This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of:

The Black Vault

The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government & Military.

Discover the Truth at: http://www.theblackvault.com

9th Annual Science and Engineering Technology Conference/ DoD Technology Expo

15 - 17 April 2008

North Charleston, South Carolina

Agenda

Tuesday, 15 April 2008

Preliminary Session: Opportunities for Collaboration

- FY 2008 PB Request for DoD S&T Program, *Mr.Robert Baker*, Deputy Director, Plans and Programs Office of the Director, Defense Research and Engineering
- The Advanced Systems & Concepts Portfolio of Opportunities, Mr. John Kubricky, DUSD(AS&C)
- The DoD T&E / S&T Program, *Mr. Gerald Christeson*, Defense Test Resource Management Center Deputy Program Manager Test & Evaluation/Science & Technology Program
- DoD Basic Research Program with a Focus on Academia, *Dr. William S. Rees, Jr.*, Deputy Under Secretary of Defense (Laboratories and Basic Sciences) Office of the Director Defense Research and Engineering
- Strategic Initiative on Innovation & Technology Transition, *Ms. Kathleen Harger*, Assistant Deputy Under Secretary of Defense Innovation and Technology Transition

CONFERENCE OPENING:

Keynote Address: Mr. Alan Shaffer, Principal Deputy Defense Research and Engineering

Session I: Development and Insertion of Innovative Technologies into Army Systems

- Recent Trends in the Army's Common Test Support Facility, *Mr. Terry Edwards*, Chief Information Officer (CIO), Chief Technology Officer (CTO), HQ Army Materiel Command, CIO-G6
- The Army Science and Technology Program, *Dr. Thomas Killion*, Deputy Assistant Secretary for Research and Technology/Chief Scientist
- CERDEC Contributions to Army Battle Command Networking Efforts, *Mr. David Jimenez*, Director, Space & Terrestrial Communications Directorate
- Software Certification and Battle Command Interoperability Issues, *BG Nick Justice*, Program Executive Officer, PEO Command, Control, Communications Tactical
- Technology Transition and Insertion Evaluation, *Mr. Brian Simmons*, Director, US Army Evaluation Center

Assault Breaching System Technologies, *Mr. Brian Almquist*, Ocean Engineering & Marine Systems, Office of Naval Research

Wednesday, 16 April 2008

Session II: Development and Insertion of Innovative Technologies into Air Force Systems

- Overview of Air Force Science & Technology Program, *Mr. Terry Jaggers*, Deputy Assistant Secretary (Science, Technology and Engineering)
- Development and Insertion of Innovative Technologies Across the Lifecycle of a Weapon System, *Brig Gen Janet Wolfenbarger*, Brigadier General, USAF Director, Intelligence and Requirements Director, D&SWS AFSO21 Office
- Rapid Prototyping-Leapfrogging into Military Utility, *Mr. Randall Walden*, Air Force Rapid Capabilities Office (SAF/RCO)
- Industry Perspectives on Technology Insertion, *Dr. David Whelen*, Vice President & Deputy GM, Advanced Systems& Chief Scientist, Integrated Defense Systems, The Boeing Company
- Cyberspace: New Frontiers in Technology Insertion, *Dr. John Bay*, Chief Scientist, Air Force Research Laboratory, Information Directorate

Luncheon Speaker– The Challenge of Transitioning Innovative Technology, Dr. Malcom O'Neill, PhD, NAE LTG USA/CTO LMC (ret)

Session III: Development and Insertion of Innovative Technologies into Naval Systems

• Technology Insertion: Fleet / Operating Forces, *Ms. Charlene Rusnak*, ONR Science Advisor to US Fleet Forces Command

Innovative Technology Insertion: Systems Command Panel

Panelists:

- Mr. James Sheehy, Chief Scientist / Technology Officer Human Systems, AIR-4.6T
- *Mr. Brian Persons*, Executive Director Naval Systems Engineering Directorate (SEA 05) & Corporate Chief Technology Officer
- Mr. Gary Wang, Code 73, SPAWAR Command Overview, SPAWAR S&T OPPORTUNITIES
- Mr. David Ungar, Director Program Engineering & Technology

Thursday, 17 April 2008

Session IV: *Manufacturing and Affordability of Innovative Technology*

- The Need for Manufacturing Innovation and Readiness, *Mr. Mark Gordon*, Director, Defense Programs National Center For Advanced Technologies
- The Navy's Mantech and Affordability Program, Mr. John Carney, Director, Navy ManTech
- The Air Force S&T Manufacturing Readiness Assessment, *Mr. Jim Morgan*, Manufacturing Technology Division
- Inserting Technology Incrementally, *Mr. Daniel Zanini*, LSI Deputy Program Manager, Future Combat Systems Senior Vice President, SAIC

Manufacturing Technology Industry Panel

Moderator: *Mr. Gary Powell*, OUSD(AT&L)

