
Action: Industry (1)

- Develop accountability
- Allocate resources
- Shield innovative technologies
- Develop credibility with customer
- Convince BOD/shareholders
Action: Industry (2)

- Establish Skunkworks
- Develop Mod-Sim-Test
- Tie above to Warfighter/Developer
- Explore the potential of new tech
- Educate system engineers, et al
- Allow failure
Summary/Conclusion

Transition is hard but essential for DOD success.

Technical and engineering skills are vital.

A team is required —

Industry/Warfighter/Developer

“I must work longer and harder each day to weave a world in which I can live.”

Callahan, *Adrift – 76 Days Lost at Sea*
ANY QUESTIONS ?
BACKUP
People Make Products Work

- John Roebling designed the Brooklyn Bridge, alone
- Frank Crowe drove the construction of Hoover Dam alone
- Ed Heinemann knew the Grumman A-4 better than anyone else
- Kelly Johnson knew every Lockheed airplane better than anyone else

Where are system engineers today?
Aerospace Workforce Aging

Industry Age Distribution

Industry losing many experienced SE’s annually

Source: BAH Study
Engineering Enrollment Down ...

Source: National Science Foundation – Science and Engineering Indicators 2000

*System Engineering Discipline not available in most universities
U.S. 12th Graders Underperform in Math and Science

<table>
<thead>
<tr>
<th>Discipline*</th>
<th>1998</th>
<th>2008</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td>53,000</td>
<td>58,000</td>
<td>9.4</td>
</tr>
<tr>
<td>Electrical</td>
<td>357,000</td>
<td>450,000</td>
<td>26.0</td>
</tr>
<tr>
<td>Mechanical</td>
<td>220,000</td>
<td>256,000</td>
<td>16.4</td>
</tr>
<tr>
<td>Computer</td>
<td>5,626,000</td>
<td>11,144,000</td>
<td>98.0</td>
</tr>
<tr>
<td>Total</td>
<td>6,056,000</td>
<td>11,908,000</td>
<td>96.6</td>
</tr>
</tbody>
</table>

System Engineers needed for most DOD applications
Comparison Between Commercial and Defense Manufacturing Maturity

Bob Schafrik
GE Aviation
17 April 2008
Overview

- GE Aviation
- Commercial engine environment
- Military engine environment
- Materials technology examples
- Takeaways
GE Aviation Product catalog

world’s largest fleet

<table>
<thead>
<tr>
<th>Commercial Power</th>
<th>CT7</th>
<th>CF34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CF34</td>
<td>CFM56</td>
</tr>
<tr>
<td></td>
<td>CF6</td>
<td>GEnx</td>
</tr>
<tr>
<td></td>
<td>GP7000</td>
<td>GE90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Military Power</th>
<th>T58/64</th>
<th>T700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J79/85</td>
<td>TF34</td>
</tr>
<tr>
<td></td>
<td>F103</td>
<td>F108</td>
</tr>
<tr>
<td></td>
<td>F404/14</td>
<td>F101/18</td>
</tr>
<tr>
<td></td>
<td>F110</td>
<td>F136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marine & Industrial Power</th>
<th>LM500</th>
<th>LM1600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LM2500</td>
<td>LM5000</td>
</tr>
<tr>
<td></td>
<td>LM6000</td>
<td>LMS100</td>
</tr>
</tbody>
</table>

[Image: GE Aviation Product catalog with aircraft illustrations]
Today ... highest R&D commitment in history ... $8.3B since '00
Comparison of Environments

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>Defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Time</td>
<td>short</td>
<td>long</td>
</tr>
<tr>
<td>Cost Risk</td>
<td>OEM</td>
<td>DoD/Services</td>
</tr>
<tr>
<td>Schedule Risk</td>
<td>OEM</td>
<td>DoD/Services</td>
</tr>
<tr>
<td>*Build Rate</td>
<td>high</td>
<td>rarely high</td>
</tr>
<tr>
<td>No of Customers</td>
<td>large</td>
<td>limited</td>
</tr>
<tr>
<td>Product Improvements</td>
<td>Frequent</td>
<td>limited</td>
</tr>
</tbody>
</table>

Both environments are highly competitive.
Commercial Engine Business Model

- Design and test
- Parts and services – potential sales
- Engine sales revenue
- Engine development costs

0 Years after engine introduction

Parts and Services – potential sales
Commercial Business Case Perspective

- What does the Technology add to Customer Value
 - Benefits
- Will the Technology deliver the Benefits
 - How well do we understand the risks
 - What are mitigation plans
- What will the Technology Cost
 - Learning Curve
- Is the Business Plan prudent

Manufacturing Maturity Underpins the Answers to These Questions
Commercial Programs Integrate TRL & MRL

- Producibility evaluated early in technology development cycle
 - Will not proceed without a clear path
 - Program gets added plus if MRL is high
 • Development uses production process

- Determine if Supply Base can meet production rate and cost goals
 - Single source vs. Dual source

- May need to develop new supply chain
 - Estimate Business Case for Suppliers
Commercial Development Stages

Feasibility
- Initial evaluation - lab scale
- Estimates of key characteristics

Demonstration
- Sub-scale demonstration
- Components produced to prelim specs
- Production windows estim

Maturation
- Process capability fully established
 > Production specifications in place
 > Supply chain established
- All necessary property data obtained

Product Creation—$Billion Dollar Commitment

Feasibility
- Initial evaluation - lab scale
- Estimates of key characteristics

Demonstration
- Sub-scale demonstration
- Components produced to prelim specs
- Production windows estim

Maturation
- Process capability fully established
 > Production specifications in place
 > Supply chain established
- All necessary property data obtained

Component Design
Only Applies Mature Technology

Technology Creation—$Million Commitment

Demonstrator Programs

Product Creation—$Billion Dollar Commitment

- Computer simulations, sub-scale testing of concepts
- Performance estimates made

- Full scale testing
- Product performance validated
- Mature Technologies

- Production components designed
- Product engines certified
- Products enter service
Producibility Challenges for Military Programs

- Mixed message to Supply Base
 - Early focus on OEM design & tech demos
 - Competition strongly encouraged
 - Social policy, political forces

- Long, drawn-out development timeline distorts investment decisions
 - Difficult to discern the “real” program
 - Limited trade-off of Performance vs. Producibility
 - Maintain budget profile by reducing production quantities
GE Aviation Support For MRL – TRL
Compatible With Commercial Development Cycle
Materials Examples

- Powder Metal Turbine Disks
- Composite Technology
- Titanium Aluminides
Go-Forward: Integrated Materials & Process Models

Processing

Microstructure

Properties

Curve Generator
Takeaways

- Commercial program perspective
 - Develop a producible competitive system
 • Success depends on ability to perform
 • Manufacturing Readiness essential

- Military program perspective
 - Develop highly capable affordable system
 • Want leading edge technology NOW
 • Assume that market forces for supply chain

- OEMs are key to developing, focusing supply chain
Contact Information

Robert Schafrik
(513) 243-0167
robert.schafrik@ge.com
Mr. Al Shaffer
Principal Deputy
Defense Research and Engineering
15 April 2008
VISION: To develop technology to defeat any adversary on any battlefield

Any Battlefield includes physical, cyber, space, undersea, etc
The Evolution to New Ideas

The DoD, Like the World, is moving from Physics Based to Multidisciplinary and Non-Kinetic Science

“Any sufficiently advanced technology is indistinguishable from magic.”
~Arthur C. Clarke

“In times of change, learners inherit the Earth, while the learned find themselves beautifully equipped to deal with a world that no longer exists”

Eric Hoffer
A Changing World . . .

- Disruptive Military Uses of Commercial Tech
- Development Pace
- Expansion Of R&D Funding
- Impact of Mass Collaboration
- Economic Mega Trends
- The Black Swan Syndrome
- The Expanding Education Base

There are students in China, Australia, Austria, Bangladesh, and the USA who collaborate on projects everyday.
Pace of Technology Continues to Increase

- Time between modeling of semiconducting properties of germanium in 1931 and first commercial product *transistor radio* was 23 years

- Carbon nanotube
 - Discovered by Japan (1991)
 - Researchers recognized carbon nanotubes were excellent sources of field-emitted electrons (1995)
 - “Jumbotron lamp” - nanotube-based light source available as commercial product (2000)

Source: The Economist, Feb. 9, 2008
International R&D trends

• R&D expenditures are increasing robustly around the world, driven by both governments and industry.

Figure 1. Estimated worldwide R&D expenditures: 1990-2002

Source: National Science Foundation, S&E Indicators 2006
The R&D Spending Landscape - Selected Entities

(Circle size reflects R&D spending levels.)

R&D Spending Growth

Established Powerhouses

US $292B

European Union $204B

Korea $24B

Singapore $2B

Taiwan $14B

Russia $17B

India $39B

China $85B

Struggling Aspirants

Iran $0.3B

Emerging Challengers

Niche Competitors

Japan $112B

China $85B

Japan $112B

Global Technology (R&D) Spending and Growth

R&D Spending as a Percentage of GDP

R&D spending as a percentage of GDP and spending growth are defined in Figures 1 through 3. R&D spending levels are in current billions of PPP dollars.

Growth rates are calculated since 2000, except for Russia, which was calculated since 1992 due to high uncertainty in the regression since 2000.

Demographic Trends

- Demographic trends are the most predictable of the trend sets
- The major trends with significant defense implications:
 - North-South divide in age structure
 - Demographic “bonus” India, Latin America
 - Youth bulges in fragile states and migrant populations
 - Aging and low birth rates in key allies & China
 - International and internal migration
 - Push away from trouble
 - Pull to economic opportunity
 - Migrating political interests
 - Youth, conflict, and ideology
 - Urbanization

Demographic change will increase stress on fragile states, create risks around access to resources, and generate a range of governance, societal, cultural, & health issues as states adjust to population transformations within and between states.

FROM OUSD (Policy) – Future Shocks Study
The “Black Swan” Syndrome

Cognitive biases create false expectations of predictability. Acknowledging uncertainty may allow us to adapt better to unforeseen events.

- “Black Swans”: *large-impact, impossible to predict, and rare event beyond the realm of normal expectations*
 - 9/11, Google, internet bubble

- “Outside context problem”: *Problem outside a given groups experience, with an immediate, ubiquitous and lasting impact upon it*
 - Perry’s Black Ships arriving in Japan

- “Accelerating change”: *increase in rate of technological/ cultural/social progress in history (contrast to linear view)*
 - Accumulation of knowledge, access to knowledge and lowering of transactional barriers to knowledge
March/April 2008 MIT Innovations
List of 10 Emerging Technologies

- Cellulolitic Enzymes
- Atomic Magnetometers
- Surprise Modeling
- Connectomics
- Probabilistic CMOS
- Reality Mining
- Offline Web Applications
- Graphene Transistors
- Nanoradio
- Wireless Power
Comparison of Scientists & Engineers (S&Es)

Source: Money Magazine: 2005

Source: The Economist, Nov. 15, 2007

Shifting attractions
Market share in cross-border tertiary education
By country, % of total, 2005 (2000)

Source: The Economist, Nov. 15, 2007

http://www.economist.com/research/articlesBySubject/displaystory.cfm?subjectid=2133650&story_id=10143241
Growth of Educated Asian Population

- International S&E labor force data can only be approximated.

Figure 20. Population 15 years and older with tertiary education, by country/region: 1980, 2000

Number in S&E Labor Force, 1980:
- US: 22.8M
- Asia: 17.7M

Number in S&E Labor Force, 2000:
- US: 52.6M
- Asia: 60.9M

Source: National Science Foundation, S&E Indicators 2006

Source: National Science Foundation, Center for International Development: International Data on Educational Attainment, 2000
U.S. trade balance – high tech industries

- The trade balance of U.S. high technology industries has turned negative

Figure 12. U.S. trade balance for five high technology industries: 1990-2003

Billions of dollars

Includes: Aerospace, Pharmaceuticals, Computing, Communications, Scientific Instruments

Source: National Science Foundation, S&E Indicators 2006
Forecasting Future Disruptive Technology—Mass Collaboration

• DoD & National Academies
• Teaming to produce a recurring technology forecast that is a:
 – Multidimensional Description of the technology
 – Estimation/description of impact
 – Temporal profile of development
 – Based on a wide group of experts
 – Develop a New web collaboration environment
 – Industry, academia, venture capitalists, government experts, etc.
 – Use collaboration environment to access a global community
 – Examines both traditional and non-traditional technology trends

Looking more than 15 years ahead . . .

Using mass collaboration as the tool for “Effective Forecasting”
Disruptive Technology
The Non-Textbook Definition

• **Rapid evolution from old, stable technology to new, dominating technology**

• **A technology surprise that gives a competitor an advantage**
 - Business - Technology that overturns market
 - Military - Technology that causes a fundamental change in force structure, basing, and capability balance

• **Disruptive Technologies can be intended or unintended - but both represent change**

• **Disruptive Technologies may arise from systems or enabling technology**
Desert Storm

- The advent of information-based warfare feeding the emergence of irregular warfare

- US dominance over Soviet-era systems “shocked” potential adversaries and combined to give US conventional superiority
 - Precision Weapons
 - Night Vision
 - Low Observability
 - Networked Systems
R&D Expansion & “Disruption”
--Applications of Commercial Technologies--

- Fundamentally can have global impact & change the balance and approach to force expression
- Drives and fuels the need for & new innovative concepts
- Includes how new capabilities are built on emerging technology
- Appearing increasingly from the global commercial marketplace

Genetic Engineering
Future Processors
Proliferant Lasers
Wireless Devices
Unmanned Vehicles
An information age Pearl Harbor?

NO….but this guy is far cry from Imperial Japan

- Apple and AT&T released the iPhone on 29 June
- An exclusive agreement guaranteed the iPhone could only be used on AT&T's mobile network
- Hotz spent approximately 500 hours working on his “summer project”
- The hack was announced on 24 August.

- AT&T - market cap: $245B
 - annual revenue: $90B
- Apple - market cap: $117B
 - annual revenue: $23B
- Hotz - PRICELESS

This is the new asymmetry—victory goes to the agile and innovative.
Trends

• Increasing
 – International Science and Technology Relative to the US
 – Industrial Globalization of R&D
 – Pace of Technology Development
 – US Trade Balance in High-Tech Goods
 – Potential for “Hybrid” Disruption
 – Mass Collaboration “Flattening” the world

• Decreasing
 – US Production of Global Scientists and Engineers relative to World

US High Technology Advantage not Assured

Competition Increasing

Therefore, Have to Work on “High Payoff” Areas
Where are we going?
S&T Strategy and Plans

Defense Science and Technology Strategy and Planning
Where is the DoD S&T money going?

- **Funding**
 - Current year S&T dollars: $10.77B FY08 to $11.48B FY09
 - Percent of DoD funding: 2.24% FY08 to 2.22% FY09
 - Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)

DoD S&T program is focused on “sensing and shooting”

But is changing..................................
2006 QDR Challenge Construct

Four Hard Problems

1. Build partnerships to defeat terrorist extremism
2. Defend the homeland in-depth
3. Prevent acquisition or use of WMD by hostile actors.
4. Shape choices of countries at strategic crossroads
National Defense Strategy Drives Investment Strategy

- Irregular
 - Combating Terrorism

- Catastrophic
 - Protection Against WMD
 - Protection Against Chem Bio Attacks

- Disruptive
 - New Technology Investment that Provides New Capabilities

- Traditional
 Decrease Investment in Platform Technologies

VULNERABILITY
- Lower
- Higher

LIKELIHOOD
- Lower
- Higher
Science and Technology Enabling Technology Priorities

• Technology focus areas:
 – Biometrics and Biological exploitation
 – Information technology and applications
 – Persistent Surveillance Technology
 – Networks and Communication
 – Human, Social, Cultural, and Behavioral Modeling
 – Language
 – Cognitive Enhancement
 – Directed Energy
 – Autonomous systems
 – Hyperspectral sensors
 – Nanotechnology
 – Advanced Materials
 – Energy and Power
 – Affordability
 – Combating Weapons of Mass Destruction Technologies
 – Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President’s Budget Request
Increased S&T Requests Addresses Capability Gaps

- Special (“non-kinetic”/enabling) technologies:
 - Clandestine Tagging, Tracking and Locating
 - Biometrics
 - Human, Cultural, Social Behavior Modeling
 - Networks
 - Persistent Surveillance
- Technologies to decrease energy consumption/increase alternatives
- Combat and tactical armor for protection against a range of threats
- Accelerating transition to fielded systems

Investment shifted away from platform-specific technologies
Increased S&T Requests Addresses Capability Gaps

• New technology/emphasis areas
 – $270M increase to Basic Research
 – SecDef initiative to increase peer-reviewed basic research
 – To develop innovative solutions
 – Enhance the science and engineering personnel base
 – Increase will support targeted focus areas for
 – Early to mid-career scientists and engineers with a team of students and post docs
 – Single Investigator awards with larger grants
 – Emphasis will be on emerging technology areas, e.g.,
 – Cyber protection and information assurance
 – Biosensors and biometrics
 – Human sciences (cultural, cognitive, behavioral, neural)
 – Software sciences and materials
 – Immersive sciences for training and mission rehearsal
 – Power and energy management
 – Anticipate about 500 focused research efforts
Increased S&T Requests Addresses Capability Gaps

- New technology/emphasis areas (Cont’d)
 - Increased protection for dismounted troops and ground forces
 - Research in plasma and meta-materials to address emerging threats
 - Cyber protection
 - Hypersonics/Prompt Global Strike (Blackswift) – New technology prototype **
Shocks from the Past Century

- Strategic shocks can change how we think about security and the role of the military, e.g.:
 - Reduced role of military in society
 - Led to two-front war; Made intelligence a core element of operations
 - Nuclear warfare and capability become primary military mission
 - Space as a military domain
 - Led to the drawdown of the U.S. military – shifted focus to peace-keeping missions
 - Made homeland defense and irregular warfare central military missions
 - Increased military role in managing domestic catastrophes
 - Reinforced isolationist tendencies in the U.S.
 - Recognition of vulnerability – led to international engagement and industrialization for war on home front
 - Emergence of MAD and escalation management
 - Space leveraged for national power and prestige
 - End of bipolar world
 - Redefined security for the American public – CT emerges as USG focus
 - American public looks to the federal, rather than local, government for disaster relief

Implications for:
- Military
- Security

Categories of trends
- Conflict
- Demographics
- Economy
- Environment
- Governance
- Science & Technology

Note: Size of circle indicates impact

In retrospect, these shocks were the product of long-term trends

FROM OUSD (Policy) – Future Shocks Study
Analysis of Potential Shocks (2 of 2)

- Relative impact and likelihood out to 15 years

FROM OUSD (Policy) – Future Shocks Study
VISION: To develop technology to defeat any adversary on any battlefield

Any Battlefield includes physical, cyber, space, undersea, etc

QUESTIONS?
• Technology focus areas:
 – Active and Conventional Armor Technology
 – Defeat Speed of Light Systems
 – Immersive Training
 – Cyber Protection
 – Handling Large Data Sets
 – Human, Social, Cultural, and Behavioral Modeling
 – Cognitive Enhancement
 – Autonomous systems
 – Hyperspectral sensors
 – Nanotechnology
 – Advanced Materials
 – Energy and Power
 – Biometrics
 – Network Technology
 – Combating Weapons of Mass Destruction Technologies
2006 RAND Study*: Top 16 Technology Applications

Need to understand the second-order effects of emergent technologies on the DoD

⇒ Cheap solar energy
⇒ Rural wireless communications
✓ Communication devices for ubiquitous information access anywhere, anytime
• Genetically modified (GM) crops
⇒ Rapid bioassays
⇒ Filters and catalysts for water purification and decontamination
⇒ Targeted drug delivery
• Green manufacturing
✓ Ubiquitous RFID tagging of commercial products and individuals
⇒ Hybrid vehicles
✓ Pervasive sensors
⇒ Tissue engineering
⇒ Improved diagnostic and surgical methods
⇒ Wearable computers
✓ Quantum cryptography
• Cheap autonomous housing

✓ Direct Military Application
⇒ Indirect Military Application
• No Military Application

* The Global Technology Revolution 2020, In-Depth Analyses
Analysis of Potential Shocks (1 of 2)

• Relative impact and likelihood out to 15 years

Source: Compare and contrast three symposiums: 08 June, 27 August, 25-26 September 2007 and 18-19 December 2007
Johns-Hopkins University APL Warfare Analysis Laboratory, Laurel MD and Booz Allen Hamilton Inc, Herndon VA
Decade of Strategic Evolution

1993 Bottom-Up Review
- High
- Moderate
- Low
- Lesser Contingencies
- Major Theater War
- Future Near Peer
- Strategic Capability
- Desert Storm
- Soviet Collapse
- 2 MTWs
- State-on-State
- Cross Border Conflict

1997 Quadrennial Defense Review “QDR”
- High
- Moderate
- Low
- Lesser Contingencies
- Major Theater War
- Future Near Peer
- Strategic Capability
- Somalia, Bosnia, Rwanda, Haiti
- 2 MTWs
- State-on-State
- Cross Border Conflict
- Smaller Scale Contingencies

2001 QDR
- High
- Moderate
- Low
- Lesser Contingencies
- Major Theater War
- Future Near Peer
- Strategic Capability
- Citadel I & II
- 1-4-2-1
- Ungoverned Areas
- Asymmetric Threats

2006 QDR
- High
- Moderate
- Low
- Lesser Contingencies
- Major Theater War
- Future Near Peer
- Strategic Capability
- 11 Sept / GWoT
- OEF / OIF
- New Asymmetries
- Disruptive technologies
- Superiority in the Commons (Space, Cyber, Seas, Air)
- Dominance in Close (direct contact, CNO, littoral)
- GWoT / ungoverned areas
- Irregular Warfare
- Low-end Asymmetric
- 1-4-2-1 (State-to-State War)
Building the Science and Engineering Base

- We need to continually develop, mature and field technology to stay ahead of our adversaries
- President Bush acknowledged the importance of science and engineering development in his January 2008 State of the Union address

“To keep America competitive into the future, we must trust in the skill of our scientists and engineers and empower them to pursue the breakthroughs of tomorrow... I ask Congress to double federal support for critical basic research in the physical sciences and ensure America remains the most dynamic nation on Earth..”

President George W. Bush, State of the Union address, January 28, 2008

“As changes in this century’s threat environment create strategic challenges – irregular warfare, weapons of mass destruction, disruptive technologies – this request places greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget.”

Secretary of Defense Posture Statement on the FY09 Budget, February 2008
Energy Security Challenge

Supply
- Conventional fossil fuels
- Synthetic fossil fuels (e.g. coal, shale oil and tar sands derived fuels)
- Alternative fuels (e.g. biodiesel, alcohols, hydrogen, etc.)
- Renewables (e.g. solar, geothermal, wind)
- Novel supply (e.g. fuel cells)
- Exotics (e.g. isomers)

Demand
- Conservation Initiatives
- Fixed base
- Tactical base
- Platforms
- Efficiency
- Life-Cycle Cost

Equation:
\[CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO \]
\[(2n + 1)H_2 + nCO \rightarrow C_nH_{2n+2} + nH_2O \]

Direct oil / fossil fuel costs
- Policy, processes and risk assessment
- Refining Capacity
- Doctrine

Convergence for Energy Security
Assured Distribution

36
DoD S&T is a Partnership

Link to the Warfighter
Expanded Resource Base
New Ideas, Knowledge

Interagency

Maximum National Security Payoff

Service Labs
DARPA
Universities
Industries
International

High Risk, High Payoff
Coalition Capability
Innovation, Transition
Selected Countries Capacity to Acquire the Top 16 Technology Applications*

* The Global Technology Revolution 2020, In-Depth Analyses
• **Held at Irvine Ca, Nov 2006**

• **The Most Probable Future Technology Shocks areas are:**

Potential Military Applications:
- High Energy Fuels
- Bio-based Computers
- Advanced Materials
- Energy Storage / Distribution
- Assisted Decision Making
- Aided Target Recognition
Science and Technology and the Joint Warfighter

MG William J. Troy
Vice Director
Force Structure, Resources, and Assessment
Joint Staff, J8
Joint Staff Roles in S&T

• The “Voice of the Warfighter”
 – Consolidate needs of the COCOMs (via Integrated Priority Lists – IPLs) into JROC validated Capability Gaps
 – JUONs
 – JCTD validation

BOTTOM LINE:

Ensure the Joint Warfighter has the required capabilities to execute the assigned mission in a resource constrained environment...
JCIDS Update

• Senior Warfighters’ Forums (SWarFs)
• Focus on Cross-cutting Issues
• JCA Rebaseline
 – Nine Tier 1 JCAs
 – Approved by DAWG to Tier 3
 – Two new FCBs:
 – Building Partnerships
 – Corporate Management
• Gap Prioritization
 – New Integrated Priority Lists (IPLs) from COCOMs recently submitted, gap analysis/formulation/ prioritization in progress
• FY08 NDAA Provisions
What has 5 years of war told us to help shape the direction of DoD S&T?

- ISR
 - Readily available and tailorable coverage
- Robotics
 - Same/improved capabilities, keeping Soldiers and Marines out of harm’s way
- Force Protection
 - Armor Protection vs. Armor Defeat – where does it end?
- Managing violence in a dense battlespace
 - Interoperability, C2, Precision Fire
Interoperability and Interdependence on Demand in a Fluid Situation

• Ground Forces
 – Army Tanks and Infantry
 – Marine LAV and AAV

• Rotary Wing Forces
 – Army and Marine Helicopters

• Fixed Wing Forces
 – Navy and Air Force Fighters

• Special Operation Forces

• Coalition Forces

• Fully integrated and task organized

Joint and Coalition combined forces, executing together with Unity of Effort and Unity of Command in a space no larger than **Pentagon South Parking**
Success …

• Solutions to warfighter needs with an S&T solution
 – Predator (ACTD)
 – Counter Radio controlled improvised explosive device Electronic Warfare (CREW) IED Electronic Jamming (JUONS)
 – Joint Precision AirDrop System (JPADS) (ACTD)
...and the Future

- Currently SEVEN “Technologically Challenged” JUONS - the “hottest” issues from the warfighter on the front lines
- Six are related to counter IED
- One is related to renewable energy

- Currently handled by the JRAC through JIEDDO, appropriate FCB, OSD (AS&C), DSTAG currently not involved

- For discussion: Should the DSTAG become involved with these?
 - Meets monthly - can react quickly
 - Represents DoD-wide S&T agencies, providing increased visibility
 - May be able to provide solutions for these JUONS, stand up Ad-Hoc Technology Focus Team, leverage other R&D/R&E projects, etc.
The 2006 QDR Construct

- The 2006 QDR used the “Quad Chart” to analyze the changing nature of warfare

<table>
<thead>
<tr>
<th>Irregular</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defeat Terrorist Extremism</td>
<td>Today’s Capability Portfolio</td>
</tr>
<tr>
<td>“Shifting Our Weight”</td>
<td></td>
</tr>
<tr>
<td>Disruptive</td>
<td>Catastrophic</td>
</tr>
<tr>
<td>Defend Homeland</td>
<td>Shape Choices</td>
</tr>
<tr>
<td>Counter WMD</td>
<td></td>
</tr>
</tbody>
</table>

Four Hard Problems

1. Build partnerships to defeat terrorist extremism
2. Defend the homeland in-depth
3. Prevent acquisition or use of WMD by hostile actors.
4. Shape choices of countries at strategic crossroads

This construct is the basis for our current defense strategy
Understanding the 21st Century

- The “Quad Chart” was the strategic construct for the 2005 National Defense Strategy and 2006 Quadrennial Defense Review

- A new strategic construct might be more appropriate in preparation for the next set of strategic documents

- This model should account for the increasing complexity of the global environment
 - Many non-military factors disrupt international security – we need to better anticipate and respond to these disruptive events
“Black Swan Theory”

Cognitive biases create false expectations of predictability. Acknowledging uncertainty may allow us to adapt better to unforeseen events.

- “Black Swans”: **large-impact, impossible to predict, and rare event beyond the realm of normal expectations**
 - 9/11, Google, internet bubble
- “Outside context problem”: **Problem outside a given groups experience, with an immediate, ubiquitous and lasting impact upon it**
 - Perry’s Black Ships arriving in Japan
- “Accelerating change”: **increase in rate of technological/ cultural/social progress in history (contrast to linear view)**
 - Accumulation of knowledge, access to knowledge and lowering of transactional barriers to knowledge

“But there are also "unknown unknowns" — the ones we don't know we don't know.” Former Secretary of Defense Donald Rumsfeld, Feb 12, 2002.
Purpose and Outline

• Purpose
 – Examine U.S. defense and security implications of future technology trends and potential shocks

• Outline
 – Summarize five technology areas by outlining:
 – Current assessment
 – Future trends
 – Defense implications
 – Potential shocks
 – Technology Meta-Trends
 – Way Ahead
Understanding Strategic Shocks

What is a “strategic shock”? An event that punctuates the evolution of a trend (a discontinuity that either rapidly accelerates its pace or significantly changes its trajectory) and, in so doing, undermines the assumptions on which our current assumptions are based.

Some “strategic shocks” may not surprise us if we actively plan for them, both to reduce the risk of their occurrence and to be positioned to act. Other “strategic shocks” may catch us unaware and unprepared.

- 9/11, Pearl Harbor
- Resurgence of violent Islamic Extremism
- Fall of Soviet Union
The Genesis of Trends and Shocks

• With hindsight, it is clear that most shocks are the product of long-term trends

• Furthermore, shocks are less disruptive when we have anticipated and responded to the underlying trends

• The challenge is identifying key trends and pre-adaptation for strategic shocks before they occur

 – Reviewing how effective the United States was in foreseeing major trends in the previous century illustrates this effect
Reviewing Major Trends

<table>
<thead>
<tr>
<th>Categories</th>
<th>Trend Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict</td>
<td>• Increasing lethality and scope of irregular challenges</td>
</tr>
<tr>
<td></td>
<td>• Military operations in new domains</td>
</tr>
<tr>
<td></td>
<td>• Rise of China</td>
</tr>
<tr>
<td></td>
<td>• Cyber war</td>
</tr>
<tr>
<td></td>
<td>• Increasing nuclear proliferation</td>
</tr>
<tr>
<td>Demographics</td>
<td>• Youth bulge—87% of 10-19 year-olds live in dev. states</td>
</tr>
<tr>
<td></td>
<td>• **Global aging: The ranks of those over age 60 are growing about 2% each year</td>
</tr>
<tr>
<td></td>
<td>• faster than the overall population. Primarily affects: Europe, Japan</td>
</tr>
<tr>
<td></td>
<td>• Urbanization — by 2025, nearly 60% of global population will live in cities</td>
</tr>
<tr>
<td>Economy</td>
<td>• Growing gap between rich and poor countries</td>
</tr>
<tr>
<td></td>
<td>• Increasing regional and global integration of economies</td>
</tr>
<tr>
<td></td>
<td>• Increasing Asian influence in international markets</td>
</tr>
<tr>
<td>Environment</td>
<td>• Disruptions to resource distribution (e.g., water, energy)</td>
</tr>
<tr>
<td></td>
<td>• Climate change leading to rise in sea level, changing climatic zones, weather patterns</td>
</tr>
<tr>
<td>Governance</td>
<td>• State remains dominant unit in international system</td>
</tr>
<tr>
<td></td>
<td>• Strong, but challenged, US leadership in international arenas (e.g., global commons)</td>
</tr>
<tr>
<td></td>
<td>• Increasing influence of the individual, private sector, NGOs on international system</td>
</tr>
<tr>
<td></td>
<td>• Increasing salience of trans/sub-national identities</td>
</tr>
<tr>
<td></td>
<td>• Strong national and sub-national bonds sustained and reinforced through web and remittances</td>
</tr>
<tr>
<td></td>
<td>• Increasing tension between the “individuals rights” versus ”groups rights”</td>
</tr>
<tr>
<td>Science & Technology</td>
<td>• Technology: Information, Nanotechnology, Bio, Energy, Robotics</td>
</tr>
<tr>
<td></td>
<td>• Increased proliferation of technologies and knowledge</td>
</tr>
</tbody>
</table>

Categories

- **Conflict**: Rise of a Near-Peer Competitor
- **Demographics**: Geopolitical Demographics
- **Economy**: Winners and Losers
- **Environment**: Five Revolutions
- **Governance**: Anthropological Lens on Conflict
- **Science & Technology**: Five Revolutions
Technology surprise?
Promises raise expectations – delivery tends to lag

- Late delivery desensitizes decision makers to need for change
- True bolts from the blue are possible, but unlikely
- Intersecting revolutions hypothesis
Purpose and Outline

• Purpose
 – Examine U.S. defense and security technology trends and potential shocks

• Outline
 – Five technology areas:
 – Current assessment
 – Future trends
 – Defense implications
 – Potential shocks
 – Technology Meta-Trends
 – Way Ahead
Information Technology (IT)

Description: Computers, comm, sensors, networks, electronic control systems, information storage, manipulation, and display

<table>
<thead>
<tr>
<th>Current Assessment</th>
<th>Future Trends (next 15 yrs)</th>
</tr>
</thead>
</table>
| • DoD leads in Military C4ISR
• U.S. private sector leads global IT markets (rising competitors)
• DoD is a market follower in enterprise systems
• High investment (and cost) area | • Moore’s law continues / Bandwidth increases (fiber and wireless)
• IT will accelerate change other areas (Bio/Materials)
• Decreasing quality / disposability (in hardware and software) |

<table>
<thead>
<tr>
<th>DoD Implications</th>
<th>Potential Shocks (next 15 yrs)</th>
</tr>
</thead>
</table>
| • Continued increasing influence in all mission areas
• Free movement of knowledge (blue and red)
• Increasing exploitation potential (red and blue) | • Large-scale SCADA (system control & data acquisition) attack
• Accessible quantum encryption
• Quantum computing becomes widely available |
Biotechnology / Genetics

Description: Medical technology, pharmacology, molecular biology, biochemistry, bioinformatics, and genetic engineering

<table>
<thead>
<tr>
<th>Current Assessment</th>
<th>Future Trends (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• U.S. private sectors leads in (most areas)</td>
<td>• Dramatic cost reductions in gene sequencing equipment</td>
</tr>
<tr>
<td>• Free cross-border collaboration and movement of knowledge</td>
<td>• Expanding / accessible databases</td>
</tr>
<tr>
<td>• High dual-use potential, light footprint, difficult to assess intent</td>
<td>• Social and cultural norms will limits some advances (in U.S.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD Implications</th>
<th>Potential Shocks (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DoD has traditionally focused technology on machines (not men)</td>
<td>• Development of performance degradation technology</td>
</tr>
<tr>
<td>• Human performance has a dramatic effect on all operations</td>
<td>• Attack with engineered pathogens</td>
</tr>
<tr>
<td>• Greatest asymmetric danger</td>
<td>• 2-10X Human Performance Enhancement: sleep, endurance, strength, cognitive ability</td>
</tr>
<tr>
<td>• Ambiguous U.S.G. authorities</td>
<td>• Massive failure in food supply</td>
</tr>
</tbody>
</table>
Description: Programmed, remote, and direct human control of machines, human-machine intelligence and hybrid systems

<table>
<thead>
<tr>
<th>Current Assessment</th>
<th>Future Trends (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Man (or man-machine) interface often limits system performance</td>
<td>• Increased focus on neural function, perception, and cognition</td>
</tr>
<tr>
<td>• U.S. leads the world in unmanned defense systems</td>
<td>• Expansion of autonomous systems and virtual presence</td>
</tr>
<tr>
<td>• Growing investment (cost) area</td>
<td>• Rapidly emerging threats</td>
</tr>
<tr>
<td>• Rising powers will apply low cost, dual-use technology</td>
<td>• New vulnerability sets (links, data, control)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD Implications</th>
<th>Potential Shocks (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unmanned systems have proven (and increasing) value</td>
<td>• Fused human-machine intelligence</td>
</tr>
<tr>
<td>• Remotely-manned and hybrid systems can be used in increasingly complex missions</td>
<td>• Low cost, swarming systems or autonomous precision attack systems</td>
</tr>
<tr>
<td>• Amputation / neurological casualties from IEDs</td>
<td></td>
</tr>
</tbody>
</table>
Material and Production Science

Description
Advanced materials, nanotechnology, micro (and nano) electromechanical devices, prototyping, production

<table>
<thead>
<tr>
<th>Current Assessment</th>
<th>Future Trends (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Area of U.S. competitive advantage</td>
<td>• Rapidly expanding nano and MEMS (commoditization)</td>
</tr>
<tr>
<td>• DoD is the global leader in existing mission areas (air-sea-land-space)</td>
<td>• Increasing focus on MEMS/NEMS</td>
</tr>
<tr>
<td>• DoD will follow in expanding commercial markets</td>
<td>• Continued convergence of IT, robotics, and bio technology</td>
</tr>
<tr>
<td>• High dual-use potential</td>
<td>• Increased emphasis on reducing development to market timelines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD Implications</th>
<th>Potential Shocks (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dual-use makes this technology difficult to control</td>
<td>• Proliferation of highly energetic materials</td>
</tr>
<tr>
<td>• Proliferation will reduce DoD’s technical edge and expand asymmetric attack options</td>
<td>• Invasive nano particles/NEMS used as medical or biological agents; delousing</td>
</tr>
<tr>
<td>• Increased reliability / reduced cost (must pair with agile acquisition)</td>
<td>• Sensor dust, ubiquitous sensing</td>
</tr>
<tr>
<td></td>
<td>• Broad-band metamaterials</td>
</tr>
</tbody>
</table>
Energy Technology

Description: Alternative sources, portable power systems, energy efficient designs

<table>
<thead>
<tr>
<th>Current Assessment</th>
<th>Future Trends (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Developed world vulnerable to energy disruptions</td>
<td>• Investment will continue on multiple fronts (hedging and competing constituencies)</td>
</tr>
<tr>
<td>• Major oil companies reluctant to invest heavily in alternatives</td>
<td>• Scale of demand and infrastructure will limit pace of change</td>
</tr>
<tr>
<td>• Global climate concerns driving search for hydrocarbon alternatives (low CO₂ options)</td>
<td>• DoD must will drive battery / portable power technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoD Implications</th>
<th>Potential Shocks (next 15 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DoD will continue to have a large energy footprint</td>
<td>• Dramatic increase (or decrease) in oil production (or consumption)</td>
</tr>
<tr>
<td>• Expanded use of small / remote systems will require more portable power with higher energy density</td>
<td>• Radiological attack on petroleum mega-node</td>
</tr>
<tr>
<td>• DoD will be tasked to set examples in efficiency and innovation</td>
<td>• New dominant energy source (energy density better than oil)</td>
</tr>
</tbody>
</table>
An information age Pearl Harbor?

NO….but this guy is far cry from Imperial Japan

- Apple and AT&T released the iPhone on 29 June
- An exclusive agreement guaranteed the iPhone could only be used on AT&T's mobile network
- Hotz spent approximately 500 hours working on his “summer project”
- The hack was announced on 24 August.
 - AT&T - market cap: $245B
 - annual revenue: $90B
 - Apple - market cap: $117B
 - annual revenue: $23B
 - Hotz - PRICELESS

This is the new asymmetry—victory goes to the agile and innovative
Recent Developments

Hafnium oxide: 45nm transistors

A beam of light travels less than a tenth of an inch during the time it takes a 45nm transistor to switch on and off.

Surprise revival of Moore’s law just before anticipated end of silicon chip progress

Supercomputer neuro-map: 10,000 neurons and 30 million connections

Scientists are now planning to model the entire human brain within just 10 years - “fantastic acceleration in brain research”

Metamaterials: 2D microwave “invisibility cloak”

From theory to tech demonstration in 5 months

Nano Antennas: receiving infrared RF signals

Could lead to sensors a million times more sensitive than current technology. First predicted in 1960s
Age of Scientific Innovation

• Paradigm-shifting scientific discoveries have historically occurred at a young age
 – Newton – 24; Darwin – 22; Einstein - 26

• Mid-career scientists are now considered to be most productive—if measured by lists of publications
 – May be due to longer training phases, accumulative advantage, focus on acceptance vs. discovery

• Scientific and technological discovery and innovation are not limited to academic publications and PhD’s.
 – Some of the most successful innovators of recent decades have been college drop-outs
 – Bill Gates, Steve Wozniak, Michael Dell
 – Some of the most threatening innovators have been under the age of twenty-five
 – Global Bot “Mastermind” – 18 year old alleged by FBI to lead effort of infecting and controlling over a million computers world-wide
 – Godfather of Cyber Terrorism – recently arrested 22 year old Al Qaeda internet operative
 – World’s Most Famous Hacker – Kevin Mitnick, who broke into DEC computers to steal their operating system development software at 16
Technology Meta-Trends (1)

- **Technological change is accelerating**
 - Accelerating application of knowledge and technology
 - Past – Change limited by state-based science, technology, capital
 - Future – Change limited by interest, policy, and law
 - Increasing rate of “paradigm shifts”
 - Invention/innovation speeds up invention/innovation (feedback loop)

- **U.S.’s technological advantage eroding**
 - Free-flowing factors of production: S&T, labor, capital
 - Nation state risk aversion: bureaucratic, conservative governance
 - U.S. economy may fall to world’s 3rd largest in latter half of century
 - Increasing number of 6-Σ individuals migrating into productive sector in China/India

- **Discovery may rely more on global collaboration than years of graduate study**
 - Innovation as a “young man’s game” (Planck) vs. the realm of experienced, qualified experts
Technology Meta-Trends (2)

- **“Silicon” computing power on path to exceed “carbon” computing power**
 - Implications of machines surpassing computing power of human brain

- **Super-empowerment and new global actors**
 - Technology investment geared to empower the individual - personal transportation, communications, finance, entertainment, health care
 - Proliferation of “new” technologies in the hands of agile adversaries
 - Nation-state’s destructive power available to single decision-makers
 - Growing access to converging technologies (speed, cost, scope)

- **Unforeseeable technology innovation – the third step**
 - How will technology used in ways we cannot predict?
 - How will technology change the way we think and organize?

- **Perception U.S. less open to foreign students and scholars**
 - Enrollment declined in 2003-07 for first time since 1971; however, 2006-07 school year saw increase
 - Post-9/11 restrictions make European institutions seem more attractive
Recommendations – People

• Make government lab resources more widely available to University researchers and develop programs to continue those relationships
 – Expand Summer Faculty Research Program and Sabbatical Leave Program (ASEE); Post-doctoral fellowship (ASEE); Defense Science and Engineering Graduate Fellowships

• Develop and expand existing innovative hiring, employment, and contracting authorities
 – Intergovernmental Personnel Act, Highly Qualified Experts, industry fellowships, SMART program, NSEP
 – Develop attractive rotational career paths and collaborative opportunities

• Partner with research and development competitions
 – Odyssey of the Mind, Exploravision, Science Olympiad, FIRST, Idea to Project
Recommendations – Horizon Scanning

- Enhance organizations with staff and methodology to alert senior leaders to disruptive trends, shocks, and potential mitigation
 - Build technology intelligence program that includes technology scanning and collaboration with partners, private sector – X2 as a model
 - Link tech intelligence to technology red teaming and blue teaming process (DDR&E)
 - Technology war-gaming / Identify indicators and red lines
 - Integrate operational perspectives by recruiting and strategically placing/detailing “technology scouts”
 - Services and Defense Agencies
 - Intern, externs, fellows, and gray beards
 - Develop protocols to raise major issues to senior leadership
 - Share information and increase visibility across government
Recommendations – Leveraged Innovation

• Sponsor technology research and “challenges” that focus on interdisciplinary research and applications

• Examples: DARPA challenges, MURI s, tech venture funds that
 – Open doors for groups pursuing innovative research that would not/could not pursue access to DoD market
 – Award winners, dramatic innovators – continue relationship high potential teams
 – Provide seed money to promising teams (tech CERP) for ideas

• Example focus areas:
 – Energy: portable power; domestically sources compatible with legacy equipment and infrastructure; carbon neutral / carbon sequestration
 – TTL: “Naked man” problem; tag at a distance; stand-off detection of fissile material
Questions?
BACKUPS
Decreasing Weight of USG Investment

U.S. R&D Funding by Source, 1953-2006

expenditures in billions of constant 2006 dollars

Source: NSF, Division of Science Resources Statistics. (Data for 2005 and 2006 are preliminary.)

APRIL '07 © 2007 AAAS
30 Year Trend in U.S. R&D Investments

- DoD R&D effort down from 26% to 16% of U.S. total
- Total Federal effort down from 51% to 28%
- Industry R&D effort up from 45% to 65%
- Non-profits, educational institutions, state, and local up from 4% to 7%
Basic Research (BA 1)

Trends in Basic Research by Agency, FY 1975-2008 *
in billions of constant FY 2007 dollars

- NIH
- NSF
- DOD
- DOE
- NASA
- USDA
- All Other
DoD R&D is about half of U.S.G. total
The Importance of Horizon Scanning

• Inductive logic – necessary and overwhelmingly attractive
 – The sun will rise tomorrow…
 – 78 percent of Americans support…
 – The top mutual performing fund for the last ten years…

• The law of large numbers
 – Regression analysis, curve fitting, and forecasting
 – Sufficient and random sampling of independent variables

• The farmer and the chicken
 – When do we have enough information?
 – Should we constantly challenge our current ideas and theories?
 – Should we take every day one day at a time?
One Effect of Quantum Computing:
Ability to Break RSA Public Key Encryption

The RSA algorithm was invented in 1977; it is a \textit{computationally secure} based on four parameters: \(P, Q, E, \) and \(D \)

\begin{itemize}
 \item \(P \) and \(Q \), two large prime numbers
 \item \(E \) such that \(E \) is greater than 1, \(E \) is less than \(PQ \), and \(E \) and \((P-1)(Q-1) \)
 have no prime factors in common
 \item \(D \) such that \((DE - 1) \) is evenly divisible by \((P-1)(Q-1) \)
\end{itemize}

\textbf{The encryption function is} \(C = (T^E) \mod PQ \) \((C \) is the ciphertext) \n
\begin{itemize}
 \item The \textit{public key} is the pair \((PQ, E)\)
\end{itemize}

\textbf{The decryption function is} \(T = (C^D) \mod PQ \) \((T \) is the plaintext) \n
\begin{itemize}
 \item The \textit{private key} is the number \(D \)
\end{itemize}

\textbf{One can publish the public key freely} \n
\begin{itemize}
 \item There are no practical methods of calculating \(D, P, \) or \(Q \) given only \((PQ, E)\)
 \item If \(P \) and \(Q \) are each 1024 bits long, \textit{the sun will burn out before the most powerful classical computers can factor PQ into P and Q (quantum computer could do it in minutes)}
\end{itemize}

\textbf{Quantum computers undo the computational security of public key encryption}
Research & Development Budget Categories

<table>
<thead>
<tr>
<th>Budget Activity 1:</th>
<th>Basic Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Activity 2:</td>
<td>Applied Research</td>
</tr>
<tr>
<td>Budget Activity 3:</td>
<td>Advanced Technology Development (ATD) (S&T)</td>
</tr>
<tr>
<td>Budget Activity 4:</td>
<td>Advanced Component Development and Prototypes (ACD&P)</td>
</tr>
<tr>
<td>Budget Activity 5:</td>
<td>System Development and Demonstration (SDD)</td>
</tr>
<tr>
<td>Budget Activity 6:</td>
<td>RDT&E Management Support</td>
</tr>
<tr>
<td>Budget Activity 7:</td>
<td>Operational System Development</td>
</tr>
</tbody>
</table>

Budget Activities 1 through 3 are often collectively referred to as **Science and Technology (S&T)**

Budget Activities 4,5 and 7 are normally associated with acquisition programs

Budget Activity 6 funds RDT&E infrastructure
Research & Development Budget Categories

Budget Activity 1: **Basic Research**, the systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind (formerly known as 6.1)

Budget Activity 2: **Applied Research**, the systematic study to understand the means to meet a recognized and specific need (formerly known as 6.2)

Budget Activity 3: **Advanced Technology Development (ATD)** includes development of subsystems and components and efforts to integrate subsystems and components into system prototypes for field experiments and/or tests in a simulated environment (formerly known as 6.3)
“By 2020, organic electronics should provide for increased brightness of widespread lighting systems and displays.”