Panelists:

• *Mr. Ed Morris*, Director, Hardware and Manufacturing, Lockheed Martin Corporate Engineering and Technology

- Mr. Dale Iverson, Raytheon Missile Systems Mr. Jim Lorenz, Manager, Advanced Industrial Engineering

9th Annual Science & Engineering Technology Conference / DoD Tech Exposition

April 15-17, 2008
Charleston Convention Center
North Charleston, SC

Tuesday, April 15, 2008

Opportunities for Collaboration

■ 8:15am FY 2008 PB Request for DoD S&T Program

Robert Baker

8:45am The Advanced Systems & Concepts Portfolio of Opportunities

- John Kubricky

9:15am The DoD T&E / S&T Program – Gerald Christeson

☐ 9:45am BREAK

10:30am Quick Reaction Fund/Rapid Reaction Fund & JIEDDO Capability

Needs – Ben Riley

11:00am DoD Basic Research Program with a Focus on Academia

Dr. William S. Rees, Jr.

11:30am Strategic Initiative on Innovation & Technology Transition

- Kathleen Harger

☐ 12:00pm LUNCHEON

Tuesday, April 15, 2008

Conference Opening

1:00pm Call to Order / Conference Opening – Dr. Raj Aggarwal

NDIA Welcome – MG Barry D. Bates, USA (Ret)

□ 1:15pm Keynote Address – Alan Shaffer

Session I: Development and Insertion of Innovative Technologies into Army Systems

Session II: Development and Insertion of Innovative Technologies into Air Force Systems

Session III: Development and Insertion of Innovative Technologies into Naval Systems

Session IV: Manufacturing and Affordability of Innovative Technology

Tuesday, April 15, 2008

Session I: Development and Insertion of Innovative Technologies into Army Systems

- 2:00pm Recent Trends in the Army's Common Test Support Facility...
 - Terry Edwards
- ☐ 2:30pm The Army Science and Technology Program Dr. Thomas Killion
- ☐ 3:00pm BREAK
- 3:30pm CERDEC Contributions to Army Battle Command Networking...
 - David Jimenez
- 4:00pm Software Certification and Battle Command Interoperability Issues
 - BG Nick Justice
- ☐ 4:30pm Army Comm. Technologies, Incl. JTRS Tim Snodgrass
- □ 5:00pm Technology Transition and Insertion Evaluation Brian Simmons
- □ 5:30-7:30pm RECEPTION (In exhibit hall)

Wednesday, April 16, 2008

Session II: Development and Insertion of Innovative Technologies into Air Force Systems

	8:30am	Overview of Air Force Science & Technology Program
_	0.000	

Terry Jaggers

9:00am Development and Insertion of Innovative Technologies Across...

Brig Gen Janet Wolfenbarger

9:30am Rapid Prototyping-Leapfrogging into Military Utility

Randall Walden

→ 10:00am BREAK

10:45am Industry Perspectives on Technology Insertion – Dr. David Whalen

11:15am Cyberspace: New Frontiers in Technology Insertion

- Dr. John Bay

□ 12:00pm LUNCHEON w/Speaker – Dr. Malcom O'Neill

Wednesday, April 16, 2008

Session III: Development and Insertion of Innovative Technologies into Naval Systems

- 1:30pm Technology Insertion: Naval Science & Technology
 - RADM William Landay
- 2:00pm Technology Insertion: Fleet / Operating Forces
 - Charlene Rusnak
- ☐ 2:45pm BREAK
- 3:30pm Technology Insertion: The Anti-Torpedo Torpedo (ATT) Program
 - Brian Almquist & LtCol Tim Mclaughlin
- 4:15pm Innovative Technology Insertion: Systems Command Panel
 - Chair: Dr. John Sommerer
 - Panelists: James Sheehy, Brian Persons, Gary Wang, David

Ungar

5:15pm Session Adjourned

Thursday, April 17, 2008

- 8:00am Session Introduction James Chew
- 8:10am The Need for Manufacturing Innovation and Readiness
 - Mark Gordon
- 8:35am The Navy's Mantech and Affordability Program John Carney
- 9:00am The Air Force S&T Manufacturing Readiness Assessment
 - Jim Morgan
- 9:25am Inserting Technology Incrementally Daniel Zanini
- ☐ 9:50am BREAK
- 10:25am Best Poster Paper Winner Announcement
- 10:30am Manufacturing Technology Industry Panel
 - Moderator: Gary Powell
 - Panelists: Ed Morris, Bob Schafrik, Al Sanders, Dale Iverson,
 - Jim Lorenz
- 12:00pm Wrap-Up & Adjournment Alan McLaughlin
- ☐ 12:15pm Box Luncheon

SUMMARY

☐ Attendees will be sent a link to the proceedings within two weeks

Join us next year!
The 10th Annual S&E Technology
Conference / DoD Tech Exposition will be held April 20-23, 2009 in the
North Charleston Convention Center

Fiscal Year 2009 President's Budget Request for DoD Science & Technology

Mr. Bob Baker
Deputy Director, Plans and Programs
Office of the Director,
Defense Research and Engineering

The Bottom Line

PBR09 is a continuation of the transition of S&T investment to enable growth of "non-kinetic", non-platform specific capabilities

Shifting away from an emphasis on ships, tanks, and planes—to focus on protection, information, knowledge, and timely, actionable intelligence

DDR&E Vision

Develop technology to defeat any adversary on any battlefield.