RAND, *The Global Technology Revolution 2020*
(Released in 2006)

Super-vivid, super-efficient displays
New OLED displays for mobile gadgets are poised for debut in U.S. and European markets
Technology Review
November 06, 2006

Sony: 1,000,000:1 OLED TV on sale in 2007
Engadget
Posted 12 April 2007
Performance Remediation

World First Power Ankle

- Developed at biomechatronics group at the MIT Media Lab
- Small battery-powered motor mimics the energy-storage capacity of the human ankle
- Power-assisted spring propel the foot forward as it pushes off the ground
- about 20 percent more efficient than past devices
- Tested in partnership with Military Amputee Research Program
Brain-Machine Interface

- Emotiv Systems electroencephalograph (EEG) cap
- On sale to software developer's
- Used to build games that use the electrical signals from a player's brain to control the on-screen action
- Could be useful in virtual-world games, such as Second Life
- Commercial successful remains uncertain
Current Materials Research

Sheets of Stretchable Silicon
Researchers have shown that ultrathin sheets of silicon can stretch in two dimensions--opening up the possibility of electronic eyeballs and smart surgical gloves.

Better Catalysts for Fuel Cells
Nanoparticles with a completely new shape may lead to cheaper catalysts that could make many experimental-energy technologies more practical.

Technology Review
May 15, 2007
Public Companies with $150B* in Revenue
(why oil matters so much)

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Company Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>$366.24B</td>
<td>Exxon Mobil Corporation engages in the exploration, production, transportation, and sale of crude oil and natural gas.</td>
<td>Irving, TX</td>
</tr>
<tr>
<td>$355.38B</td>
<td>Wal-Mart Stores, Inc. operates retail stores in various formats worldwide.</td>
<td>Bentonville</td>
</tr>
<tr>
<td>$318.13B</td>
<td>Royal Dutch Shell plc, through its subsidiaries, engages in the exploration, production, and trading of various energy resources worldwide.</td>
<td>The Hague</td>
</tr>
<tr>
<td>$263.89B</td>
<td>BP p.l.c. provides fuel for transportation, energy for heat and light, retail services, and petrochemicals products.</td>
<td>London</td>
</tr>
<tr>
<td>$209.84B</td>
<td>Toyota Motor Corporation operates in the automotive industry worldwide.</td>
<td>Toyota City</td>
</tr>
<tr>
<td>$204.78B</td>
<td>DaimlerChrysler AG engages in the development, manufacture, distribution, and sale of automotive products, including passenger cars, trucks, vans, and buses worldwide.</td>
<td>Stuttgart</td>
</tr>
<tr>
<td>$191.74B</td>
<td>General Motors Corporation and its subsidiaries engage in the development, production, and marketing of cars, trucks, and parts worldwide.</td>
<td>Detroit</td>
</tr>
<tr>
<td>$189.82B</td>
<td>Chevron Corporation operates as an integrated energy company worldwide.</td>
<td>San Ramon</td>
</tr>
<tr>
<td>$176.14B</td>
<td>TOTAL S.A., together with its subsidiaries, operates as an integrated oil and gas company worldwide.</td>
<td>Paris</td>
</tr>
<tr>
<td>$167.21B</td>
<td>General Electric Company (GE) is a diversified industrial corporation.</td>
<td>Fairfield, CT</td>
</tr>
<tr>
<td>$164.72B</td>
<td>Ford Motor Company and its subsidiaries design, develop, manufacture, and service cars, trucks, and parts worldwide.</td>
<td>Dearborn, MI</td>
</tr>
<tr>
<td>$162.22B</td>
<td>ConocoPhillips operates as an integrated energy company worldwide.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>$152.55B</td>
<td>AXA, through its subsidiaries, provides global financial protection and asset management services.</td>
<td>Paris</td>
</tr>
<tr>
<td>$141.44B</td>
<td>China Petroleum & Chemical Corporation, through its subsidiaries, operates as an integrated oil and gas, and chemical company in the People's Republic of China and Hong Kong.</td>
<td>Beijing</td>
</tr>
</tbody>
</table>
U.S. Science and Math Literacy

Average science score of eighth grade students, by country: 2003

<table>
<thead>
<tr>
<th>Country</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>International average</td>
<td>473</td>
</tr>
<tr>
<td>Singapore</td>
<td>578</td>
</tr>
<tr>
<td>China</td>
<td>571</td>
</tr>
<tr>
<td>South Korea</td>
<td>558</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>556</td>
</tr>
<tr>
<td>Estonia</td>
<td>552</td>
</tr>
<tr>
<td>Japan</td>
<td>552</td>
</tr>
<tr>
<td>Hungary</td>
<td>543</td>
</tr>
<tr>
<td>Netherlands</td>
<td>539</td>
</tr>
<tr>
<td>United States</td>
<td>527</td>
</tr>
<tr>
<td>Switzerland</td>
<td>524</td>
</tr>
<tr>
<td>Australia</td>
<td>520</td>
</tr>
<tr>
<td>New Zealand</td>
<td>518</td>
</tr>
<tr>
<td>Lithuania</td>
<td>519</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>517</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>516</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>514</td>
</tr>
<tr>
<td>Latvia</td>
<td>512</td>
</tr>
<tr>
<td>Scotland</td>
<td>512</td>
</tr>
<tr>
<td>Malaysia</td>
<td>510</td>
</tr>
<tr>
<td>Norway</td>
<td>494</td>
</tr>
<tr>
<td>Italy</td>
<td>493</td>
</tr>
<tr>
<td>Israel</td>
<td>490</td>
</tr>
<tr>
<td>Belgium</td>
<td>479</td>
</tr>
<tr>
<td>Jordan</td>
<td>476</td>
</tr>
<tr>
<td>Moldova</td>
<td>472</td>
</tr>
<tr>
<td>Romania</td>
<td>470</td>
</tr>
<tr>
<td>Serbia</td>
<td>468</td>
</tr>
<tr>
<td>Armenia</td>
<td>461</td>
</tr>
<tr>
<td>Ireland</td>
<td>453</td>
</tr>
<tr>
<td>Macedonia</td>
<td>449</td>
</tr>
<tr>
<td>Cyprus</td>
<td>441</td>
</tr>
<tr>
<td>Briarly</td>
<td>437</td>
</tr>
<tr>
<td>Palestinian National Authority</td>
<td>435</td>
</tr>
<tr>
<td>Egypt</td>
<td>421</td>
</tr>
<tr>
<td>Indonesia</td>
<td>420</td>
</tr>
<tr>
<td>Chile</td>
<td>413</td>
</tr>
<tr>
<td>Tunisia</td>
<td>404</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>393</td>
</tr>
<tr>
<td>Morocco</td>
<td>393</td>
</tr>
<tr>
<td>Lebanon</td>
<td>365</td>
</tr>
<tr>
<td>Philippines</td>
<td>355</td>
</tr>
<tr>
<td>Botswana</td>
<td>355</td>
</tr>
<tr>
<td>Ghana</td>
<td>344</td>
</tr>
</tbody>
</table>

Average mathematics literacy score of 15-year-old students, by country: 2003

<table>
<thead>
<tr>
<th>Country</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>International average</td>
<td>462</td>
</tr>
<tr>
<td>OECD countries</td>
<td>500</td>
</tr>
<tr>
<td>Finland</td>
<td>544</td>
</tr>
<tr>
<td>South Korea</td>
<td>542</td>
</tr>
<tr>
<td>Netherlands</td>
<td>538</td>
</tr>
<tr>
<td>Japan</td>
<td>534</td>
</tr>
<tr>
<td>Canada</td>
<td>532</td>
</tr>
<tr>
<td>Belgium</td>
<td>529</td>
</tr>
<tr>
<td>Switzerland</td>
<td>527</td>
</tr>
<tr>
<td>New Zealand</td>
<td>523</td>
</tr>
<tr>
<td>Australia</td>
<td>524</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>516</td>
</tr>
<tr>
<td>Iceland</td>
<td>515</td>
</tr>
<tr>
<td>Denmark</td>
<td>514</td>
</tr>
<tr>
<td>France</td>
<td>511</td>
</tr>
<tr>
<td>Sweden</td>
<td>509</td>
</tr>
<tr>
<td>Austria</td>
<td>506</td>
</tr>
<tr>
<td>Germany</td>
<td>503</td>
</tr>
<tr>
<td>Ireland</td>
<td>503</td>
</tr>
<tr>
<td>Global Republic</td>
<td>490</td>
</tr>
<tr>
<td>Norway</td>
<td>490</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>490</td>
</tr>
<tr>
<td>Poland</td>
<td>490</td>
</tr>
<tr>
<td>Hungary</td>
<td>490</td>
</tr>
<tr>
<td>Spain</td>
<td>495</td>
</tr>
<tr>
<td>United States</td>
<td>483</td>
</tr>
<tr>
<td>Portugal</td>
<td>466</td>
</tr>
<tr>
<td>Italy</td>
<td>466</td>
</tr>
<tr>
<td>Greece</td>
<td>445</td>
</tr>
<tr>
<td>Turkey</td>
<td>423</td>
</tr>
<tr>
<td>Mexico</td>
<td>395</td>
</tr>
<tr>
<td>Non-OECD countries</td>
<td>550</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>550</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>536</td>
</tr>
<tr>
<td>Macao, China</td>
<td>527</td>
</tr>
<tr>
<td>Latvia</td>
<td>453</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>468</td>
</tr>
<tr>
<td>Serbia and Montenegro</td>
<td>457</td>
</tr>
<tr>
<td>Uruguay</td>
<td>422</td>
</tr>
<tr>
<td>Thailand</td>
<td>417</td>
</tr>
<tr>
<td>Indonesia</td>
<td>390</td>
</tr>
<tr>
<td>Tunisia</td>
<td>359</td>
</tr>
</tbody>
</table>

Average higher than U.S. average

Average not meaningfully different from U.S. average

Average lower than U.S. average

Sources:

Rise of China’s R&D Efforts

• U.S. Leads World in R&D Spending, China Moves to 3rd Place

The United States continues to lead the world in R&D with 34 percent of world R&D spending in 2005, according to data from the OECD. U.S. industry, government and other sectors spend more on R&D than the entire EU combined. The U.S. share has declined from 40 percent during most of the 1990s. China has increased its R&D performance dramatically in recent years and is just narrowly the 3rd largest performer of R&D (adjusted for purchasing power), and will overtake 2nd place Japan in 2006.

• In scientists and engineers employed in R&D activities, China is already 2nd in the world behind only the United States.

May 15, 2007
American Association for the Advancement of Science
Super Computers: Number of Top 500

November 1996

- Slovenia: 1
- South Africa: 1
- Taiwan: 1
- Denmark: 3
- Finland: 3
- Korea, South: 3
- Sweden: 3
- Austria: 4
- Canada: 4
- Australia: 5
- Spain: 5
- Italy: 6
- Netherlands: 9
- Switzerland: 9
- France: 17
- United Kingdom: 18
- Germany: 51
- Japan: 80
- United States: 267

November 2006

- Netherlands: 2
- Israel: 2
- Norway: 3
- Malaysia: 3
- Saudia Arabia: 4
- Brazil: 4
- Australia: 4
- Switzerland: 5
- Korea, South: 6
- Spain: 7
- Italy: 8
- Canada: 8
- India: 10
- France: 12
- Germany: 18
- China: 18
- United Kingdom: 30
- Japan: 30
- United States: 309
Super Computers: Processing

November 1996 (GigaFlops)

- Slovenia: 6
- South Africa: 6
- Taiwan: 15
- Denmark: 31
- Finland: 36
- Korea, South: 29
- Sweden: 32
- Austria: 22
- Canada: 82
- Australia: 50
- Spain: 33
- Italy: 42
- Netherlands: 112
- Switzerland: 130
- France: 239
- United Kingdom: 360
- Germany: 660
- Japan: 2507
- United States: 3506

November 2006 (TeraFlops)

- Netherlands: 31
- Israel: 8
- Norway: 17
- Malaysia: 12
- Saudia Arabia: 12
- Brazil: 14
- Australia: 21
- Switzerland: 48
- Korea, South: 34
- Spain: 92
- Italy: 39
- Canada: 37
- India: 34
- France: 100
- Germany: 145
- China: 72
- United Kingdom: 186
- Japan: 287
- United States: 2271

0 500 1000 1500 2000 2500
Selected Sources

- **Science and Engineering Indicators 2006. Two Volumes**
 National Science Board
 National Science Foundation, 2006

- **21th Century Strategic Technology Vectors**
 Defense Science Board, 2006

- **Proceedings, Australia-U.S. Bilateral Emerging Technology Conference**
 May, 2007

- **Converging, Combining, Emerging**
 Dr. George Poste, Presentation,
 Highland Forum XXXII

- **Steering Group Report: Brain Science as a Mutual Opportunity for the Physical and Mathematical Sciences, Computer Science, and Engineering**
 National Science Foundation
 August 2006

- **Globalization, Biosecurity, And The Future of The Life Sciences**
 Institute of Medicine and National Research Council of the National Academies, 2006

- **Human Performance Modification Collaboration Workshop Report**
 Dr. Adam Russell and Ms. Bartlett Bulkley
 Scitor Corporation, 2006

- **The Global Technology Revolution 2020, In-Depth Analyses Bio/Nano/Materials/Information Trends, Drivers, Barriers, and Social Implications**
 Richard Silberglitt, Philip S. Antón, David R. Howell, Anny Wong
 RAND, 2006
Defense R&D Spending

Trends in Defense R&D, FY 1976-2008 *
in billions of constant FY 2007 dollars

- DHS defense R&D
- DOE defense R&D
- Other DOD R&D 6.4 -
- DOD S&T 6.1-6.3
Federal Basic Research Spending

Trends in Basic Research by Agency, FY 1975-2008 *
in billions of constant FY 2007 dollars
DOD S&T Spending

Trends in DOD "S&T", FY 1994-2008 *
in billions of constant FY 2007 dollars

- Medical research
- DOD "6.3"
- DOD "6.2"
- DOD "6.1"

"6.1" as % of S&T (right scale)
Moore’s Law Continues

5-TERABYTE HARD DRIVES

AROUND THE year 2013, the gigabyte will become passé, thanks to a team of researchers at Toshiba and Tohoku University. By then, their recently developed hard-drive technology should lead to 5TB desktop drives and 1TB 2.5-inch notebook drives. Called Nanocontact Magnetic Resistance (NC-MR), the technology greatly boosts a drive head's ability to detect tiny changes in magnetic fields. Down the road, NC-MR should let manufacturers increase storage density from the current 178.8 gigabits per square inch all the way up to 1 terabit per square inch. Heat-Assisted Magnetic Recording (HAMR), being developed by Seagate and others, should eventually push storage density even higher—perhaps to 50 terabits per square inch by 2019.

45nm Size Comparison

- A nail = 20 million nm
- A human hair = 90,000nm
- Ragweed pollen = 20,000nm
- Bacteria = 2,000nm
- Intel 45nm transistor = 45nm
- Rhinovirus = 20nm
- Silicon atom = 0.24nm
Federal R&D Spending

Trends in Federal R&D as % of GDP, FY 1976-2008

- TOTAL R&D
- development
- research
- facilities
Trends in Federal R&D, FY 1995-2008*
selected agencies in constant dollars, FY 1995=100
Industry R&D Trends

Expenditures in billions of constant 2006 dollars

- Development: up 91%
- Applied Research: up 62%
- Basic Research: up 6%
Strategic Missile R&D Thrusts

- Science & Technology (BA 6.1-6.3)
- Radiation Hardened Electronics
- Technology for Sustainment of Strategic Systems
- Position, Navigation & Timing

- Thermal Protection Systems Materials & Structures
- Strategic Applications Programs (BA4 Air Force & Navy)
- Guidance
- Re-entry Vehicles
- Propulsion
- Command & Control
The need for technical intelligence...
The Direction of Technical Intelligence

- Other than WMD and terrorism, we see little strategic threat to US from today’s forces, but:
 - Are we effectively projecting future foreign technology, capabilities, threats & emerging applications

- Possible threats to continued US military advantage are largely technology based, and rate of change of technology is increasing

- US maintains capability advantage unless:
 - New technology from adversary (e.g. stealth, PGM, NVDs)
 - Disruptive Technologies (radar, satellites, anti-satellite technologies)

- Therefore, must enhance technology intelligence to minimize surprise from
 - New technology from adversary
 - Technology/tactics that can mitigate our capability advantage
Future Tech-Intel Motivation
“Move away from Lists of Lists”

- We need to understand global technology developments, evaluating their potential impact on national security
- Global development is so prolific that is difficult to keep up, much less address impact
- Limited funding, limited analysts, limited time prevent us from looking at everything
- Multiple analyses and lists of emerging tech exist, but most do not address impact to DoD or national security; those that do are typically generated by very small group with focused agendas
- Our concern remains “are we missing something” and “how do we better identify & track trends” because . . .

To avoid technology surprise we are moving to plan for an uncertain future, recognizing the global collaborative landscape by forecast future emerging technology & disruptive applications
Radiation Hardening Applications Program (RHAP)

Objectives
- Develop a tool to model strategic system radiation effects
 - EMP missile plume coupling
 - Electrical parasitics noise coupling
 - Multi-wire cable SGEMP
- Develop a hardened boundary scan technology for mixed-signal integrated circuit application to improve testability

Payoffs
- Improve the understanding of system survivability
- Improve the quality of radiation testing
- Cost savings to the program by reducing time in isolating failures
- Reduce assembly reworks by detecting / isolating analog faults
- Capture unique skills in RAD Hard system design
Air Force Hypersonic X-51 Scramjet Engine Demo (SED)

Near Term: Affordable Fast Reaction Standoff Weapon
- Time sensitive targets: rapid response, long range standoff (600 NM in 10 min)
- Deeply buried targets: terminal velocity 1K-4K fps
- 250-500 lb modular payload (penetrator, explosive, or submunition)
- Reduced vulnerability to enemy air defenses

Far Term: Affordable On-demand Access to Space with Aircraft-like Operations

<table>
<thead>
<tr>
<th>Description</th>
<th>Benefits to the War Fighter</th>
</tr>
</thead>
</table>
| Flight Demo HyTech HC Scramjet Engine
- Fixed geometry scramjet, 12 min durability
- Waverider airframe w/ ATACMS booster
- Proves scramjet performance in flight | Near Term: Affordable Fast Reaction Standoff Weapon
- Time sensitive targets: rapid response, long range standoff (600 NM in 10 min)
- Deeply buried targets: terminal velocity 1K-4K fps
- 250-500 lb modular payload (penetrator, explosive, or submunition)
- Reduced vulnerability to enemy air defenses |
| Technologies | |
| - Scramjet operating from Mach 4.5 to 7+
- Affordable, high lift-to-drag airframe
- Storable endothermic hydrocarbon JP fuel | |
Bottom Line: Warfighter Confidence

Right Materiel, Right Place, Right Time, at the Right Cost - All The Time
Planned Tasks Beginning in FY08

• **Enhanced Ballistic Reentry Vehicle**
 – Future systems may require current ballistic RVs to fly at extended ranges
 – Identify current RV “weak links” for extended range ballistic flight
 – Design improvements for identified “weak links”
 – Current funding does not support flight testing

• **Advanced Fuze Alternatives**
 – Fielded fuzes utilize 1970’s and 80’s technology
 – Evaluate technologies for future fuze concepts
 – Reduce costs and increase maintainability while maintaining current capability and nuclear hardness
We are currently preparing students for jobs and technologies that don't yet exist...in order to solve problems we don't even know are problems yet.

More than 70% of U.S. 4-year-olds have used a computer.

There are students in China, Australia, Austria, Bangladesh, and the USA who collaborate on projects everyday.
An Uncertain, Changed World

- Technology Maturation Cycle
- Intellectual Capital Center Shifts
- Economic Factors Affecting R&D
Population Trends

Global Population Growth Is Driven By Developing Countries.

World population in billions, 1950-2050 (projected)

Population in Less Developed Countries

Population in More Developed Countries

Irregular
- Unconventional methods adopted by non-state and state actors to counter stronger state opponents.
 (e.g., terrorism, insurgency, civil war, and emerging concepts)

Traditional
- Military capabilities and military forces in long-established, well-known forms of military competition and conflict.
 (e.g., conventional air, sea, land forces, and nuclear forces of established nuclear powers)

Catastrophic
- Acquisition, possession, and use of WMD or methods producing WMD-like effects against vulnerable, high-profile targets by terrorists and rogue states.
 (e.g., homeland missile attack, proliferation from a state to a non-state actor, devastating WMD attack on ally)

Disruptive
- International competitors developing and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains.
 (e.g., sensors, information, bio or cyber war, ultra miniaturization, space, directed-energy, etc)

Uncertainty is the defining characteristic of today’s strategic environment
More on the Trade Gap

Figure O-12
U.S. trade balance for five high-technology industries: 1990–2003

Dollars (billions)

NOTE: Includes aerospace, pharmaceuticals, office and computing equipment, communications equipment, and scientific instruments.

Science and Engineering Indicators 2006

Figure O-10
High-technology share of total manufacturing, by country/region: 1990–2003

Percent

1990 1993 1995 1997 1999 2001 2003

United States

Asia-9

Japan

EU-15

China

EU = European Union

NOTE: Asia-9 includes South Korea, India, Indonesia, Malaysia, Philippines, Singapore, Taiwan, and Thailand.

Science and Engineering Indicators 2006

Figure O-13
U.S. trade balance in high-technology goods: 2000–04

Dollars (billions)

2000 2001 2002 2003 2004

With EU-15

With rest of world

With Asia

EU = European Union

SOURCE: U.S. Census Bureau, Foreign Trade Division, special tabulations (March 2005). See appendix table 5-4.

Science and Engineering Indicators 2006
More on Education

Figure O-35
Individuals in U.S. S&E labor force nearing retirement age, by degree level: 2003
Individuals (thousands)

NOTE: Preliminary estimates made in 2006 based on 2003 data

Science and Engineering Indicators 2006

Figure O-43
Academic S&E doctorate holders receiving federal support for research: 1989 and 2003
Percent

SOURCE: National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients, special tabulations. See appendix table 6-37.

Science and Engineering Indicators 2006

Figure O-31
Foreign student plans to stay in United States after receipt of U.S. S&E doctorate: 1983-2003
Students (thousands)

Science and Engineering Indicators 2006

114
Capabilities to Defeat Terrorist Networks

- Persistent surveillance
- Locate, tag, and track terrorists in denied areas
- Capabilities to fuse intelligence
- Language and cultural awareness
- Non-lethal capabilities
- Joint coordination, processes and systems

Non-kinetic capabilities

- Urban warfare capabilities
- Prompt global strike
- Riverine warfare capabilities

Kinetic Capabilities

All These Capabilities are Joint, Coalition Centric
Capabilities to Defend the Homeland In Depth

- Interoperable, joint command and control
- Enhanced air and maritime awareness
- Consequence management
- Broad spectrum medical countermeasures

Non-kinetic capabilities

All These Capabilities are Joint, Coalition Centric
Capabilities to Prevent the use of Weapons of Mass Destruction

- Locate, tag, track, and characterize
- Stand off fissile material detection
- Wide area persistent surveillance
- Capabilities to “render safe” WMD
- Non-lethal weapons

Non-kinetic capabilities

All These Capabilities are Joint, Coalition Centric
Capabilities to Shape the Choices of Countries at Strategic Crossroads

- Improved language and cultural awareness
- Persistent surveillance (penetrate and loiter)
- Cyberspace shaping / defense
- Secure broadband communications
- Integrated defense against all missiles

Non-kinetic capabilities

- Prompt, high-value global strike
- Air dominance
- Undersea stealth

Kinetic

Most of These Capabilities are Joint, Coalition Centric
DoD S&T Requests
- by Percent Budget Activity -

DoD is increasing emphasis on nearer-term projects

** Note: ** Advanced Technology Development funding began in FY78.
Recipients of DoD S&T Funds

*Includes non-profit institutions, State & local govt., & foreign institutions
Source: National Science Foundation Report (FY 2006)
Technology for Sustainment of Strategic Systems (TSSS)

DoD Science and Technology Program Initiated by USD(AT&L) in response to the highest priority needs identified by USSTRATCOM

Missile Propulsion
Post-Boost Control System Propulsion, Valve Technology & Materials Ageing and Surveillance
Missile Flight Sciences
Missile Electronics
Underwater Launch
Guidance Navigation and Control for Strategic and Precision Strike Ordnance Initiation Technology for Strategic Missile Systems
Submarine Navigation

TSSS supports the capability to sustain and upgrade existing Inter-Continental Ballistic Missiles (ICBM) and Fleet Ballistic Missiles (FBM) systems and to engineer, design, and develop new ballistic missile systems. Contributing factors include maintaining system safety, reducing operations and maintenance (O&M) costs, increasing service life of existing systems, and reducing reliance on physical testing of existing strategic systems.
TSSS Technology Objectives

- Missile Propulsion
- Post Boost Control
- Ordnance
- Missile Electronics
- Underwater Launch
- Flight Sciences & Analysis
TSSS - Aging and Surveillance

NDE Data Processing Program
- CT Flaw Detection
- Automated Flaw Evaluation
- CT SLICES

Critical Defect Assessment Program
- Automated Flaw Meshing
- Automated Fracture Propagation

Service Life Prediction Technology Program
- Chemical/Mechanical Property Assessment
- Particle Packing
- Polymer Mechanics

3D Structural/Ballistic Modeling
- Chemical/Mechanical Property Prediction

Service Life Prediction

CT SLICES - PASS, FAIL

FAILPASS

LINE R PROPE LLANT
HI ELONGATION
120F AGING PANEL #2

MODULUS (relative)
zero time 158 days 390 days 547 days 809 days

Critical Defect Assessment Program

DI STAN (mm)
Strategic Propulsion Applications Program (SPAP)

Objectives
- Demonstrate/validate emerging technologies suitable for ICBM/SLBM
- Maintain critical skills and tools
- Improve predictive aging models/techniques
- Demonstrate Systems Engineering Skills for systems and subsystems integration
- Reduce development/qualification time required to initiate production of alternative components

Payoffs
- Viable alternative technologies in support of D5 Life Extension
- Demonstrations of affordable and high performance technologies for boost motor, PBCS and ordnance
- Maintenance of SLBM-unique development and sustainment skills related to high-energy, high-elongation Class 1.1 Propellant
- Elimination of hazardous materials in Ordnance
Strategic Missile System Technology Efforts (ICBM and SLBM)

- Technology for the Sustainment of Strategic Systems (TSSS)
 - Propulsion (IHPRPT)
 - Missile Boost Propulsion
 - Post Boost Control System Propulsion
 - Aging and Surveillance – Life Prediction, NDE
 - Guidance Navigation and Control
 - Navigation Sonar
 - Ordnance
 - Electronics
 - Systems Engineering Tools

Emphasizes Technology Sustainment (Reduced Cost of Ownership, Increased Performance)
Guidance Applications Program (GAP)

Objectives
- Provide a minimum strategic guidance technology design and development capability
- Transition to a long-term readiness status to support deployed systems
- Focus on modern replacement alternatives to antiquated or obsolete technologies which provide radiation hardened velocity, attitude (gyro) and stellar sensing capabilities with strategic performance

Payoffs
- Preserves critical design and core development capability
- Allows for orderly replacement of unsupportable technologies
- Applications to alternate missions
- Lower life cycle costs
QDR Priority Formulation

- Balanced what the US wants to protect against (Strategic Challenges) and outcomes the US wishes to accomplish (Strategic Outcomes)
 - Strategic Challenges
 - Traditional
 - Irregular Warfare
 - Combating WMD
 - Disruptive
 - Strategic Outcomes
 - Defeat Terrorist Networks
 - Defend the Homeland in-Depth
 - Shape Choices of Countries at Strategic Crossroads
 - Prevent the Use of WMD

QDR In A Banner – A Shift in Emphasis from “Kinetic” to “Non-Kinetic” Systems
Technology and the Modern World

“We can’t solve problems by using the same kind of thinking we used when we created them”

Albert Einstein

There is no reason anyone would want a computer in their home
Ken Olson, President, DEC, 1977

Everything that can be invented has been invented
Charles Duell, Commissioner US Patent Office, 1899

“I think there is a world market for maybe five computers.”
Thomas Watson, IBM Chairman, 1943

“640K ought to be enough for anybody.”
Bill Gates, CEO of Microsoft, 1981

If you don’t know where you are going, you might end up someplace else
Yogi Berra

These changes, among others, are ushering us toward a world where knowledge, power and productive capability will be more dispersed than at any time in our history – a world where value creation will be fast, fluid, and persistently disruptive.
Don Tapscott and Anthony Williams, Wikinomics

“The conjunction of 21st century internet speed and 12th century fanaticism has turned our world into a tinderbox” -- Tina Brown ,Washington Post, 19 May 2005
What Can Happen if We Hold onto Mature Technology Too Long

Sum of all “Capabilities”

Effort, Time, Dollars

US Capability
Largely in mature technology phase

Near Peer Capability
Largely in growth phase

ASSERTION: Without changing the US investment profile, US could spend more yet have capability gap close
Technological “Shock” of Desert Storm

- Based on dominant US capabilities “in the commons”
 - Low observability
 - Spaced-based capabilities
 - Comms
 - GPS
 - Night Vision
 - Info Ops
 - Missile Defense
Mega-Trends Economy

The US Trade Balance

- US Merchandise Trade Balance for 12 Months ending December 2007: 815.6B$

- Largest Advancing Technology deficits in these areas (2007YTD)
 - Information technology -7.9B
 - Life Sciences -1.7B
 - Opto-electronics -1.5B
 - Advanced Materials -0.8B

- Losses Outpaced gains in:
 - Aerospace +4.0B
 - Electronics +1.9B
 - Biotechnology +0.3B

Source: The Economist, March 8, 2008

Disruptive Technologies

Frequently Take a Forcing Function

<table>
<thead>
<tr>
<th>Technology</th>
<th>Approximate Date Of First Lab Demo</th>
<th>Approximate Date of First Military Apps</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>1901</td>
<td>1914</td>
<td>Electronics</td>
</tr>
<tr>
<td>Airplane</td>
<td>1903</td>
<td>1916</td>
<td>Internal Comb</td>
</tr>
<tr>
<td>Vacuum Tube</td>
<td>1906</td>
<td>1915</td>
<td>Electronics</td>
</tr>
<tr>
<td>Mechanized Tank</td>
<td>1916</td>
<td>1916</td>
<td>Engine/Metals</td>
</tr>
<tr>
<td>World War I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid-Fueled Rockets</td>
<td>1922</td>
<td>1944</td>
<td>Chem/Metals</td>
</tr>
<tr>
<td>Radar</td>
<td>1925</td>
<td>1939</td>
<td>Electronics</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>1935</td>
<td>1944</td>
<td>Metals</td>
</tr>
<tr>
<td>Digital Computer</td>
<td>1943</td>
<td>1945</td>
<td>Electronics</td>
</tr>
<tr>
<td>Ballistic Missile</td>
<td>1944</td>
<td>1945</td>
<td>Chem/Guide</td>
</tr>
<tr>
<td>Nuclear Weapons</td>
<td>1945</td>
<td>1945</td>
<td>Physics</td>
</tr>
<tr>
<td>World War II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistor</td>
<td>1948</td>
<td>1957</td>
<td>Electronics</td>
</tr>
<tr>
<td>Inertial Navigation</td>
<td>1950</td>
<td>1955</td>
<td>Electronics</td>
</tr>
<tr>
<td>Nuclear Propulsion</td>
<td>1950</td>
<td>1954</td>
<td>Physics</td>
</tr>
<tr>
<td>Artificial Earth Satellites</td>
<td>1957</td>
<td>1960</td>
<td>Computers</td>
</tr>
<tr>
<td>Cold War</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Circuit</td>
<td>1960</td>
<td>1970</td>
<td>Electronics</td>
</tr>
<tr>
<td>Laser</td>
<td>1961</td>
<td>1967</td>
<td>Photonics</td>
</tr>
<tr>
<td>Precision Weapons</td>
<td>1965</td>
<td>1967</td>
<td>Electronics</td>
</tr>
</tbody>
</table>

One function of S&T – Keep the pantry stocked
Disruptive Technology
A Case Study

Digital Equipment Corporation:

- 1957 -- Founded
- 1960 -- Programmable Data Processor 1 (PDP-1) Introduced
 - World’s First Minicomputer
 - 10% cost of Mainframe Computers
- 1965 -- PDP-8 Rolled-out; World’s #1 Selling Computer
- 1970’s – 1990—DEC #2 International Computer Sales
- 1990 -- 120,000 Employees; Revenues $14B
- 1998 – Company Bought by Compaq—and Dead

“It was the sudden demise of DEC that first drew my attention. How could a company, once described by Business Week as a freight train that obliterates all competitors, fall so precipitously?” Interview with Clayton Christensen, Harvard Business School on Line, April 1999
Central Technical Support Facility (CTSF)
U.S. Army Materiel Command

Terry Edwards
Chief Information Officer (CIO)
Chief Technology Officer (CTO)
HQ Army Materiel Command, CIO-G6
Ft. Belvoir, VA, 22060

April 15, 2008

"Need to be faster, more agile, less bureaucratic - Need to fight this every day"

April 15, 2008
CTSF Mission

The CTSF provides a unique, innovative, and scalable environment, with skilled and dedicated personnel, using qualified synergistic processes in order to support the DoD’s net enabled strategic vision by executing configuration management, systems engineering support, and interoperability certification testing for Army and Joint C4I providers.

Promote a Lean Culture in All We Do.
Promote a Lean Culture in All We Do.

SOS Focused CTSF Process

Federated Sites

SIL

FCS

PIL

STAKEHOLDERS/CUSTOMERS

Synchronization/Feedback

Warfighting Support

Fielding

Field Manuals

Test Report

Certification

CTSF Process

METRICS / Entrance & Exit Criteria

Developmental Testing & Integration

Tech IPT IPR

Risk Reduction

TRR #1

Test Fix Test

TRR #2

Strong Configuration Management

nn Month 2007

(CUCLASSIFIED)
Promote a Lean Culture in All We Do.
CTSF The Stats...

- **250,000 sq ft Facility**: 41,305 square feet dedicated to integration, testing and certification
- **Fully Wired Infrastructure**: with tactically representative routers, switches, hubs, fiber, 10Base2, 10BaseT and video to provide flexibility for test and exercise reconfiguration.
- **Instrumented Facility** for data collection and reduction equipment to support a vehicle platform to Corps level architecture, fully instrumented with SIM/STIM and data collection/reduction capability.
- **Configuration Control Capability** to support integration and fielding of Software
- **High Speed Communication Links** to facilities at Ft. Hood and externally to sister service sites, battle labs and contractor facilities; DREN access.
- **Established Processes** to support integration, testing, configuration management and training “Go to War” software.

Over 900 government civilians, and contractors form the Team of the CTSF to support, maintain & sustain the Army’s digital systems deployed world-wide.

Promote a Lean Culture in All We Do.
Leveraging The Army
“Task Organize for Success”

Utilize Federated Sites and Distributed Testing,
Harness AMC/DA Expertise and Resources,
Task Organize to Support Specific Missions

- AIC
- Configuration Management
- Support Integration, RRT, & Technical Assessments
- Networthiness/IA/IATO/Spectrum
- Reachback support to the Warfighter

CSF as an IPT

Promote a Lean Culture in All We Do.
Partnering is Key

Promote a Lean Culture in All We Do.
Key to CTSF Success

- Unity of Command - no barriers, organizations coming together to get the job done on behalf of the Warfighter, synchronization of efforts
- CTSF missions serve many customers (i.e. G3, G6, ASA(ALT), G8, ATEC, Joint and Coalition Warfighters)
- Synergy → Focused on Warfighter Needs
- In depth technical understanding of systems
- Knowledge of warfighter needs and constraints
- A set of disciplined processes for Testing, CM, and System Engineering
- Formal/Informal Partnerships (PMs, Warfighter, Test Community, Joint Community, PdM Netops)
- Adaptable and Responsive
- Honest Broker
- Well known across Army → DoD

Promote a Lean Culture in All We Do.
Questions?

Promote a Lean Culture in All We Do.
Back-Up
CTSF Vision

To become a customer valued organization ensuring the best net-centric C4I capabilities are available to US Army, Joint and Coalition Warfighters.

Bottom Line: CTSF is the Interoperability “Check Ride” for Current & Future Army Programs
Promote a Lean Culture in All We Do.

CTSF Organizational Evolution

Integration

- PEO C3T
- CTSF
- Trail Boss
- 1 Digital Div
- Proof of Principal
- SW Functionality
- 11 Systems
- ABCS Integration

Integration and Certification

- PEOs
- G6
- CECOM
- Director
- 10 Digital Divs
- 40+ BCTs
- C2 Interoperability
- SWB 1 - 75+ Systems
- SoS Interoperability

Future Digital Force
Net Centric
Interoperability

Director

- AMC
- CECOM
- G6
- G3
- G8

System-of-Systems (SoS)
Team (AIC)
Army Interoperability

JOINT

Month 2007

UNCLASSIFIED
Promote a Lean Culture in All We Do.
FANS Concept of Execution

Federated Army Net-Centric Sites

Promote a Lean Culture in All We Do.
Promote a Lean Culture in All We Do.
Promote a Lean Culture in All We Do.
CTSFF Campus

SYSTEMS ENGINEERING
- Foundation Products
- Data Products
- S/W Validation and Verification
- Network Engineering
- Information Assurance
- SOS Integration Labs

CONFIGURATION MANAGEMENT
- Baseline Maintenance, Master Drive
- Storage, Quality Assurance,
- S/W Replication, S/W Distribution,
- Systems Architecture,
- Digital Maps

TEST AND EVALUATION
- Interoperability Baseline Testing
- Intra-Army Certification Testing
- Simulation/Stimulation Validation
- Distributed Testing

SPECIAL PROJECTS
- Analyzes, Recommends, and Executes
- Special Projects
- Bring Rapid Benefit to the Soldier
- Integrate Emerging Technologies
- Perform Special Projects as Tasked

INSTALL YARD
- Install H/W and Communications on Tactical Platforms

SUPPORT OPERATIONS/LOG
- Property Accountability,
- Purchasing, Computer Repair,
- Test Floor Setup and Support,
- Facilities Support

TENANT PROGRAMS / AGENCIES
- (Integration/ Support Testing / Training)
 - PEO-C3T, PEO-STRI, PEO-Aviation,
 - TRADOC, ATEC, University XXI, TRAC-WSMR,
 - Future Combat Systems

BATTLE COMMAND AND NETWORK SUPPORT DIRECTORATE
- DIGITAL SYSTEMS ENGINEERS
- DSI NET
- SUPPORT OPERATIONS CENTER
- Support USF Activities

OPERATIONS
- Initial Support Requests
- Event Cost Estimation
- Deployment Support
- Tours / Demos
- Synchronization Notes
FY07 Accomplishments

Testing
- **1200 IA Scans**
- **415 SW Products V&V**
- **117 DP Products Processed**
- **6,600 Hard Drives Imaged**
- **130 Test RPTs**
- **59 Unit Data PKGs Tested**

System Eng
- **Systems Integration Support**
- **Over 2300 SW Updates**
- **26 Eng Integration Excursions**
- **26 Eng Integration Excursions**

Unit SPT
- **22 BCT Rotations**
- **144 DSE Tool Kits**
- **22 CTC Spt**
- **148K CD Images**
- **13K DVD Images**
- **225 Cable Shop WO**
- **335 Units’ Digital Map Requests**

Promote a Lean Culture in All We Do.
Overview

- War Fighter Requirements Articulation
- War Fighter – S&T Community Interaction
- Technology Insertion Programs
Simplified S&T Process
Navy Senior Leader
S&T Oversight

Technology Oversight Group – Navy Representatives
• Principal Deputy Assistant Secretary of the Navy, Research Development and Acquisition
 – Acquisition/Transition
• Chief of Naval Research
 – Technology Development
• Deputy Chief of Naval Operations, Integration of Capabilities and Resources (CNO N8)
 – Resources and Requirements
• Deputy Commander US Fleet Forces Command
 – Fleet War Fighting Requirements
US Fleet Forces Command Missions Functions and Tasks

- OPNAV INSTRUCTION 5440.77
 - Section 2c: USFLTFORCOM will integrate and articulate authoritative fleet war fighting, readiness, and personnel capability requirements to the Chief of Naval Operations (CNO)

 - Section 5d1: (USFLTFORCOM will) Coordinate integration of US Pacific Fleet (PACFLT), US Naval Forces European Command (NAVEUR), US Naval Forces Central Command (NAVCENT), and US Naval Forces Southern Command (NAVSO) war fighting, readiness, personnel and capability requirements to the CNO
Sea Power 21

Force Protection
Surface Warfare
Undersea Warfare
Theater Air & Missile Defense

Sea Trial
Sea Warrior
Sea Enterprise

ISR
Common C3F/Sea
Operational & Tactical Picture
Communications & Data Networks

C2F/Sea
Base

Surf for
Surface Warfare
Air for
Naval Aviation
Sub for
Undersea
Forcenet
Naval Network
Necc
Naval Expeditionary

Resource Sponsors
Capability Providers
Resource Sponsors

Deploy & Employ Integrated Joint Logistics
Pre-position Joint Assets Afloat

Strike
Naval Fire Support
Strategic Deterrence
Ship to Objective Maneuver
S&T Program Selection
Top Down, Requirements Driven

- Overarching National, Joint and Navy Strategies
- War Fighting Requirement Analysis
- Analysis of Existing Capabilities
- Gap Identification
 - Near Term (Fleet Focus)
 - Far Term
- S&T Project Development to Address War Fighting Gaps
- Fleet Input to Prioritize Execution of S & T projects
- War Fighter and S&T Community Work Together to Develop Capabilities to Fill Gaps
Technology Insertion Programs

• Future Naval Capabilities (FNC)
 – Provides capabilities to close war fighting gaps
 – Up to 5 years
 – Potential for Joint Capability Technology Demonstration (JCTD) program
 • Build upon FNC adding Joint/Coalition/Agency capability

• Rapid Technology Transition
 – Increases rate that new, innovative, and potentially disruptive technologies are inserted into acquisition programs
 – Technology Readiness Level 6 or higher, 2 yr, $2M program
• **Rapid Development and Deployment Program**
 – Rapid development and fielding of prototype solutions to meet urgent needs in the Global War on Terrorism
 – Validated Naval urgent need that requires rapid (270 days) development of material solutions not readily available off-the shelf
 • Naval Innovation Laboratory
• **Sea Trial**
 – Speed development of new concepts and technologies to the war fighter
 • Wargaming, experimentation, and exercises
 – Candidates with the greatest potential to provide dramatic increases in war fighting capability
• USFF is responsible for integrating and articulating authoritative fleet war fighting requirements to the CNO

• Navy S&T requirements are a part of the overall Navy requirements generation process
 – Senior leadership oversight

• Representatives from requirements, resources, development and acquisition work together from the beginning to support technology transfer in the Navy

• Multiple venues are available for technology transfer
Sea Power 21

Anti-Submarine Warfare
Defensive Surface Warfare
Theater Air & Missile Defense
Force Protection, Mine Warfare

Sea Trial
Sea Warrior
Sea Enterprise

ISR
Common Operational & Tactical Picture
Communications & Data Networks

C3F/Sea Shield
FORCENET
C2F/Sea Base

Naval Fire Support
Strategic Deterrence
Offensive Surface Warfare
Ship to Objective Maneuver

Deploy & Employ
Integrated Joint Logistic
Pre-position Joint Assets Afloat

SURFOR
SURFACE WARFARE

AIRFOR
NAVAL AVIATION

SUBFOR
UNDERSEA

NNWC
NAVAL NETWORK FORCENET

NECC
NAVAL EXPEDITIONARY
Honeywell Aerospace MRA’s for Systems & Product Families

NDIA Science, Engineering, & Technology Conference
Manufacturing Technology Industry Panel

Dr. Al Sanders
Advanced Manufacturing Engineering
Honeywell Aerospace
April 17, 2008
Honeywell MRL History

- MRL used on key NPD programs since fall 2005
 - Criteria based on May 2005 DoD TRA Deskbook definitions
 - Maturity model developed to baseline key NPD programs
 - Assessments driven by newly formed AME organization
 - Over 300 assessments (including updates) conducted to date

- Enabling DFM analysis tools developed to assist evaluations
 - Quantitative first order analyses to identify design shortfalls
 - Enable “what if” analyses to quantify impact of design changes
 - Score card metrics developed to report and track improvements

- Recent MRL applications on key programs and pursuits
 - DARPA Micro Air Vehicle (MAV) lab to production transition
 - Army HTS900 Milestone C review leading to an LRIP decision
 - Airbus A350 XWB Avionics and Mechanical Systems pursuits
Honeywell MRL Maturity Assessment

- **Manufacturing Readiness Levels**
 - Based on DoD Definitions & Exit Criteria
 - Scoring criteria include product focus
 - Allow product or technology baselines

- **Honeywell MRL maturity assessment**
 - Five rating categories (threads)
 - Standardized exit criteria for each level
 - Maps to TRL & IPDS Process

Original DoD Criteria used as Basis for Internal MRL Model
Early MRL Motivation at Honeywell

- Early decisions responsible for many production ramp issues
 - Actual costs exceed estimates
 - Quality levels below expectations
 - Low yield and delivery problems
 - Service related reliability issues
 - Supply chain inefficiencies

- MRL’s drive proactive planning
 - Sets agenda for risk mitigation
 - Mfg requirements defined early
 - Optimal supply chain strategies
 - Synchronizes SBU/ISC/E&T
 - Applies to both technology AND system development programs

Critical to Identify and Plan for Shortfalls in Early Phases
MRL Applications within Honeywell

- Technology Development (Low TRL, Low MRL)
 - Many technology demonstrators push manufacturing limits
 - MRL maturation being driven lock-step with TRL maturation

- New Product Development (High TRL, Low MRL)
 - Mature “similar to” baselines often have producibility issues
 - Key is pinpointing shortfalls early during concept definition

- Supplier Transition/Reposition Risk Mitigation
 - Global supply base continues to be an ever changing entity
 - Knowing gaps early accelerates supplier development

- “Red” Program Deep Dives and Recovery Plans
 - Pinpoints root cause of problem areas needing attention
 - Focuses program recovery on next steps to address gaps

MRL has Applications throughout Product Life Cycle
MRL and Enabling AME Tool Linkage

Assessments for sub-systems (e.g. avionics box)

- Assessment triggers to identify high risk sub-systems & components
- Manufacturing Readiness Level (MRL) maturity model
 - Macro view of systemic supply chain top level risk areas
 - Enables proactive risk identification and mitigation plans

Assessments for components (e.g. circuit card assembly)

- Complexity analyses to quantify manufacturing difficulty
 - Captures first order design attributes driving complexity
 - Enables “what if” design simplification trade studies
- Yield analyses for up-front prediction of quality targets
 - Correlates defect opportunities with process capability
 - Establishes “upper bound” on anticipated first pass yield
- DFM score card analyses to quantify impact of DFM violations
 - Quantifies impact of first order DFM drivers on producibility
 - Enables designs to be “graded” based on ease of producibility

AME Enabling Tools Developed to Assist Assessments
Platform/System MRL Scorecard

Scorecard “Bundles” Component Level Assessments

Green – No Concern

Yellow – Minor Concern

Red – Major Concern

Sub-System BOM Breakdowns

MRL & DFM Assessment Results

Green Sheet Assumption Impact

Assessment Details and Next Steps
Summary and Conclusions

• Streamlined product MRL assessment developed for internal use
 - Leverages industry standard criteria in a repackaged format
 - MRL assessments called out as part of internal IPDS process
 - Proprietary enabling DFM tools developed to assist with ratings
 - Over 300 assessments (including updates) conducted to date
 - Process used during key pursuits to understand risks/opportunities

• Investigation of MRL for “aircraft system” concept evaluations
 - DoD criteria applicable to component technology development
 - Honeywell version adapted criteria to reflect a sub-system focus
 - System level application requires “system engineering” philosophy
 - Tier 1 MRL (new) would focus on overall supply chain architecture
 - Tier 2 MRL (current) would focus on component level manufacturing

Early Industrial Base Design around Product is Key
Questions?

Contact Information
Dr. Al Sanders
602-231-1886
Al.Sanders@Honeywell.com
Technology & Manufacturing Readiness Assessments @ RMS

Dale Iverson
April 17, 2008
Contents

- History of Technology & Manufacturing Readiness Assessment (T&MRA) Activities at RMS
- T&MRA Project
- Lessons Learned
History of T&MRA Activities at Raytheon Missile Systems (RMS) – 2005 & 2006

2005
- RMS leader attended Defense Acquisition University course…first delivery of Manufacturing Readiness Level (MRL) materials
- ManTech white papers, quad charts & proposals require MRLs & notional MRL Maturity Plans (MMP)

2006
- RMS employees attended MRA training course established by Air Force Research Lab (AFRL)
- 2-Part Pilot MRAs conducted by AFRL on AMRAAM Program
- RMS Kicked-off T&MRA Project with Raytheon Six Sigma Team
- Full Time MRA Manager assigned to Air-to-Air Product Line
- Joint Service ManTech Program Awarded, required MMP
- Conducted first independent T&MRA on Radome portfolio
- T&MRA @ RMS website goes live
Establishing TRLs, MRLs and maturity plans in accordance with the DoD’s TRA & MRA requirements is not only necessary to support customer led assessments, but also:

- T&MRA processes can change the culture by driving a collaborative partnership between programs, design and manufacturing engineering earlier in the product development life cycle where maturity efforts can have greatest impact on improving program affordability and predictability

- Lower risk designs lead to shorter development cycles with fewer design restarts, more accurate delivery dates, and lower overall development costs
 - Can mitigate 20% post CDR cost growth trend noted in GAO reports
 - Cost reductions of 30% or more can be achieved
Technology & Manufacturing Readiness is integrated and measured in RMS business practices and culture.

Established TRA Process:
Technology Readiness Assessment

New MRA Process:
Manufacturing Readiness Assessment
T&MRA @ RMS Project Focus Areas

- **Awareness & Training**
 - T&MRA socialization across RMS & Raytheon
 - T&MRA preparation and facilitation training

- **T&MRA Knowledge Management**
 - Environmental scanning, knowledge capture, information warehousing & easy access (e.g. website, docushare and eRooms)
 - Capture lessons learned from internal & external cycles of learning
 - Assist DoD in the shaping MRA regulations, policies, and processes

- **Standardization of T&MRA @ RMS Processes**
 - 10-Step process created (includes capture of lessons learned)
 - Aligned with DoD MRA process, combined with DoD’s TRA

- **Directive System Support**
 - Modify Directives, Proposals, Contracting, Practices, Instructions, etc. to support consistent and compulsory deployments
T&MRA Website for Knowledge Capture & Reuse

Links
• Defense Acquisition University
• Defense Acquisition Guidebook
• Acquisition Community Connection
• DAU - Manufacturing Readiness Assessments
• DoD ManTech
• MRL Assist

Reference Materials
• 2007 Defense Manufacturing Conference
• 2007 Technology Maturity Conference
• AFRL MRA Workshop - 2006 DMC
• DoD Integrated Management Framework - Back
• DoD Integrated Management Framework - Front
• GAO-07-706SP Assessments of Selected Weapon Programs, March 2007
• Manager's Guide to Technology Transition in an Evolutionary Acquisition Environment, Version 2.0, June 2005
• Misc. T&MR Presentations
• T&MRA Process Training
• T&MRA Overview
• Technology Readiness Assessment (TRA) Deskbook, May 2005

T&MRA Tool Box
• MRL Matrix & Definitions+
• T&MRA Baseline & Planning Workbook
• TRL HW & SW Definitions (DAG October 2004)
• T&MRA Summary Report Template
History of T&MRA Activities at RMS - 2007

- T&MRA 10-Step Process developed – aligned with MRA
- T&MRA awareness seminars conducted across RMS
- Project Lead attended 2-week DAU course with DoD PMs; teams conducted notional MRAs from GAO facts & data
- MRAs considered good Management practice - not plus-ups
- T&MRL baselines in 3 major proposals (lessons learned)
- T&MRA added to RMS Manufacturing Excellence Model
- Early T&MRL requirements for Architectural Review Boards
- Participated in JDMTP’s MRA Working Group with Industry
- “T&MRA @ RMS” presented at Raytheon Symposiums and Defense Manufacturing Conference
- MRL maturity included in Operations Strategy and Reviews
Combined “Technology & Manufacturing Readiness Assessment” Model

1. Establish Team
2. Identify “key” technologies
3. Assess TRL
4. Assess Transition Readiness
5. Prepare TMP (Technology Maturity Plan)
6. Assess MRL
7. Assess Transition Readiness
8. Customer agreement to proceed with immature technology
9. Plan Status Reviews
10. Knowledge Capture

TRL meets product development maturity requirements
MRL meets maturity requirements
History and Plans for T&MRA Activities at RMS - 2008

- T&MRA detailed 10-step process training developed
- T&MRA tools refined and added – to assess current state, develop maturity plans, report progress and document T&MRA
- Corporate IPDS Change Review Board scheduled to review T&MRA for potential incorporation into IPDS to ensure consistent and compulsory deployment in 2008
- T&MRA project lead scheduled to present “T&MRA @ RMS” at this year’s:
 - National Defense Industry Association (NDIA) Science & Engineering Technology Conference in April
 - Enterprise Process Group Workshop in July
Tool to Capture, Plan and Status T&MRLs and Maturity Plans

- Tool created to demo important T&MRA planning & reporting characteristics
 - Facilitates and documents the Baseline & Current State T&MRLs by MRL Matrix Thread
 - Potential to roll-up 10 separate technology assessments to an assembly level TRL & MRL
 - Transition Risk Color Coding based on DoD Best Practices for each phase of PDLC

<table>
<thead>
<tr>
<th>Program:</th>
<th>example: HyperSonic Missile Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description:</td>
<td>example: Guidance & Navigation Unit (GNU)</td>
</tr>
<tr>
<td>Product Development Phase:</td>
<td>Technology Development</td>
</tr>
<tr>
<td>Transition Readiness Goals:</td>
<td>6</td>
</tr>
<tr>
<td>T&MRL Valuation Method:</td>
<td>Lowest T&MRL Values</td>
</tr>
<tr>
<td>Most Recent Assessment Date:</td>
<td>None</td>
</tr>
</tbody>
</table>

Roll-Up T&MRLs

<table>
<thead>
<tr>
<th></th>
<th>All Baseline Values</th>
<th>All Current Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low TRL</td>
<td>4.0</td>
<td>Low MRL 3.0</td>
</tr>
<tr>
<td>High TRL</td>
<td>8.0</td>
<td>High MRL 6.0</td>
</tr>
<tr>
<td>Avg</td>
<td>6.0</td>
<td>Avg MRL 6.0</td>
</tr>
</tbody>
</table>

T&MRL Assessments (Max. 10 Technologies per Roll-Up)

<table>
<thead>
<tr>
<th># MRL Matrix Evaluation Threads</th>
<th># MRL Matrix Sub-Thread</th>
<th>Acronym 1</th>
<th>Acronym 2</th>
<th>Acronym 3</th>
<th>Acronym 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Technology & Industrial Base</td>
<td>Technology Readiness Level (TRL)</td>
<td>5 6 4</td>
<td>6 8</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>2 Technology Transition to Production</td>
<td>Manufacturing Technology Development</td>
<td>4 5 4</td>
<td>6 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>3 Technology Transition to Production</td>
<td>Manufacturing Technology Development</td>
<td>4 5 4</td>
<td>6 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>4 Design</td>
<td>Productivity Program</td>
<td>5 6 4</td>
<td>6 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>5 Design</td>
<td>Maturity</td>
<td>5 5 5</td>
<td>5 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>6 Materials</td>
<td>Maturity</td>
<td>3 5 3</td>
<td>6 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>7 Design</td>
<td>Maturity</td>
<td>5 5 5</td>
<td>5 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>8 Design</td>
<td>Maturity</td>
<td>5 5 5</td>
<td>5 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
<tr>
<td>9 Design</td>
<td>Maturity</td>
<td>5 5 5</td>
<td>5 7</td>
<td>6 7</td>
<td>7 5</td>
</tr>
</tbody>
</table>

Transition Readiness Risk Guide by PLC Phase

<table>
<thead>
<tr>
<th>CR</th>
<th>TD</th>
<th>SDD</th>
<th>LRIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

- Baseline MRL (excludes TRL): 3.0
- Current MRL (excludes TRL): 3.0
- High MRL (excludes TRL): 7.0
- Low MRL (excludes TRL): 3.0
- Average MRL (excludes TRL): 4.3
T&MRL Maturity Planning for Each Technology Assessed

- Plan vs Actual TRL and MRL with transition readiness risk color codes
- Detailed tasks, POC, rationale, dates, funding, and sources of funding
- “What-if?” analysis capability

Program: Hypersonic Missile Program
Product Description: Guidance & Navigation Unit
Product Development Phase: Technology Development
Transition Readiness Goals: 6
T&MRL Valuation Method: Lowest T&MRL Values

Key Technology Assessed: Sensor
Acronym: Acronym 1

Manufacturing Readiness Level - MRL

<table>
<thead>
<tr>
<th>Item #</th>
<th>Task Description</th>
<th>Rationale/Evidence/Risks to Completion</th>
<th>Responsible POC</th>
<th>Plan Due Date</th>
<th>Complete Date</th>
<th>MRL Increase</th>
<th>Funding Req’mts</th>
<th>Funding Type</th>
<th>Funded (Y/N)</th>
<th>MRL Base Plan</th>
<th>MRL Act’l</th>
<th>MRL funding plan:</th>
<th>Current MRL</th>
<th>MRL Plan Complete?</th>
<th>Unfunded:</th>
<th>In Risk Register?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Baseline MRL</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>10/07</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>Maturity Advancement Action 1</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>12/07</td>
<td>11/07</td>
<td>$100 K</td>
<td>IRAD</td>
<td>Y</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>Maturity Advancement Action 2</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>01/08</td>
<td>12/08</td>
<td>$200 K</td>
<td>IRAD</td>
<td>Y</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>Maturity Advancement Action 3</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>01/08</td>
<td>01/08</td>
<td>$45 K</td>
<td>Contract</td>
<td>Y</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>Maturity Advancement Action 4</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>02/08</td>
<td>01/08</td>
<td>$30 K</td>
<td>Contract</td>
<td>Y</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>Maturity Advancement Action 5</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>02/08</td>
<td>02/08</td>
<td>$10 K</td>
<td>Contract</td>
<td>Y</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>Maturity Advancement Action 6</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>03/08</td>
<td>02/08</td>
<td>$25 K</td>
<td>Contract</td>
<td>Y</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>Maturity Advancement Action 7</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>03/08</td>
<td>02/08</td>
<td>$25 K</td>
<td>Contract</td>
<td>Y</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.08</td>
<td>Maturity Advancement Action 8</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>05/08</td>
<td>05/08</td>
<td>$1,200 K</td>
<td>Capital</td>
<td>N</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.09</td>
<td>Maturity Advancement Action 9</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>07/08</td>
<td>07/08</td>
<td>$260 K</td>
<td>Contract</td>
<td>Y</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>Maturity Advancement Action 10</td>
<td>Rationale/Evidence/Risks to Completion</td>
<td>Name</td>
<td>08/08</td>
<td>08/08</td>
<td>$50 K</td>
<td>Contract</td>
<td>N</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MRL Plan Complete? Y
Unfunded: ($1,250 K)
Key Lessons Learned

- Cultural change...T&MRA is a means to facilitate earlier collaborations between design engineering, manufacturing and supply chain during any phase of PDLC
- Leadership & Assessment Team alignment required before T&MRA deployments
- TRLs & MRLs should be established at the critical technology levels (best practice)
- Wherever possible, the T&MRA should be completed prior to developing a proposal to ensure technology, design & manufacturability risks are accounted for:
 - Assess program feasibility and technology transition readiness (risks)
 - Program cost and schedules should include maturity plans and goals
 - Identify key manufacturing processes that need to be matured for program success
Key Lessons Learned

- Command media revisions required for consistent & compulsory use
- Tailoring of assessment based on fidelity level desired
- MRA and Production Readiness are not the same
- Systems Engineering organization to own the T&MRA process
- Need further development and integration of tools and management systems to capture, plan and report T&MRL progress
- MRL Matrix can be enhanced further to focus on Manufacturing Process Maturity
- Low MRLs are not necessarily an issue…not having a maturity plan is!
In Summary…

- TRLs are part of our culture at Raytheon…more discipline required
- MRLs are relatively new…Industry is still in early stages of adoption
 - Sense of urgency within the DoD – TRA & MRA processes are being taught to and deployed by our customers…and for very compelling reasons
 - Acquisition Policy, Guidance and Legislation associated with TRA & MRA are in place and/or currently under revision & development for 2008 release
- The use of T&MRA processes will not guarantee program success
- T&MRA processes and tools will:
 - Change culture - bridge the divide between engineering & manufacturing
 - Provide insight into current state technology & manufacturing maturity and capability
 - Identify contributing factors & issues driving the “Gaps” in T&MRL maturity
 - Identify the type and significance of risks to program cost, schedule and performance
 - Lead to more accurate, time phased, and priced maturity plans
 - Improve program affordability and predictability
If you have any questions, feel free to contact me at:

Dale Iverson
Raytheon Missile Systems
520-241-9275 (cell)
520-794-2947 (office)
ddiverson@raytheon.com
Army
Science and Technology

NDIA
9th Annual Science & Engineering Technology Conference

Dr. Thomas H. Killion
Deputy Assistant Secretary for Research and Technology/Chief Scientist

15 Apr 2008
Outline

- Army Science and Technology (S&T) Strategy and Funding
- Future Force Technologies
- Future Combat Systems
 - Spinouts to the Current Force
- S&T Insertions to Current Operations
- Basic Research Thrusts
I've been asked to give a presentation at the trade show.

I'd like you to put that together for me, Alice.

What's your topic?

Technology. They didn't say if I'm for it or against it.

I'll leave some wiggle room.
Science & Technology for a Campaign Quality Army with Joint & Expeditionary Capabilities

Current Force
- ~100 lb. load
- Limited network
- > 70 tons
- < 10 mph

Future Force
- < 40 lb. load
- Fully networked
- < 30 tons
- > 40 mph

Science and Technology—
develop and mature technology to enable transformational capabilities for the Future Force while seeking opportunities to accelerate technology directly into the Current Force
Elements of Army S&T Strategy

- Ensure investments are aligned with Army missions and capability needs
- Maintain balanced & responsive portfolio across
 - Elements of investment (6.1/6.2/6.3)
 - Disciplines and technology areas
 - Performers (intramural/extramural)
 - Capability pull and technology push
- Sustain critical infrastructure—people and physical—responsive to Army needs
- Communicate S&T vision and approach to senior decision makers, key stakeholders, partners and customers
- Establish and refine processes and metrics to promote innovation, efficiency & effectiveness, and facilitate transition
FY09 Funding—Research to Systems

3 Different Types of S&T Investments

<table>
<thead>
<tr>
<th>S&T</th>
<th>Development (RDT&E)</th>
<th>Acquisition (Procurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.8B</td>
<td>$8.7B</td>
<td>$24.6B</td>
</tr>
</tbody>
</table>

6.1: Basic Research
$379M (21% of S&T)

- Understanding to solve Army-unique problems
- Knowledge for an uncertain future

Nanoscience

Atomic Structures—Integrated Circuit

6.2: Applied Research
$724M (39% of S&T)

- Applications research for specific military problems
- Components, subsystems, models, new concepts

Integrated Textile Conductors
Embedded Input Device
Power Transmitting Textiles
Embedded Circuits

6.3: Advanced Technology Development
$739M (40% of S&T)

- Demonstrate technical feasibility at system and subsystem level
- Assess military utility
- Path for technology spirals to acquisition—rapid insertion of new technology

Precision Air Drop—50 meters

67% Universities/Industry
35% Industry
60% Industry

Far Term
Mid Term
Near Term
Technology Area Investments to Satisfy Gaps—New Capabilities

FY09 $1.8B

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Protection</td>
<td>$370M</td>
</tr>
<tr>
<td>ISR</td>
<td>$149M</td>
</tr>
<tr>
<td>C4</td>
<td>$144M</td>
</tr>
<tr>
<td>Lethality</td>
<td>$161M</td>
</tr>
<tr>
<td>Medical</td>
<td>$140M</td>
</tr>
<tr>
<td>Soldier</td>
<td>$135M</td>
</tr>
<tr>
<td>Logistics</td>
<td>$92M</td>
</tr>
<tr>
<td>Rotorcraft</td>
<td>$72M</td>
</tr>
<tr>
<td>Unmanned Vehicle</td>
<td>$54M</td>
</tr>
<tr>
<td>Mil Eng & Environment</td>
<td>$47M</td>
</tr>
<tr>
<td>Advanced Simulation</td>
<td>$37M</td>
</tr>
<tr>
<td>Basic Research</td>
<td>$379M</td>
</tr>
</tbody>
</table>

Current Force Capability Gaps Areas

6th Gap Analysis

1. Protect Force in Counterinsurgency Operations
2. Networked Enabled Battle Command
3. Logistics and Medical in Counterinsurgency Operations (COIN) and non-contiguous battlespace
4. Soldier Protection in Counterinsurgency Environment
5. Tactical Communications
6. Joint Interoperability, Coalition, and Interagency Operations
7. Train the Force How and As it Fights
8. Timeliness of Analysis and Information Dissemination
9. Ability to Conduct Joint Urban Operations
10. Information Operations

Future Force Capability Gap Areas

CNA FY 10-15

1. Modular, Scalable and Tailorable Battle Command and Control
2. Strategic Force Projection / Intra-theater Operational Maneuver and Sustainment
3. Dynamic, Uninterrupted Communications Network
4. Capability for Lethal / Non-Lethal Overmatch
5. Modular, Tailorable Forces
6. Enhanced Collection, Exploitation and Dissemination
7. Enhanced Soldier Protection
8. Sustainment of Modular Forces
9. Enhanced Platform / Group Protection
10. Ability to Train the Force How and As it Fights
Future Force Technologies

Force Protection
- Structural Armor
- High Energy Laser
- KE Active Protection System
- Integrated Rotorcraft Protection

C4/ISR
- Knowledge Fusion
- Flexible Displays
- Tactical Network & Communications Antennas
- Directional Antennas

Unmanned Systems
- Unmanned Air Vehicles
- Unmanned Ground Vehicles
- Unmanned System/Human Interface Technology

Unmanned Ground Vehicle Technologies

Army component—Joint High Power Solid State Laser Program

Sense Thru Wall

LOW COST OTM COMMS
WNW/SRW TRI-BAND
2-PORT LOW PROFILE
WNW HIGH GAIN
BODY WEARABLE PLATFORM
ANTENNA REDUCTION
IMPROVED MANEUVER TACTICS & WIDEBAND COMMS
IMPROVED LINK CONNECTIVITY
REDUCED VISUAL SIGNATURES
Infantry Carrier Vehicle
Infantry Carrier Vehicle
Command & Control Vehicle

Integrated Rotorcraft Protection

High Technology Army
Future Force Technologies

Lethality

Warhead Small Arms Technology

Scalable Effects

EM Gun

Urban Assault Munitions

Small, Lighter, Cheaper Munitions

Soldier Systems

Combat Rations

Soldier Mobility and Advanced Load Carriage

System Flame Test

Current New LiCFx Half-Size BA-5590 Battery

Armor Coverage

Logistics

Power & Energy

Fuel Cell Development

Deployability

Hybrid Electric Drive

Segmented Band track

Precision Air Drop 30k lbs

Sustainment

Advanced Hybrid Engines

Non Line of Sight - Launch System (NLOS-LS)
Technology Insertions for Current Operations

Benefiting from Past Investments
- Interceptor Body Armor
- PackBot Sensors
- Blue Force Tracking
- Guided MLRS

Adapting/ Accelerating On-going S&T Programs
- Mobile Remote Access & Information Diagnostics
- Every Soldier A Sensor Simulation
- USMC Dragon Fire II with Lightweight Counter Mortar Radar (LCMR)
- Mine Detecting Ground Penetration Radar (GPR)

Leveraging Scientist & Engineer Expertise
- Enhanced Rocket, Mortar & Sniper Detection
- RG-31 Engineer Vehicle Add-on Armor Kit
- Hellfire Launch On Predator
- HMMWV Expedient Armor
Accomplishments—2007

Future Force Warrior (FFW)

Mounted Combat Systems & Abrams Ammunition System Technologies

C4ISR—On The Move Experiment

Add On Armor & EW Subsystems

Buffalo

MRAP

Battlemind Training

Mid-Range Munition

Line-of-Sight Multi-Purpose

Low Cost Accuracy Improvement for LOS Munitions

MCS

FBCB2 Display

High Technology Army
Basic Research Thrusts

Discover, develop and exploit robotic devices and systems with highly sophisticated sense, response and processing systems approaching that of biological systems to dramatically enhance Soldier survivability.

Research in understanding the functional brain to improve training techniques, human-machine interface design, the nature of traumatic brain injuries, and to more fully understand the decision-making process.

Research to understand biological construction of novel materials, structures and processes to develop biologically-derived materials, sensing systems, information processing and power and energy.

Revolutionize military training and mission rehearsal through the development of technology and art for simulation experiences and the development of virtual human technology.

Generate advances in quantum sciences that will enable revolutionary approaches to information processing, cryptography, information assurance, and communication.

Discover and create new materials with properties that will revolutionize military technology and make Soldiers less vulnerable to the enemy and environmental threats.
Predicting the Future

It's tough to make predictions, especially about the future. Some famous technology predictions include:

• “Heavier-than-air flying machines are impossible.”
 – Lord Kelvin, 1895
• “Airplanes are ...of no military value.”
 – Marshal Ferdinand Foch, 1911
• "Who ... wants to hear actors talk ?”
 – H. M. Warner, 1927
• "... (T)here is world market for maybe five computers.”
 – T. Watson, IBM Chairman, 1943
• "640k (RAM) ought to be enough for anybody.”
 – Bill Gates, 1981
Army S&T...

Engine of Transformation
CERDEC Contributions to Army Battle Command Networking Efforts

Mr. David Jimenez
Director, Space & Terrestrial Communications Directorate
Evolution of Army Networking

Civil War
- U.S. Army Signal Corps (1860)
- Telegraph

World War I
- Clark Portable Army Radio Set (1906)
- WWI Pigeon, Mockers

Vietnam
- PRC-77
- PRT-4 & PRR-9

World War II
- United States Army Pigeon Service
- WWII Radios

1980s-2006+
- MSE
- Manpack UHF SATCOM
- SINCGARS
- EPLRS

2014 BCT Architecture
- Tactical Internet
- Tactical Interoperable Network

Approved for public release; distribution is unlimited.
Major Communications Thrusts

- Mobile Networking
- Antennas
- Information Assurance
Comparison of Commercial & Military Communications Architecture

Commercial
- Mobile Subscriber, Fixed Infrastructure
- Pre-configured Networks
- Tall, Fixed Antenna Towers
- Fiberoptic Internodal Connections
- Spectrum Availability
- Fixed Frequency Assignments
- Protection: None ⇒ Privacy (single level)
- Interference Rejection is Somewhat Important
- Low probability of Detection (LPD) is not an issue

Military
- Mobile Subscriber - Mobile Infrastructure
- Ad Hoc, Self Organizing Networks
- Small, Easily Erectable Masts; Low Profile OTM Antennas
- Mobile, Wireless, Internodal Connections
- Restricted Frequency Assignments; Geographically Impacted
- Protection: None ⇒ Top Secret/ SI (Multiple, Simultaneous Levels)
- Interference Rejection and Anti jam are Critical
- Low Probability of Detection (LPD) is Critical

Strategy =
- Adopt
- Adapt
- Modify
- Develop and/or Influence

COMMERCIAL
- High Bandwidth
- Primarily Robust Static Infrastructure
- Highly Skilled Large Teams

TACTICAL
- Small Bandwidth
- Radio-Based Highly Mobile Comms
- MOS w/Multi-duties

Approved for public release; distribution is unlimited.
Systems Engineering (SE) Approach

Applied to Customers Requirements:
- FCS BW for BC
- FCS Voice Architecture Study
- FCS Network Assumptions Whitepaper
- Tactical Network Ground Forces Study
- Etc....

PM C4ISR OTM

Architecture
- Operational Views
- System Views
- Technical Views
- Network Model Development

Network M&S
- OPNET
- CES/QUALNET
- NETWARS

Field & Experimental Testing/Evaluation
- PM C4ISR OTM
- Data Collection

Emulation

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Lessons Learned

Approved for public release; distribution is unlimited.
Technology Development and Maturation

User Needs & Technology Opportunities

- Process entry at Milestones A, B, or C
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

Concept Refinement
Technology Development
System Development & Demonstration
Production & Deployment
Operations & Support

Pre-Systems Acquisition
Systems Acquisition
Sustainment

Validating TRL’s & Supporting POR’s Milestone Decisions

TRL 1-3
TRL 4-6
TRL 7-9

Approved for public release; distribution is unlimited.
• R&D venue offering the Tech Base and Programs of Record a continuous and enduring evaluation capability for Network Centric Warfare (NCW) concepts
• Conducts Live, Virtual, and Constructive technology demonstrations currently supporting scales on the order of 100 live and 3,000 virtual/constructive entities
• Provides a relevant environment to assess emerging technologies in a C4ISR System-of-Systems (SoS)
• Mitigate risk for FCS Concepts, Future Force technologies
• Opportunities for acceleration of technology insertion into the Current Force
• Venue for validation of Technology/Software/Integration Readiness Levels
• Includes a state-of-the-art instrumentation, data collection & reduction (IDC&R) tool suite that supports the quantification of NCW activities
• Employs system of systems engineering methods that promote rapid SoS reconfiguration and enable repeatable assessments
• Has a diverse set of experience over the past seven years in working with dozens of government and industry partners to integrate and execute large-scale, distributed Live/Virtual/Constructive events

Seasoned team of subject matter experts & analysts
Warfighters and scientists working side by side
Seven years of field experimentation experience

SoS engineering processes & procedures – rapid prototyping frameworks
Technical Metrics

C4ISR System Performance
- Network Connectivity
- Message Completion Rate
- Probability of Detection
- Probability of Identification
- Detection Accuracy
- Power Usage
- Visualization Resolution

System Knowledge

Quality of Information
- Accuracy, Completeness & Timeliness of Information about Threat
- Level of Situational Awareness Achieved
- Number and Types of Decisions Made

Operational Metrics

Soldier Unit Performance
- Time to Execute Mission
- Blue Losses
- Red Losses
- Degree of Surprise
- Ability to Maneuver Undetected
- Number of PIR Satisfied

Quantifying How Technical Performance Impacts Operational Effectiveness

Approved for public release; distribution is unlimited.
Support to PM Programs and Tech Base Efforts

PM WIN-T 2007 Increment 2 Engineering Field Test
- Critical Technology Elements
- Network Scalability

JTRS SLICE SRW 2006/7 Technical Field Tests
- Waveform maturation

PM FCS 2007 Technical Field Tests
- SUGV Teleoperation
- T-UGS / U-UGS
- NEBC Technology Transition

Natick Soldier Center 2006/7 Future Force Warrior
- Exit Criteria Testing
- Transition to PEO Soldier

Approve for public release; distribution is unlimited.
Networking Technology Transitions

- Tactical Wireless Network Assurance
 - Black Side Intrusion Detection system
- Soldier Radio Waveform
 - Mobile AdHoc networking for Soldiers, sensors, munitions
- Command and Control of Robotic Entities (C2ORE)
 - UAV mission planning and execution software autonomously controls multiple UAVs
 - Enhances planning and management of unmanned sensor assets (UGS, UAV, UGV, etc)

Body Wearable Antenna Technologies for SRW

2 Port Low Profile Antenna for Wideband Networking Waveform (WNW)/ Soldier Radio Waveform (SRW) bands

Antenna optimization Modeling and Simulation for Command & Control Vehicle (C2V) and Reconnaissance & Survivability Vehicle (R&SV)

Approved for public release; distribution is unlimited.
The Soldier Radio Waveform is a mobile, ad-hoc, networking waveform developed and transitioned to provide improved voice and data communications, for platforms with Size, Weight, and Power constraints. Hosted on Joint Tactical Radio Systems (JTRS) Handheld Manpack Small Form Factor (HMS) and Ground Mobile Radio (GMR).
Antenna M&S Performance on Vehicles Process

Antenna Model Validation
- Anechoic Chamber Measurement
- xFDTD Antenna Model
- Overlay Result

Platform Model Validation
- Actual Vehicle
- Vehicle CAD Model
- xFDTD Electromagnetic Meshed Model

Vehicle Model with Validated Antennas

Finite Difference Time Domain (FDTD) Simulation
- 360° Far-Field Antenna Gain Pattern

Geometrical Theory of Diffraction (GTD) Simulation
- Power Contour Plots

Hybrid M&S Results
Example: MRAP Antenna Placement Optimization

SPAWAR Recommended Location Poor Pattern

CERDEC M&S Placement with Optimized Pattern

115 Antenna Base @ 2 meters Above Earth Ground

Approved for public release; distribution is unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Purpose:

- Develop Affordable, Low Profile Solutions For OTM SATCOM
- Develop Affordable Directional Antennas for Terrestrial Directional Networking
- Develop Omni-directional Antennas With Higher Gains, Lower Profiles with Ballistic Radomes, and Multiple Ports to Reduce the Number of Platform Antennas
- Develop Integrated Antennas for Dismounted Soldier
- Develop Distributed Antennas to Improve Omnidirectional Antenna Performance and Reduce Cosite Interference

Products:

- Low Cost Ku/Ka Band OTM SATCOM Antenna Systems
- Low Cost X-band Point Of Presence
- Efficient Ku and Ka Band Power Amplifiers
- Low Profile Single Beam Ku/Ka SATCOM Ant System
- Low Profile Multibeam Ku/Ka/Q SATCOM Ant Analysis
- Affordable Terrestrial Directional Antennas
- WNW High Gain Omni Antennas
- 2-Port Low Profile Omni Antennas with Ballistic Radome supporting multiple waveforms (Ground/RW)
- 3-Port Tri-band Omni Antennas
- Integrated Body Wearable Antennas
- Distributed Antenna Array

Payoffs:

- Affordable OTM SATCOM and Terrestrial Directional Ants.
- Reduced Visual Signatures & Antenna Counts
- Improved Link Connectivity and Ballistic Protection
- Reduced Platform Power Consumption

Approved for public release; distribution is unlimited.
Purpose:
• Develop, mature, and demonstrate low profile antennas for directional and satellite communications (SATCOM) on-the-move (OTM)

Products:
• Low-profile, single-beam (Ku/Ka) antenna
• Low-profile, multi-beam (Ka/Q) antenna
• Single-beam high capacity communications capability (HC3) (Ka/Q) antenna
• Small aperture blue force tracking (BFT) antenna
• C/Ku Affordable Directional Antenna
• Integrated Ka/Q-band Power Amplifier

Payoff:
• Increased Communications Capabilities at all echelons through greater use of SATCOM OTM
• Reduced platform burden through reductions in antenna size, weight, and power (SWaP)
• Increased survivability through reduced visual signature
• Affordable SATCOM OTM for the warfighter through antenna cost reductions
** Purpose:**
To develop and transition wireless network protection solutions for a tactical Mobile Ad-hoc Networking (MANET) environment that is typical of WIN-T and the Future Force.

Product:
- Tactical security administration tool for mobile wireless environment.
- Intrusion Detection Algorithms for MANET routing protocols
- Tactical Public Key Infrastructure (TPKI)
 - Architecture
 - Certificate Issuance
 - Field Replacements
 - Revocation

Payoff:
- Prevent threat Information Warfare attacks from damaging mobile networks.
- Maintain Warfighter trust/confidence in battlefield information.
- Reduce system and network vulnerabilities.
Purpose:

Develop and transition software and algorithms that tailor and manage the flow of Battle Command (BC) information and C2 services between current and future systems throughout all phases of operations and environments.

Products:

- **Battle Command Planning/execution/re-planning products for:**
 - Dismounted applications in Complex and Urban Terrain
 - Current Force Tactical C2 Systems
 - Unmanned systems and sensors
 - Decision support tools that account for political, religious, cultural and other factors

- **Managed Connectors that govern the flow of information between disparate architectures while globally managing resources**

Payoff:

- Increased speed/quality of BC planning and execution adjustments
- Improved commanders’ understanding of Battlespace and related factors
- Faster decision-making

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Purpose:
• Develop Soldier Radio Waveform (SRW) for Dismounted Soldier and manned & unmanned systems.
• Develop communications and networking technologies that address Future Force constraints for bandwidth and connectivity while on the move.

Product:
• JTRS Software Communications Architecture (SCA) v2.2 compliant, energy-efficient Soldier Radio Waveform (SRW)
• PILSNER Proactive Diverse Link Selection (PAD-LS) algorithms to enhance OTM connectivity and capacity
• Faster than real time dynamic link estimation for connectivity and capacity for Network Management and man in the loop experimentation

Payoff:
• Energy efficient voice & data tactical communications for Ground Soldier Systems/Future Force Warrior and sensor-to-shooter linkages
• Increased OTM connectivity and usable bandwidth
• Enable commanders to plan communication coverage for OTM Coarse Of Action (COA)
• Addresses PM FCS (BCT) Critical Technology #7B (SRW), Risk #93 mitigation (SRW Availability) to support “Network Ready”
Purpose:
- Develop, mature, and demonstrate modular tools and technologies that significantly improve the network planning and management of the tactical network.
- Develop, mature, and demonstrate security tools to protect mobile networks from attacks and allow information to be shared across security domains.
- Develop, mature, and demonstrate agent enhanced Battle Command (BC) tools to enable real time situational awareness and relevant strategic and tactical battlefield information sharing.

Products:
- Automated Network Management (NM) Tools
- Information Assurance (IA) Tools
- Space/Strategic and Tactical Information Dissemination and Management (ID&M) Applications and COA development

Payoff:
- Reduce manpower and network management configuration time
- Share information across security domains while ensuring trust/confidence in information being sent to the Warfighter
- Improve information sharing by providing relevant information from strategic to a tactical operational unit

Approved for public release; distribution is unlimited.
• Affordable Satellite Antennas for Transformation Comm Systems
 – On The Move Multi band, single/multi beam
 – Affordable phased array antennas

• Advanced Wireless Security Services
 – Integrated Information Assurance (IA) Correlation and Response
 – Software Cross Domain Security Services

• Cognitive Networking
 – Multi-Function RF systems (Radio / EW)
 – Dynamic Spectrum Access Capabilities
 – Adaptive middleware for applications to adjust to network conditions.
Disciplined Systems Engineering Approach

A. Dynamic Spectrum Process & Sensing
B. Networking
C. Data Exchange & Dissemination
D. Information Assurance
E. Applications
F. Cognitive Management
G. HW Design & Development
H. Cross Layering
I. System Evaluation

Simulation/Emulation → Development of Prototypes → Testing/Demos

Current Knowledge base Inputs:
DARPA, Industry, ARL Etc...

Requested Definition
HW/SW Architecture

Approved for public release; distribution is unlimited.
Description: A cognitive network consists of technologies that can perceive current network conditions, and then sense, plan, decide and act on those conditions. The network can learn from these adaptations and use them to make future decisions, all while taking into account end-to-end performance goals and user needs.

Benefits: A cognitive radio has awareness of changes in its environment and adapts its operating characteristics to improve its performance or to minimize a loss in performance.

Generic Cognitive Processing Framework – An Example

- **Reflective**
 - Short Term Memory
 - Deliberative
 - Long Term Memory
- **Reactive**
 - Perception
 - Action
- **Environment**
 - Control and Configuration
 - Down-conversion, Up-conversion, Frequency translation, channel filtering, sampling, error correction, channel estimation, demodulation, modulation
 - Application
 - User

Increasing Use of Software

- USR – Ultimate Software Radio
- ISR – Ideal Software Radio
- SDR – Software Defined Radio
- SCR – Software Controlled Radio
- HR – Hardware Radio

HR – Hardware Radio
SCR – Software Controlled Radio
SDR – Software Defined Radio
ISR – Ideal Software Radio
USR – Ultimate Software Radio

Approved for public release; distribution is unlimited.
Cognitive Network High-Level Roadmap

Lab and Field Demonstrations/Testing
Modeling and Simulation

Cognitive Network Control

AFRL/Finland
Network Design 6.2

SDR Lab Development

Cognitive Network Software Radio Evolution

2008

TITAN ATO (NM)

RADICAL ATO

DARPA WNAN

2009

2010

Cognitive Network Operations
Cognitive Network Learning/Reasoning

DSO HPCMP

OSD Spectrum Management
DSA Policy Language Capability Standardization
Cognitive Antenna Development
FILSNR and Associated SBIRs

Approved for public release; distribution is unlimited.
Example: Cognitive Radio

Benefits

Current Radio Architectures

• Extensive planning before deployment
• Detailed organization structure required accounting for every radio
• Detailed definition of Comm. Circuits and static routing procedures
• Intensive training for network development
• Static Network Configuration
• Limited network adjustment
• Individual nodes unaware of conditions experienced by other nodes
• Unaware of context of operation

Future Cognitive Radio Architectures

• Automated Policy Planning
• Policy Adjustment Based on Needs
• Less “Knobs” for the Warfighter
• Lessens training required for operators
• Decisions made to meet requirements of user with minimal interaction
• Variable network configurations in real-time
• Automated response fostering optimum network performance
• Learning from user experiences in entire network to adjust goals
• Automatic adaptation based on changing context

Legacy Example: EPLRS

Numerous Planning Steps Before Deployment

Adapts and learns how to best configure networks in light of mission requirements and network conditions

Bottom Line: Adaptable and Ease of Use for the Warfighter

Approved for public release; distribution is unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Questions?
Model Based Manufacturing – Predicting Future Performance

Jim Lorenz
Manager, Advanced Industrial Engineering
April 17, 2008
Agenda

• MBE Overview
• MBm Projects
• MBm/MRL Relationship
• Summary
Whether MBe, MBm or Mbs, Net Centricity ensures the availability of managed information at the right place and time, supporting multi-functional decision making and execution across the extended enterprise.

Model Based Enterprise (MBE):

- **Model Based Engineering (MBe):** Manages and provides traceability of requirements throughout the life cycle; spanning MBe, MBm and Mbs.
- **Product modeling:** Assess end item performance against life cycle requirements.
- **Process modeling:** Assesses process related performance against life cycle requirements.
- **Information modeling:** Incorporates standard formats to ensure interoperability of like and cross domain decision making tools and processes.
- **Visualization:** Improves effectiveness of MBEs, efficient use of tools and processes and decision making throughout the entire life cycle.

What is the Model Based Enterprise?

A Model Based Enterprise (MBE) is an integrated environment which allows prediction of future performance, facilitates efficient use of tools and processes and enables multi-disciplinary decision making throughout the entire life cycle.
Process Modeling: Improve process efficiency

Product Modeling
- Optimize design implementation
- Reduce prototype investment
- Improve manufacturing yield

Process Modeling
- Improve process efficiency
- Reduce manufacturing variation
- Enhance inventory management

Information Modeling
- Interoperability of like domain tools
- Interoperability of cross domain tools
- Reduce life cycle costs

Net Centric Manufacturing
- Improve supply chain management
- Increase effectiveness of manufacturing execution within the enterprise
- Enhance customer communication
Value Stream Mapping

Potential MBm Projects:
- Next Generation Supply Chain Modeling
- Integrated Flow Modeling and Physical Layout
- Design For Ergonomics
- Cognitive Virtual Environment

Potential MBs Project:
- Long Term Data Retention

Potential MBe Project:
- ECAD/MCAD Integration

EM Pilot – Warpage Simulation

Engineering Analysis - STEP Composites and CAE Visualization in Adobe Acrobat

Systems Engineering (AP233)

Flow Equivalent Servers

MBE-IF Testing

System Life Cycle Support

PDES, Inc.

MBE – Model Based Engineering
MBm – Model Based Manufacturing
MBs – Model Based Sustainment

© Copyright 2007 Rockwell Collins, Inc. All rights reserved.
Process Modeling: VSM to Simulation (Current State)

Issues with Current State:

- Discrete event simulations are time consuming to create and duplicate much of the effort to generate the VSM
- Suppliers are hesitant to share simulation data because it can include intellectual property
- Inconsistencies in how simulations are done make it difficult to gather information from a large supply chain
Process Modeling: VSM to Simulation (Future State)

- Lead System Integrator (LSI) Creates overall Value Stream Maps (VSM)
- Suppliers create VSMs and Process Maps for their Location
- Suppliers create discrete event simulation model
- LSI integrates FESs into overall Value chain simulation
- Model converted by suppliers to Flow Equivalent Servers (FESs)
- Standard mapping definitions (including simulation data)

Benefits of Future State:
- DESs are easier to generate and more standard
- Enhanced communication between customer and LSI
- Predictive supply chain modeling
- Reduced intellectual property concerns

Complex Network

FES
Process Modeling within the MRL Structure

MRL 3 4 5 6 7

Model Granularity

High Level

Model Scope

Unit Process

Process Chart

Detailed Process Chart

Full As-is Value Stream Map

Simulate To-be VSM

Supply Chain

Master schedule Facility plans Risk mitigation Obsolescence

Blue text: Manufacturing Information requirements

© Copyright 2007 Rockwell Collins, Inc. All rights reserved.
Summary

• Manufacturing Readiness Levels assesses whether or not a design will be successful in production

• Model Based Manufacturing provides the ability to predict the performance of products and processes

• Information flow across boundaries requires standard data definition
Contact Information

Jim Lorenz
Manager, Advanced Industrial Engineering
Rockwell Collins
319-295-8536
jllorenz@rockwellcollins.com
Science & Technology Program
16 April 2008

Dr. James Sheehy
Chief Scientist / Technology Officer
Human Systems, AIR-4.6T)
E-mail: james.sheehy@navy.mil
Phone: (301) 342-8480
NAVAIR Sites

NAVAIR DEPOT, CHERRY POINT, NC
Delivers on time quality products and services for Naval aviation as service to the fleet.
Aircraft: AV-8B, Harrier; H-53, Sea Stallion; C-130, Hercules; H-46, Sea Knight; V-22, Osprey; VH-3, Presidential Helicopter

NAVAIR DEPOT, NORTH ISLAND, CA
Provides comprehensive quality aviation support to the nation’s warfighters.
Aircraft: F/A-18 Hornet; E-2C Hawkeye; C-2 Greyhound; S-3 Viking; H-60 Seahawk

AIRCRAFT DIVISION, LAKEHURST, NJ
Provides aircraft launch and recovery expertise to the fleet.

TRAINING SYSTEMS DIVISION, ORLANDO, FL
Center for research, development, test and evaluation, acquisition and product support of training systems for the world.

WEAPONS DIVISION, CHINA LAKE & PT MUGU, CA
Provides our forces with effective and affordable integrated warfare systems and life cycle support to ensure battlespace dominance.

NAVAIR DEPOT, JACKSONVILLE, FL
Delivers high quality maintenance, engineering, logistics and support services to the fleet.
Aircraft: P-3 Orion; EA-6B Prowler, F-14 Tomcat, F/A-18 Hornet; S-3 Viking; SH-60 Seahawk

AIRCRAFT DIVISION, PATUXENT RIVER, MD
Provides acquisition management, research and development capabilities, air and ground test and evaluation, aircraft logistics and maintenance management for Naval aviation.

AIRCRAFT DIVISION, PATUXENT RIVER, MD
 Provides acquisition management, research and development capabilities, air and ground test and evaluation, aircraft logistics and maintenance management for Naval aviation.
The S&T Program is managed by an Integrated Program Team of Product Line Managers and NAVAIR Technologists (T-codes)

- **AIR-00**
 - **CTO/4.0T** Dr. John Fischer
 - **Operations** Nonie Creed
 - **Technology Transition** Dave Bailey

- **AIR-4.0**
 - **Weapons** Mallory Boyd
 - **Fixed Wing** Mike Harris
 - **Rotary Wing** Doug Isleib
 - **Common Systems** Becky Ahne

- **AIR-4.3-4.12**
 - **T-codes**
 - AIR-4.3: Jerry Rubinsky
 - AIR-4.4: Bill Voorhees
 - AIR-4.5: Dr. Chris Hicks
 - AIR-4.6: Dr. Jim Sheehy
 - AIR-4.7: Mike Munson
 - AIR-4.8: Mark Husni
 - AIR-4.10: Bill Wiesemann
 - AIR-4.12: Bill Hamel
 - ISSCs/FRCs Robert Kessler

- **Product Line Managers - collateral duty as PEO liaison**
 - Mallory Boyd (PEO(W/L))
 - Mike Harris (PEO(W/L))
 - Doug Isleib (PEO(A))
 - Becky Ahne (PEO(A))

- **Customers**
 - Internal: NAE BOD, PEOs, OPNAV, CNR
 - External: Services Industry, DARPA
Chief Technology Officer (CTO)

CTO engages internally and externally to develop an S&T Program that responds to capability needs with innovative technology solutions

External Focus

• Maintain knowledge of Naval Aviation needs through strong ties to the warfighting community

• Continually seek innovative solutions for warfighter needs. Champion for innovative ideas that do not address a specific need

• Foster relationships with potential technology providers (DoD, Industry, Academia, etc.)

• Support ASN(RDA), Chief of Naval Research and other Enterprise CTOs in planning and executing an effective Navy S&T Program

Internal Focus

• Primary advisor to AIR-00, Naval Aviation Enterprise (NAE) Board of Directors and Program Executive Officers for technology issues & investments

• Advisor to AIR-00 & AIR-4.0 for issues related to S&T workforce & infrastructure, including workforce revitalization efforts

• Monitors health of S&T portfolio and progress toward delivery of capability through the use of approved metrics & processes
NAE S&T Objectives

◆ **32 NAE S&T Objectives**

 ■ Represents the *goals* of the NAE S&T program. Used as the baseline for identifying, prioritizing, aligning, and synchronizing S&T efforts throughout the enterprise.
 ■ Derived from 340+ capability needs provided by warfighters
 ■ Developed by a Working Group comprised of warfighters
 ■ Coordinated throughout the enterprise
 ■ Aligned with ONR Focus Areas, Joint Capability Areas, and Sea Power 21 Pillars
 ■ Support scenarios contained in Naval Aviation Capability Needs 2030-2050

◆ **NAE STOs will be presented at 18 April NAE BOD meeting for approval/ signature**

 ■ NAVAIR and CNAF already briefed, ready to approve STO Document

Naval Aviation Enterprise
Science and Technology Objectives

Commander Naval Air Forces
Commander Naval Air Systems Command
Director, Air Warfare Division
30 April 2008

_________________________ _________________________
VADM Thomas J. Kilcline, Jr. VADM David J. Venlet
Commander, Naval Air Forces Commander, Naval Air Systems Command

_________________________ RADM Allen G. Myers
Director, Air Warfare Division
STO Distribution (by Capability Gap Area)

- Force Protection (FP) (3)
- Surface Warfare (SUW) (1)
- Under Sea Warfare (USW) (3)
- Theater Air and Missile Defense (TAMD) (2)
- Strike Operations (STK) (7)
- Deploy and Employ Forces (DEF) (3)
- Integrated Logistics Support (ILS) (1)
- Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) (6)
- Enterprise and Platform Enablers (EPE) (1)
- System Safety, Availability and Affordability (SSAA) (2)
- Naval Warrior Performance (NWP) (3)

32 Total STOs

of STOs
Summary

- NAE is improving the way it plans and manages the S&T program
 - CTO organization
 - Processes
 - Metrics
- Developed 32 S&T Objectives (STOs)
 - Developed by warfighters, technologists and intelligence community
- Work closely with ONR to ensure that NAE objectives are communicated and advocated
- CTO office supports OPNAV efforts in science and technology
 - Identifying capability needs
 - Identifying appropriate funding venue
 - Update on programs/projects
Dr. John Fischer
Director, Systems Engineering (AI R-4.1)
Chief Technology Officer (AI R-4.0T)
E-mail: john.fischer@navy.mil
Phone: (301) 757-2328
INNOVATIVE TECHNOLOGY INSERTION – NAVSEA’S PERSPECTIVE

9th ANNUAL NDIA SCIENCE & ENGINEERING TECHNOLOGY CONFERENCE

Brian J. Persons
Executive Director
Naval Systems Engineering Directorate (SEA 05)
& Corporate Chief Technology Officer
16 April 2008
OUR CHALLENGE

Delivering A Diverse Portfolio of Products to War Fighter
That Meet All of Their Expectations!

Engineering/Lifecycle matrix

- **Marketable Product Life (Years)**
 - Key Success factor: manufacturing productivity

- **Engineering Content (Engineering Hours)**
 - Non-Nuclear Shipbuilding
 - High Tech – Warfare Systems
 - Nuclear Shipbuilding
 - Mechanical Machinery
 - Electrical Machinery
 - Radars / Sensors
 - Hull Mechanical & Electrical Components
 - Small Arms
 - Boats and Craft

Challenge:
Meet Evolving Warfighter Needs & specifications and standards.
Focus Innovation Speed, Alliances & Time to IOC

Key success factor: Materials & Productivity

Challenge:
System Obsolescence, supply chain management & low volume production
Focus Commonality, open architecture and flexible product design

 OUR CHALLENGE
Your Challenge: Who To Contact???

- Mr. Michael Bosworth
 Deputy Chief Technology Officer
 (202) 781-3072
 Michael.Bosworth@navy.mil

- Ms. Lisa King
 NAVSEA CTO Office
 (202) 781-1582
 Lisa.M.King.Ctr@navy.mil

- Mr. Dean Putnam
 NAVSEA SBIR Program Manager
 (202) 781-3261
 Dean.R.Putnam@navy.mil

- Dr. Delbert (Ace) I
 NAVSEA Warfare Center Science & Technology Executive
 (850) 234-4202
 Delbert.Summey@navy.mil
Integrating Innovative Battle Command Capabilities

15 April 2008

BG Nick Justice
Program Executive Officer,
PEO Command, Control, Communications Tactical
Agenda

• Understanding the Battle Command (BC) SoS Environment

• Translating S&T Understanding into BC SoS Solutions

• Integrating and Validating New BC Capabilities

• Emerging Innovative Battle Command Technology Examples
Understanding the Battle Command SoS Environment

Driving Factors
- Uncertain strategic environment demands *agile/adaptive responses*
- *Information as* competitive source of *power*
- Demand for enterprise and extended *enterprise-wide solutions*

Solution Characteristics
- Richly *interconnected*; increasingly *interdependent*
- *Cross traditional boundaries*… functional, organizational, programmatic
- *Increasing scale/scope*
- *Increasing complexity*
Army Service-Based Approach for Tactical BC Capabilities

- Establish warfighter operational needs
 - Currently reworking with “Good Enough Take 2”

- Translate a BC technical vision for Service implementation to operational capabilities
 - Converging current and future force service strategies

- Execute technical vision through a System of Systems engineering and integration approach
 - Extending to an ASAALT-led cross Army approach
Instituting Cross-Army SoS Engineering

Lead: ASAALT
- Trade studies and analysis in support of capability roadmaps
- Synchronize enterprise level development
- Facilitate cross-portfolio issue resolution

Lead: ASAALT with PEO SoSE
- Requirements flow down, decomposition, and adjudication
- Integrated schedule and CM

Lead: PEOs
PEO/PM SoS Engineering Teams:
- Technical Execution, Implementation
- Trades supported by R&D Community

Managing depth and breadth of SoS Engineering issues vertically (within) and horizontally (between) C4ISR capability portfolios
An S&T Innovator’s Response
Adapting to the BC SoS Challenge

S&T Transition Challenge

• **Establish a Shared Vision**
 – Demonstrate operational understanding of the Warfighting domain

• **Create Product Partnerships**
 – Partner with high impact programs to fill critical technical/operational gaps

• **Align Execution Processes**
 – Link S&T solution rollout with aggressive Modular Force capability block development and fielding

Evolution v. Revolution in fiscally constrained environment
Prioritizing Tactical C3 S&T Execution

PEO C3T Top 20 S&T Priorities

Institute an open process to align limited S&T resources with prioritized operational needs and increase transition successes

https://t2matrix.kc.us.army.mil
Transitioning S&T Solutions to PORs

Challenges

—“Operationalizing”
 • Delivering Warfighter-Focused v. Technology Policy-Driven Solutions

—Execution Ownership
 • Strategizing with PMs early (and often) on S&T transition

Exponential Technology Growth in Commercial Products

A Piecewise Approximation to The Growth of Technology *

Typical POR with Minimal Growth * Essentially Frozen at PDR, CDR

Source: ASB
Advancing C4ISR SoS M&S Capabilities

• Integrated C4ISR Live/Virtual/Constructive Demonstrations and Analyses
 – Enables C4ISR System of Systems Engineering analyses of greater scale and accuracy
 – Relevant across the spectrum of program life cycle
 – More quickly, more efficiently, resulting in significant cost savings/avoidance

Analysis of operational data collected in-theater and used in M&S enabled bandwidth assessments

Insertion of realistic C4ISR effects into live experimentation environments

High-Performance-Computing Army Laboratory for Live/Virtual/Constructive Experimentation (H.A.L.L.E.)
Instituting Operational Design Reviews

- **TOCFEST**
 - Team C4ISR engineering field study to validate the current Command Post SoS from 11 Mar to 13 Apr 2008 at Fort Indiantown Gap, PA (FTIG)

 ![Diagram of SBCT Main CP (CP 2), SBCT TAC CP (CP1), and Battalion CP]

 Standardizing Command Post baseline architecture – physical and logical
 Evaluating technical and operational effects of configuration changes
 Setting conditions for ongoing C4ISR SoS operational design reviews
Selected BC Enabling Technologies

- **neXt Generation Communications (XG) Dynamic Spectrum Access Technology**
 - Maximize access to and use of required tactical spectrum

- **Disruption Tolerant Networking (DTN)**
 - Assure tactical C2 info delivery when no network path exists

- **Chip Scale Atomic Clock**
 - Deliver precise timing and positioning for the “last tactical mile”

- **Serious Gaming**
 - Enhance C4ISR training environments, linking Command Post capability usage with realistic tactical scenarios
Questions?
San Diego/ IT Research Hub

- Qualcomm, Inc
- SAIC
- Nokia Mobile Phones
- ViaSat
- Leap Wireless
- Kyocera America
- Titan Wireless
- Applied Micro Circuits Corp.
- Wireless Facilities
- Siemens...

"Best place in country for business and careers"
- Forbes magazine

"San Diego is the hot spot for careers in information technology"
- Kaplan Newsweek Careers
TEAM SPAWAR

- SPAWAR HQ
- System Center San Diego CA
- System Center Norfolk VA
- System Center Charleston SC
- PEO Space Field Chantilly VA
- PEO EIS
- DNMCI
- Information Technology Center New Orleans
- SPAWAR HQ
- System Center
- PEO C4I
- PEO EIS
- DNMCI
Co-Located with the Fleet, Industry and Academia

SPAWAR HQ/PEO
Old Town Campus

Naval Special Warfare Command
Naval Region, Southwest
Naval Station, San Diego
Naval Amphibious Base
Naval Air Station
Naval Sub Base
3rd Fleet

SPAWAR Systems Center
San Diego

Camp Pendleton
MC Air Station Miramar
SPAWAR Systems Center San Diego
TEAM SPAWAR Chief Technology Officer
“Leadership and Innovation”

SPAWAR S&T OPPORTUNITIES

17 Apr 2008
Mr. Gary Wang
Code 73
(619) 553-2010
gary.wang@navy.mil

Overall Classification: // Unclassified //
S & T OPPORTUNITIES

• Industry and Government Teaming

 – CCAT (Center for Commercialization of Advanced Technologies)
 Commercialization of emerging technologies (private and government) /
 Stephen Lieberman, stephen.lieberman (553-2778);
 http://www.ccatsandiego.org/

 – CRADAS (Cooperative Research & Development Agreement)
 Means to perform research with industry Stephen Lieberman,
 stephen.lieberman (553-2778); Roger Boss, roger.boss (553-1606)

 – Commercial Sales Agreement (U.S. Code 2539B) and Work for
 Private Parties (U.S. Code 2563)
 Laws & policies to increase private sector access to defense-unique
 capabilities Raj Samuel, raj.samuel (767-4156)

 – SBIR (Small Business Innovation Research) Contracts awarded to
 small businesses for innovative research through congressionally
 mandated federal program. Steve Stewart, steve.stewart (553-2546)

 – MP (Mentor Protégé) Small business partnering with large companies
 in developing innovative technologies Cliff Hudson, cliff.hudson (553-
 7442)
S & T OPPORTUNITIES (cont)

- **CTO Services for Transition, Technology Strategies, and Forecasting**
 - **ILIR (In-House Laboratory Independent Research)** Internal discretionary 6.1 funds from ONR emphasizing basic research / Roger Boss, roger.boss (x31606) https://donst.nrl.navy.mil/cgi-bin/login-form.cgi
 - **IAR (Independent Applied Research)** Internal discretionary 6.2 funds from ONR emphasizing revitalization and transition / Roger Boss, roger.boss (x31606) https://donst.nrl.navy.mil/cgi-bin/login-form.cgi
 - **S&T Capabilities Initiative** Internal G&A funding emphasizing 6.2-6.3 transitions / Roger Boss, roger.boss (x31606)
 - **S&T Challenges** Internal funding used to support for about 5 yrs a team of researchers building a 6.1-6.3 S&T capability vital to the Center's mission / Eric Hendricks, eric.hendricks (x31624) / Roger Boss, roger.boss (x31606)
Outline

- What is T2
- Why do we do T2
- How do we do T2
- What’s in it for you? for the Navy?
What is T2

Commercialize:
- New Products (Features)
- New Services
- New Businesses

Adapted from Ricardo dos Santos, Sr. Director of New Business Development, Qualcomm, Inc.
Lab to Market
Example: QwikLite Technology
Background

Top 100 USPTO Patent Recipients

Navy averaged 59th out of top 100 Patent Recipients for years 2001-2006

#Chart shows data for 2003
Background

SSC San Diego vs. San Diego Based Companies

SSC San Diego ranked 5th compared to San Diego based corporate patent recipients in 2006

<table>
<thead>
<tr>
<th>Rank/Company</th>
<th>Number of Patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Qualcomm</td>
<td>200</td>
</tr>
<tr>
<td>2. Kyocera Wireless</td>
<td>32</td>
</tr>
<tr>
<td>3. Applied Micro Circuits Corp.</td>
<td>30</td>
</tr>
<tr>
<td>4. Science Applications Int.</td>
<td>24</td>
</tr>
<tr>
<td>5. SSC San Diego</td>
<td>21</td>
</tr>
<tr>
<td>6. Agouron Pharmaceuticals</td>
<td>19</td>
</tr>
<tr>
<td>7. Cymer</td>
<td>18</td>
</tr>
<tr>
<td>8. Genral Atomics</td>
<td>14</td>
</tr>
<tr>
<td>9. Gen-Probe</td>
<td>14</td>
</tr>
<tr>
<td>10. Diversa</td>
<td>11</td>
</tr>
<tr>
<td>11. Amylin Pharmaceuticals</td>
<td>9</td>
</tr>
</tbody>
</table>

Data from San Diego Union, 25 Jan 2006 -- SSC SD data added. (Does not include data from local Universities)
Why do T2

- Facilitate the transfer of SSC San Diego innovations for the benefit of public and warfighter
- Enhance the research experience of SSC San Diego scientists and engineers through technology transfer
- Promote economic development by leveraging SSC San Diego innovations
- Provide financial incentives to SSC San Diego scientists and engineers to stimulate technological innovations
How: T2 Vehicles

- Patent License Agreements (PLAs)
- Cooperative Research and Development Agreements (CRADAs)
Licensing

Guiding Principles

- Benefit the public and the warfighter.
- Licensee should be capable of bringing the invention to the marketplace.
- Timely development, marketing, and deployment of the invention.
- Fair consideration in exchange for the grant of commercial licensing rights.
Light-Induced Mechanical Motion

The U.S. Navy seeks to commercialize a technology for light-induced mechanical motion through patent licensing and collaborative commercial partnerships. The base patent is U.S. Patent 6,143,138: Visible light pH change for activating polymers and other pH-dependent materials.

Background

A number of natural and synthetic fibers and gels expand and contract when exposed to an environmental change, such as exposure to a change in solvent composition, temperature, ionic selectivity or photon irradiation. In commercially exploitable technology, the fibers and gels have application in many fields, such as sensors, switches, motors, pumps, and non-metallic operations; as well as use in the medical and robotic fields where it is envisioned that these materials will be able to carry out the function of human muscle tissue. While current technology for traction times are normally short (~10 milliseconds), the light used is UV and causes damage to the solution, and heat buildup is discharged too slowly for a quick return of the compound to its initial resting state. SSC San Diego has created a technology that overcomes these deficiencies.

The Technology

With a bit of light and a simple solution of polymers, SSC San Diego has created a new and novel way to induce mechanical motion by the process of contraction and expansion, and has patents on both the method and apparatus for doing so. When exposed to visible light, the polymer reacts by contracting. The polymer can maintain the contraction indefinitely, all the while discharging the heat from the light so that once the light is removed, the solution can return to its original state in milliseconds. Thus, an expandable and contractible polymer solution can be made to respond rapidly to a change in pH while the heat-release mechanism of the invention allows the polymer to return to its initial configuration in milliseconds.

Key Benefits

- Indefinite contraction times
- No need for UV light; needs only non-damaging visible light
- Continuous heat discharge allows the solution to return to its original state in milliseconds

Development Status

- DoD 5000 Series Technical Readiness Level 6: Tested in Relevant Environment
- Three patents issued:
 1. 17 Aug 2004: U.S. Patent 6,776,971
 2. 27 July 2004: U.S. Patent 6,699,442

For more information regarding technology transfer, please contact us at (619) 553-2778 or email t2@spawar.navy.mil.
Greetings from the Technology Transfer office at Space & Naval Warfare System Center, San Diego (SSC San Diego).

We are pleased to announce the launching of a new periodic email alert to notify you of new technologies as they become available for licensing and collaborative commercial partnerships. In addition, we have a new Technology Transfer website located at http://enterprise.spawar.navy.mil/techtransfer.

Here are two recent technologies:

TECHNOLOGY 1: Intelligent Decision Support System

Scientist Stuart Rubin has developed an intelligent decision support system which outperforms contemporary expert systems by allowing for user-controlled creativity in the decision making process. This vastly reduces the primary cost of acquiring and maintaining knowledge for a decision support system. Applications include helpdesk systems that support telephone callers, medical and automobile diagnosis, etc.

For more information on this technology, [click here](http://enterprise.spawar.navy.mil/techtransfer).

TECHNOLOGY 2: Electroactive Polymer Biaxial Braid

SSC San Diego researcher Michael Blackham has developed an electroactive polymer (EAP) biaxial braid which revolutionizes current EAP structures. The benefits of the biaxial braid over current technologies are decreased bulk and mass, increased flexibility and local shape control, and the technology can be utilized in unconventional settings. Shapes can be reformed to create necessary structures depending on application, allowing for snake-like movements to climb or swim. Potential markets include robotics, industrial, medical/surgical devices, and microelectrical devices.

For more information on this technology, [click here](http://enterprise.spawar.navy.mil/techtransfer).

SSC San Diego is actively seeking industry partners interested in licensing or initiating a Cooperative Research and Development Agreement (CRADA). The Office for Technology Transfer makes it easy for commercial businesses or start-up companies to access and implement our innovative technologies. Our mission is to facilitate and enhance the transfer of intellectual property resources and information between SSC San Diego and the business community in an effort to improve the commercial value of inventions and creative work.

For more information regarding these technologies or any of the other technologies we have available check out http://enterprise.spawar.navy.mil/techtransfer or contact Dr. Stephen Lieberman at (619) 553-2773, email fog@spawar.navy.mil.
Technology Transfer: How Marketing Cont.

- Partner with Navy, DoD, Federal T2 organizations, Entrepreneurial groups, industry trade organizations, State, Local Economic Development Groups
Number of Patents Licensed/Year

Year

Number of Patents

2007: 5
2005: 2
2003: 1
2001: 2
1999: 4
SSC San Diego Licensee Distribution

Applied Microsystems, Ltd.
Sydney, British Columbia, Canada

Innovalight, Inc.
St. Paul, MN

Metron, Inc.
Reston, VA

Radiant Images, Inc.
Bedford, MA

Genefluidics, Inc.
Monterey Park, CA

Assure Bioassay Controls, Inc.
Carlsbad, CA

Omega Sensors, Inc.
San Diego, CA

Honeywell International
Clearwater, FL

SSC Development, New York, NY

Elemental Wireless,
Wilmington, DE
• Gov’t. developed technologies can:
 – Provide technology for new start-up companies
 – Provide enhancement to existing product lines
• Industry can partner with the govt. to gain access to facilities, equipment, and personnel in specific technical areas consistent with laboratory mission
Benefit to the Navy

- Provides ROI to Navy’s for investment in patent process
- Important path to move Navy innovations from lab to product
- Promotes economic development

 » **Make US more competitive in global marketplace**
Cooperative Research and Development Agreements (CRADA)

- **What is a CRADA**
 - Legal agreement between a government R&D laboratory and interested partners
 - Allows partners to collaborate in mutually beneficial R&D in specific technical areas consistent with laboratory mission
 - Pre-determines all intellectual property rights
CRADA cont.

• Ground Rules
 – Partners can provide facilities, equipment, and personnel in support of CRADA
 – Government labs can enter into CRADAs with private sector, universities, and state and local governments
 – The non-government partner can provide funds to the government laboratory to perform tasks under the CRADA
 – The Government laboratory CANNOT provide funds to their partners
Recent CRADA Activity

Number of CRADAs per Fiscal Year

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th># of CRADAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
</tr>
<tr>
<td>2006</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>8</td>
</tr>
</tbody>
</table>
Brad Chisum, CEO Lumedyne technologies (formerly Omega Sensors Inc.) rings the opening bell on NASDAQ, August 2007
Contact Info

Stephen H. Lieberman, Ph.D.
619-553-2778
Email: T2@spawar.navy.mil
SSC San Diego - Teaming with Industry

Raj Samuel
Science & Technology
raj.samuel@navy.mil
SECOND PRIORITY: Add value to SSC San Diego.
Teaming with Industry

- Objective
 - Efficient transition of the DoD technologies to the warfighter

- Supported by
 - Congress, the Secretary of Defense, and the Secretary of the Navy

- Vehicles
 - Laws & policies to increase private sector access to defense-unique capabilities
 - 10 U.S.C. §2539B ... Sale of testing services outside the DoD
 - 10 U.S.C. §2563 ... Sale of Articles & services outside the DoD
Advantages to the Industry Partner

- Leverage Center’s capabilities
- Access to knowledgeable workforce
- Use of existing facilities & equipment
- Minimize process flows
- Avoid investment in duplicate capabilities
- Compliance with Government regulations
- Increase profits
- Reputation associated with partnerships
Working Capital Fund

Works like private industry
- We team to do the work
- We charge our salaries & expenses to the project
- We generate overhead to pay operating expenses

But we cannot make a profit
10 U.S.C. §2539B

Authorizes the Secretary of Defense to allow the military departments to

(1) sell, rent, lend, or give samples, drawings, and manufacturing or other information to any person or entity;

(2) sell, rent, or lend government equipment or materials to any person or entity

(3) make available to any person or entity, at an appropriate fee, the services of any government laboratory, center, range, or other testing facility for the testing of materials, equipment, models, computer software, and other items.
10 U.S.C. 2539B

74 executed FY03 thru FY07
Total value $4.1M
<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Silence Engineering Lab & Test Facilities</td>
<td></td>
</tr>
<tr>
<td>Medium Weight Shock Test (MWST)</td>
<td></td>
</tr>
<tr>
<td>Acoustic Testing and Evaluation</td>
<td></td>
</tr>
<tr>
<td>Acoustic Evaluation of Hydrophones</td>
<td></td>
</tr>
<tr>
<td>TRANSDEC - Acoustic Evaluation of Hydrophones</td>
<td></td>
</tr>
<tr>
<td>Antenna and Radome Testing</td>
<td></td>
</tr>
<tr>
<td>Acoustic Evaluation of Hydrophones</td>
<td></td>
</tr>
<tr>
<td>TRANSDEC - Acoustic Evaluation of Hydrophones</td>
<td></td>
</tr>
<tr>
<td>Joint Tactical Radio System Test & Evaluation Lab</td>
<td></td>
</tr>
<tr>
<td>High Assurance Internet Protocol Encryptor (HAIPE)</td>
<td></td>
</tr>
<tr>
<td>HAIPE - Falcon III Manpack Radio (RF-300M-MP)</td>
<td></td>
</tr>
<tr>
<td>Deepwater National Security Cutter Antenna Test</td>
<td></td>
</tr>
</tbody>
</table>
Authorizes the Secretary of Defense to sell *articles and services* that are manufactured or performed by any DoD working capital funded facility of the armed forces (e.g. *SSC San Diego*) to parties outside of the DOD (*Industry*).
10 U.S.C. §2563 Statute Criteria

Sale of Articles & Services outside of DOD

10 USC 2563
No other U.S. Commercial Source
Indemnify U.S. Burdened Rate
Fixed Price or Cost Reimbursable

≤ $1M
COMSPAWAR

> $1M
ASN RDA

Funds from Industry
10 U.S.C. §2563 Elements

- Non Availability Letter
 - Indicating that required articles or services are unavailable from a U.S. commercial source

- Sale of Articles or Services Agreement

- Statement of Work
 - Defining tasking, costs, period of performance, deliverables & reporting requirements
10 U.S.C. § 2563

24 executed FY03 through FY07

Total $25.5M
10 U.S.C. § 2563

<table>
<thead>
<tr>
<th>Antenna Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-4614 / URD Antennas</td>
</tr>
<tr>
<td>CLS for Minuteman Program</td>
</tr>
<tr>
<td>Data Link Gateway System</td>
</tr>
<tr>
<td>VLF / LF High Voltage Testing</td>
</tr>
<tr>
<td>AS-4614 & AS-4623 Antennas</td>
</tr>
</tbody>
</table>
Sample of Partners

Agreements have involved both major corporations as well as small businesses.
Conclusion

2539B and 2563 are excellent vehicles for Industry to acquire DoD technology / assets for transition.

The agreements are easily adaptable.

SSC San Diego
- is the pre-eminent provider of C4ISR solutions
- has a successful track record with 2539B and 2563 agreements
- is actively engaged in Best In Class processes & Continuous Improvement
SSC San Diego - Teaming with Academia

Raj Samuel
Science & Technology
raj.samuel@navy.mil
Shift in Comms Research..... % of IEEE papers published

Source: Bob Lucky, Telcordia / SAIC
Cal ISI ..

California Institutes for Science & Innovation

- Launched in 2000 to support multidisciplinary research in biomedicine, bioengineering, nano systems, telecommunications and information technology
- $400M funded by state of California … 2X matching funds by Institutes
- The 4 research centers operate as a partnership among the University, state government, and industry,
 - Calit2 (California Institute for Telecommunications and Information Technology)
 » UC San Diego & UC Irvine
 - QB3 (California Institute for Quantitative Biomedical Research)
 » UC San Francisco, UC Berkeley & UC Santa Cruz;
 - CNSI (California Nanosystems Institute)
 » UCLA & UC Santa Barbara
 - CITRIS (the Center for Information Technology Research in the Interest of Society)
 » UC Berkeley, UC Davis, UC Merced, & UC Santa Cruz.
Jacobs School of Engineering

Youngest & fastest rising engineering school

2 in total research $ per faculty

925K per faculty

5 in the nation for federal R&D

$ 110M by Irwin Jacobs

Upward trajectory
SSC – Calit2 Strategic Partnership

- To be the Nation’s pre-eminent provider of integrated C4ISR solutions for warfighter decision superiority

- Calit2 “Lives in the Future” by:
 - Building Systems of Emerging Disruptive Technologies
 - Integration of Technology Consumers and Producers

Provide collaborative and better solutions to the Fleet & Joint Warfighter
SSC SD _ Calit2 Strategic Partnership

<table>
<thead>
<tr>
<th>Strategic</th>
<th>Tactical</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD, DTRA etc Strategic Groups</td>
<td>Cooperative Agreement</td>
</tr>
<tr>
<td>Net-Centric Technology Objectives</td>
<td></td>
</tr>
<tr>
<td>DTRA Transformational Countermeasures Technology Initiative</td>
<td></td>
</tr>
<tr>
<td>JTRS JPEO</td>
<td></td>
</tr>
<tr>
<td>Seminars</td>
<td></td>
</tr>
<tr>
<td>Collaborative Proposals & Projects</td>
<td></td>
</tr>
</tbody>
</table>
Collaborative work

- **Co-operative Agreement**
 - the Federal Grant and Cooperative Agreement Act of 1977
 - assistance agreements in which substantial involvement between the DoD and the recipient is anticipated
 - awards to universities to support research studies in subject areas consistent with the awarding agency’s mission

- **Agreement thru September 2009**

- **Graduate Seminar**
 - CSE 290: Service Composition in Ultra-Large Scale Systems
 - Speakers (via VTC) from MIT, NCSU, NPS, SRI, SSC SD & Charleston, Vanderbilt & UCSD

- **JTRS Project .. FY08**
 - Increment 3 networks and radios

- **DARPA .. BAA .. LANdroids Proposal ..Aug ’07**

- **ONR .. BEAMS Network Comms Gathering .. May ’07**

- **DARPA .. RFI .. Feb 07**
 - Assurable Global Networking
Conclusion

SSC & Calit2 are developing key strategic partnership to
- provide the best solutions to the warfighter
- grow workforce competencies
- develop a highly credentialed workforce

Plan is to continue to nurture this partnership and collaborate with additional partners
Agenda

• ATEC Mission
• OSD & Army Acquisition Initiatives
• Benefits of DT/OT Integration
• DT/OT Integration in the Army and Technologies that May Help
ATEC Mission

• Plan, conduct, and report the results of tests, simulations, experiments, and evaluations to Acquisition decision makers in order to ensure our Army’s Warfighters have the right capabilities for success across the entire spectrum of operations.

• Conduct rapid testing in direct support of the GWOT warfighter in order to provide capabilities and limitations of weapon systems issued directly to Soldiers conducting combat operations (Iraq/Afghanistan).
OSD T&E Initiatives

- Focus on measuring improvements to capability and operational support
- Experiment to learn strengths & weaknesses - impact on capabilities
- Integrate Developmental Testing & Operational Testing
- Start early, be operationally realistic, continue throughout the life cycle
- Evaluate in mission context at time of fielding
- Compare to current mission capabilities
- Use all available information
- Exploit benefits of Modeling & Simulation

Source: DoD Report to Congress, DUSD (AT&L), 8 Aug 07
Army Acquisition Initiative
Reliability Improvements

- Significant number of U.S. Army systems are failing to demonstrate established reliability requirements during operational testing

Effective Immediately:
- A System Development and Demonstration (SDD) reliability test threshold will be established
- Applies to programs in pre-MS B phase
- Applies to Information Technology systems that include hardware development
- Threshold to be established before entrance into MS B
- Must detect and report threshold breaches
- Must implement Reliability Best Practices

Excerpts from ASA(ALT) memo, dated 6 Dec 07, “Reliability of U.S. Army Materiel Systems”
Claude M. Bolton, Jr. ASA(ALT)
Army T&E

Developmental Testing
- to find faults, implement corrective actions, and mature the design
- to confirm technical capabilities/functionality and manufacturability

Operational Testing
- to provide information on integration of the Soldier, the support system, training & doctrine, and materiel in an operational environment
- to confirm/demonstrate operational suitability requirements
Benefits of DT/OT Integration

• Reduced Risk
 – Ensure capabilities are tied to mission
 – Systems deficiencies identified
 – Test data is shared

• Reduced Cost
 – Sharing resources
 – Eliminate duplicative testing
 – Early deficiency identification and correction

• Reduced Acquisition Timeline
 – Combined vs. sequential testing
 – Sharing of high-demand testing assets
Strategic Organizational Construct

FROM: HQDA

ATEC

→ Saves Time & Money
→ Does Not Compromise Org Independence

PEO

ATEC

To: HQ ATEC

DTC

OTC

AEC

A

B

C
Ballistic Missile Defense

- DT/OT Integration is widely used, but not in “traditional” definition
- DT is all planned, executed, and reports written by the PM (not ATEC/DTC); has significant system contractor influence/input
- No planned IOT, BMDS OTA arranges for Warfighter participation during DT events, using operationally realistic scenarios and DIA threat representation in HWIL and digital M&S
- Warfighter participation in flight and ground test events
- Proposed end-of-block OT will likely include contractor involvement
Technology That May Improve DT/OT Integration

Ballistic Missile Defense

- Screen capture / frame-grabbing devices
- Automated data capture and transfer; data reduction
- Shared analysis tools
DT/OT Integration in the Army

Medical / Business Information Technology (IT) Systems

• A “hybrid DT/OT” usually, depends on product size, system complexity, software maturity

• Developer Integration Testing in laboratory test bed using production-representative hardware

• Not “ad hoc” – firm processes and procedures

• More Commercial Off The Shelf (COTS) - based products in use

• DOT&E process for determining level of OT – ranges from ATEC looking over shoulder of DT tester to a full operational test
Technology That May Improve DT/OT Integration

Medical / Business Information Technology (IT) Systems

- Improve Modeling of networks (currently using none)
- Better Data Management and sharing
DT/OT Integration in the Army

Chemical / Biological Defense

• All live BWA & actual CWA testing is done in chamber in DT

• For Oversight systems Chem/Bio Policy defines this as DT-OT

• Many OTs are conducted in partnership with DT Community on outdoor ranges (mostly DPG) that operates and manages instrumentation to determine simulant concentration

• Key effectiveness evaluation hinges on integrating results from chamber testing with actual agent and operational testing
Technology That May Improve DT/OT Integration

Chemical / Biological Defense

- Increase use of HWIL to stimulate detector sensors
- Real need for more accurate simulants of live agents; ALO (Agent-Like Organism)
- Better Data Management and sharing
DT/OT Integration in the Army

Aviation

- DT/OT widely used for subsystem evaluation (i.e. CMWS)
- Hardware-in-the-Loop Simulations
- Soldiers used in DT, especially moving from component level to subsystem level tests
- Combined test teams - Air Worthiness Release restricts introducing operational pilots early on.
- Operational Testing conducted at DT ranges
Technology That May Improve DT/OT Integration

Aviation

- Improved models and simulations; cockpit simulators
- Automated instrumentation for Real Time Casualty Assessments
- GPS- (or other geometric pairing) based RTCA systems
- Collaborative tools / personal communicators
DT/OT Integration in the Army

Infantry Weapons and Soldier Systems

• Non-oversight ACAT III systems: usually integrated DT/OT in a single location

• DT done first for safety/performance check; OT phase with Soldiers follows

• Rapid Acquisition systems: usually just DT, then theater

• Some OT at technical test sites (hot/cold regions, etc)

• OT = Soldiers in lanes
Technology That May Improve DT/OT Integration

Infantry Weapons and Soldier Systems

- Improved commonality of instrumentation
- Common data reduction protocols at all test sites
DT/OT Integration in the Army

Unmanned Aerial Vehicles (UAV)

- DT always for component-level building and assessment and Air Worthiness Release
- Soldiers used in DT, especially moving to subsystem level tests to obtain early user feedback
- DOTE requires greater operational realism in OT – tactical personnel using approved doctrine
Technology That May Improve DT/OT Integration

Unmanned Aerial Vehicles (UAV)

• Improved availability of models

• Improved Operator simulators

• Improved communication equipment to keep Combined Test Team in the loop

• Develop common instrumentation and data reduction protocols at all sites
DT/OT Integration in the Army

Missiles (Direct / Indirect Fire)

- Extensive firings early without operators
- Extensive Developmental Testing
- Extensive HWIL
- Extensive M & S
- Formal OT’s
Technology That May Improve DT/OT Integration

Missiles (Direct / Indirect Fire)

- Continued heavy emphasis on M&S and HWIL
- Improved data collection, data reduction to speed up test reports to the evaluator
- Better threat replication (consistency between DT & OT) and usage in virtual environment
DT/OT Integration in the Army

C4 Systems

• Limited Gov’t DT – shock, vibration testing, interoperability; message completion rates

• Communications systems – performance centers on stress testing and operational environment

• Field testing is most useful integrated event – soldiers and developers working together to establish system configuration and achieve optimization

• Field tests are cost prohibitive – need for architecture for system to create the environment
Technology That May Improve DT/OT Integration

C4 Systems

- Improve available models and simulations
- Invest in jammers / Electro-Magnetic Environment generators
- Improved data management (storage, retrieval, sharing)
Counter IED

• non-typical development process

• from Laboratory to DT Ranges to Theater – fielding decisions based on DT results and production timelines

• for Jammers – DTs are technical tests on instrumented ranges; PM data considered when available

• DOT&E has not been involved in this commodity area
Technology That May Improve DT/OT Integration

Counter IED

- Increase investment in S&T / R&D before T&E
- Invest in in-line jammers / Electro-Magnetic Environment generators
- Better threat replication (consistency between DT & OT)
- Commonality of instrumentation
- Instrumentation sharing between DT & OT organizations
DT/OT Integration in the Army

Tracked & Wheeled Vehicles

- Usually Separate DTs and OTs; higher risk – more oversight
- OMS/MP miles driven by contract, over known, precise courses
- Extensive data collection in DT
- DOT&E wants “free play” in OT; freedom of maneuver, much of which can be done at Soldiers’ home station

DT / OT Integration Meter

MORE 2 3 4 5 6 7 LESS
Technology That May Improve DT/OT Integration

Tracked & Wheeled Vehicles

- Increase number of instrumented test articles
- Embedded instrumentation
- Common instrumentation and data reduction protocols at all sites
- Technology for tracking in GPS-denied environments
Integration Roll-Up

Ballistic Missile Defense
Medical/Business IT Systems
Chemical/Biological Defense
Aviation
Infantry Weapons/Soldier Systems
Missiles (Dir/Indirect Fire)
Unmanned Aerial Vehicles
C4 Systems
Counter IED
Tracked/Wheeled Vehicles

MORE
DT / OT Integration Meter
LESS
Summary

To further improve DT & OT integration, T&E technology needs include:

– Data management (repository, reference models)
– M&S advances (physical system models, simulations, networks)
– Network Models
– Distributed operations & systems
– Embedded / common instrumentation
Marine Corps Systems Command
Brief to NDIA

April 16, 2008
Dave Ungar
Director Program Engineering & Technology
Industry Forums

- Briefs to Industry (Open) 13-14 May 2008
- Modern Day Marine Sept
- Force Protection Equipment Demonstration
- POC Gloria Prior (703) 432-3930

Technology Transitions

- Hundreds of Programs
- Established Technology Leads
- POC Jim Johnson (703) 432-3327
Assault Breaching System Technologies

Presented to
9th Annual Science & Engineering Technology Conference / DoD Tech Exposition
15-17 April 2008

Mr. Brian Almquist
Ocean Engineering & Marine Systems
Office of Naval Research
(703) 696-3351 almquib@onr.navy.mil

LtCol Tim McLaughlin
APM for ABS
PMS 495 Mine Warfare Program Office
(202) 781-4457 tim.j.mclaughlin@navy.mil
Provide rapid, standoff mine countermeasures capability to support the unencumbered maneuver of combatants throughout the littoral penetration area (sea shield), to enable sea strike operations in the littorals from the sea (i.e. STOM), and to assure access to the sea base, intermediate staging bases, and Sea Ports of Debarkation (SPOD) to ensure strategic mobility and sustainment.
Investments Address Critical Capability Gaps

• Supports Development of an Organic Capability
• Supports Sea Shield Undersea Warfare (MIW) Gap Analysis

Goal is to Decrease the MCM Timeline & Eliminate the Requirement for Manned Ops in Minefields

• Highly Cluttered, Littoral Environment Provides Challenge
• Sensors, Automated Processing, Unmanned Systems Focus
• Air Deployable Mine and Obstacle Breaching System
 - Unique effort in support of amphibious assault
POM 06 / PR07 / POM08 Capability Gaps

• **Gap 1:** Capacity to clear large areas of mines without cued ISR

• **Gap 2:** Destruction of mines in areas through which Marine Corps and Joint Forces must maneuver, ranging from deep water through the surf and beach exit zone.
Ship-to-Objective Maneuver

Assured Access to Enable OMFTS/STOM
Ship To Objective Maneuver

Capabilities:

- Wide area surveillance to enable maneuver
- Clandestine reconnaissance to prepare the battlespace
- Rapid overt mine and obstacle reconnaissance
- Data Fusion to accelerate the planning process
- Timely MCM Common Tactical Picture to enable maneuver
- Stand-off neutralization of individual mines in VSW
- Stand-off breaching of mines and obstacles
- Autonomous, high speed compact influence sweep
- Precision localization and navigation from VSW to BEZ
- Rapid Follow On Clearance
Spiral Development of COBRA

- **Block I (FY09) limited:**
 - Daytime operations
 - Surface mines & obstacles
 - Detection in BZ

- **Block II (FY13):**
 - Night operations
 - Full detection in surf zone

- **Block III (FY16):**
 - Buried mine line detection
 - Near real-time processing
Rapid, Overt, Airborne, Reconnaissance (ROAR)

General
- Day / Night Operation
- Altitude: 3,000 feet
- Speed: 75 knots
- Swath: 200 meters

Surf Zone (SZ)
- 44 Range Gates
- Multiple Looks
- Track-and-Revisit Mode

Beach Zone (BZ)
- 3-Color Active MSI
- 70% Spectral Overlap
ROAR Technology Advances

- Integrated camera, scanner, receiver, and laser system in compact design for UAV
- True 3-D LIDAR system
- Multi-look scan pattern
- Active multi-spectral provides day / night capability
- Optimized for Surf Zone
Tactical UAV Sensor for Detection of Minefields (Buried) in the BZ / SZ

Description
- Detection of buried minefields
- Technical Approaches
 - Active and passive imagers
 - Synthetic Aperture GPR
 - Laser Interferometric Sensor
 - High Resolution 3-D Imaging
 - Resonant Radio Freq Location

Demos / Transitions
- PMS 495 COBRA BLOCK III

Warfighting Payoff
- Rapid recon, day and night
- Supports targeting for ABS

<table>
<thead>
<tr>
<th></th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mine & Obstacle Breaching
S&T Strategy

Develop a Precision Breaching Capability

- Enabled by ISR and Weapon Precision Guidance
- Delivery by Naval TACAIR, USAF Bombers

Spiral Development Approach

- JDAM Assault Breaching System (JABS): Exploit existing precision guided bombs for surface laid BZ/SZ mines and obstacles; VSW Mines
- Advanced Warhead Development: Countermine darts with greater kill radius & effectiveness vs. buried BZ / SZ mines in water and on land
JDAM Assault Breaching System (JABS)

• Requirements
 - OPNAV Letter
 - Threshold and Objective

• System Level Demos
 - Beach Zone
 - Beach Zone / Surf Zone

• Mission Planner

• Transitioned to PMS-495

B-52

Standoff Delivery Platform

MK-84

GBU-31(V)2/B

Precision Guidance

VIDEO

VIDEO
Mine and Obstacle Defeat System (MODS)

- **Requirements**
 - MCIA Mine Threat Letter
 - ABS IPT Mine Matrix
 - Mine “Kill” Criteria

- **Component Tests**
 - Chemical and HE Darts
 - Sled Tests

- **System Level Demos**
 - Flight Tests with Darts

- **Transitioned to PMS-495**
Standoff Assault Breaching Weapon Fuze Improvement

Description
• Demo JABS vs. VSW mines
• Program will address:
 – Weapon Trajectory in VSW
 – Time of weapon detonation
 – Lethality against VSW mines
 – Fuze options

Demos / Transitions
• ABS Program / PMS-495

Payoff
• Standoff clearance of VSW mines

<table>
<thead>
<tr>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>Technical Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demos - ▲
Transitions - ▲
Precision Assault Navigation in Mined Environments and Assault Lane Marking

Description

- Ensure Location Accuracy
 - GPS Augmentation
 - Zero Age of Data (ZOAD)
- Virtual Marking of Lanes
 - ARVCOP
 - Situational awareness
 - Virtual representation

Demos / Transitions

- ABS Program / PMS-495

Warfighting Payoff

- Location accuracy for assets
- Improve TLE

<table>
<thead>
<tr>
<th></th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitions</td>
<td>fillable</td>
<td>fillable</td>
<td>fillable</td>
<td>fillable</td>
<td>fillable</td>
</tr>
</tbody>
</table>

2008 Apr 15 – 17 Charleston ABS Brief
Mine and Obstacle Breaching
Concept, Development, Transition

<table>
<thead>
<tr>
<th>FY90–94</th>
<th>FY95-96</th>
<th>FY97-98</th>
<th>FY99</th>
<th>FY00</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS Studies</td>
<td></td>
</tr>
<tr>
<td>Concept Exploration</td>
<td></td>
</tr>
<tr>
<td>M. Carpet</td>
<td></td>
</tr>
<tr>
<td>T. Road</td>
<td></td>
</tr>
<tr>
<td>Flying Sword</td>
<td></td>
</tr>
<tr>
<td>AM Projectile</td>
<td></td>
</tr>
</tbody>
</table>

Mine & Obstacle Vulnerability / Model Development

Mine & Obstacle Defeat System w/ CM Darts
- BAA
- PDR
- Sled
- Darts
- Flt Tests
- Demo

- JABS
 - BAA
 - Demos
 - USAF MOA
 - MP

Contingency
- FOC

ABS Far Term
- MAA
- ICD
- CDD
- MS B

Development Categories:
- 6.2
- 6.3
- Acquisition
Assault Breaching Systems (ABS) Program
Assault Breaching Systems
Mission Statement

“Neutralize mines and obstacles in the surf zone and on the beach in support of amphibious assault operations”
Mission Need

“We can ill afford to move 3,000 miles to theater and be stymied by mines and obstacles in the last 3,000 yards.”

- General John Rhodes, Marine Corps Combat Development Command
ABS System-of-Systems

ISR&T Capabilities

- COBRA Sensor on Fire Scout
- Counter Mine/ Counter Obstacle (CMCO)
- Precision Navigation / Lane Marking
- AAV/EFV
- JABS
- MODS
COBRA Block I

Processing and Data Storage

Step Stare Gimbal with MSI Camera

Access Panels to Remove Mission Data
COBRA System Description
Block I, Spiral B

Ground Control Station

Airborne Control Processor (ACP)

Payload Housing Group (PHG)

COBRA PMA Station

Tactical UAV

Airborne Sensor Group (ASG)

MEDAL
Eglin Sound Area A15 Target Fields

Large MLOs

Second Row
Large MLOs

Large MLOs
JDAM Assault Breaching System (JABS)
JABS Capabilities

• JABS leverages fielded JDAM weapon:
 – Effective vs. unburied mines / obstacles in the SZ & BZ
 – Limited lethality against buried mines
 – Day/Night Capability
 – Man out of the minefield

• MOA between USN-USAF

• JABS capability fielded through DOTMLPF Change Recommendation (DCR), approved by JROC May 06

• With accurate targeting information, JABS is the surf zone/beach zone breaching capability of today
Aim Points Sent to Air Force

Air Force Executes Mission
Countermine System (CMS)
Countermine System (CMS)

Description

The CMS consists of a precision guided weapon and mission planning software. The weapon will be delivered by USAF bombers and Navy TACAIR. The CMS will be effective against surface laid and buried mines in the surf zone (SZ) and beach zone (BZ).

Status

• Request for Proposals: 30 April 2007
• Proposals Received: 14 June 2007
• Contract Award Pending: May/June 2008
Precision Navigation and Marking
Precision Navigation and Marking System

Improve survivability and reduce the required lane size by visually / electronically marking lanes and providing electronic aids to facilitate maneuver.
Summary

• Transitions Have Contributed to Closing Gap
 – Minefield Breaching Weapons JABS & MODS

• Current Technology Transition Agreements
 – UAV-Based Mine Sensors
 – GPS Augmentation & Augmented Reality

• Keys to Successful Transitions
 – Close Coordination between OPNAV / ONR / PMS-495, Industry, Laboratory, and Academia
 – Clearly defined exit criteria
 – System-level demonstrations
Assault Breaching System Technologies

Presented to
9th Annual Science & Engineering Technology Conference / DoD Tech Exposition
15-17 April 2008

Mr. Brian Almquist
Ocean Engineering & Marine Systems
Office of Naval Research
(703) 696-3351 almquib@onr.navy.mil

LtCol Tim McLaughlin
APM for ABS
PMS 495 Mine Warfare Program Office
(202) 781-4457 tim.j.mclaughlin@navy.mil
JABS Surf and Beach Flight Test
Sled Test