DDR&E Priorities for CY 2008

- Support Global War on Terrorism
- Support Urban Operations Capabilities
- Support WMD Detection & Response Capabilities
- Develop Transformational Power & Energy Technologies
- Develop Manufacturing Technologies
- Enhance Technology Transition
- Enhance National Security S&E Workforce
- Increase funding for Basic Research, plus \$270M

White House Guidance

 President Bush acknowledged the importance of science and engineering development in his January 2008 State of the Union address

"To keep America competitive into the future, we must trust in the skill of our scientists and engineers and empower them to pursue the breakthroughs of tomorrow... I ask Congress to double federal support for critical basic research in the physical sciences and ensure America remains the most dynamic nation on Earth.."

President George W. Bush, State of the Union address, January 28, 2008

Overview

- PBR 2009 S&T Budget
- Budget Changes and Historical Context
- Strategic foundation and Investment Focus
- Reliance 21 and the R&E Portal

PBR 2009 S&T Budget

FY08 and FY09 RDT&E Budget **Request Comparison**

- in Then Year Dollars -

Technology Base (BA1 + BA2) = \$5.94B

PBR09 S&T is 14.5% of RDT&E

FY09 DoD R&E Budget Request Comparison

	FY08 PBR	FY08 Approp	FY09 PBR (Constant Year FY08)	Real Change from PBR (In CY \$)
Basic Research (BA 1)	1,428	1,634**	1,699 (<i>1,662)</i>	+16.4%
Applied Research (BA 2)	4,357	5,092	4,245 <i>(4,153)</i>	-4.7%
Advanced Technology Development (BA 3)	4,987	6,043	5,532 <i>(5,412)</i>	+8.5%
DoD S&T	10,772	12,768	11,475 <i>(11,227)</i>	+4.2%
Advanced Component Development and Prototypes (BA 4)	15,662	15,947	15,774 (15,431)	-1.5%
DoD R&E (BAs 1 – 4)	26,434	28,716	27,249 (26,657)	+0.9%
DoD Topline	481,554	569,000	515,400 (502,486)	+4.3%

FY09 DoD S&T Budget Request (

Total FY09 S&T request = \$11.48B

Total FY08 S&T Request = 10.77B

Army = 1,728 Navy = 1,667 AF = 1,964 DARPA = 3,033 ChemBio = 610 DTRA = 401 OSD = 1,166 Other DA = 201

Recipients of DoD S&T Funds

*Includes non-profit institutions, State & local govt., & foreign institutions Source: National Science Foundation Report (PBR08)

Budget Changes and Historical Context

PBR09 S&T Request Addresses Capability Gaps

- PBR09 S&T Request continues the realignment initiated in FY08 to address capability gaps identified in the 2006 QDR
 - Special ("non-kinetic"/enabling) technologies:

```
    Clandestine Tagging, Tracking and Locating
    Biometrics
    Human, Cultural, Social Behavior Modeling
    Networks
    Persistent Surveillance
```

- Technologies to decrease energy consumption and increase alternative sources of energy (\$513M)
- Active and conventional armor technology for protection against a range of threats (\$68M)
- Accelerating technology transition to fielded systems

PBR09 S&T Request Addresses Capability Gaps (Cont'd)

- New technology/emphasis areas
 - \$270M increase to Basic Research
 - Enhance the science and engineering personnel base
 - Emphasis will be on research to address Grand Capability Challenges, e.g.,
 - Cyber protection and information assurance
 - Network sciences
 - Science of autonomy
 - Information fusion and decision sciences
 - Biosensors and biometrics
 - Human sciences (cultural, cognitive, behavioral, neural)
 - Software sciences and materials
 - Immersive sciences for training and mission rehearsal
 - Power and energy management
 - Counter directed energy weapons
 - Anticipate about 500 focused research efforts

PBR09 S&T Request Addresses Capability Gaps (Cont'd)

- New technology/emphasis areas (Cont'd)
 - Increased protection for dismounted troops and ground forces (\$60M)
 - Research in plasma and meta-materials to address emerging threats (\$35M)
 - Cyber protection **(\$50M)
 - Hypersonics/Prompt Global Strike (Blackswift) New technology prototype **(\$750M Total)

** **Note**: Cyber protection is funded in DARPA BA 6
Air Force funding for Blackswift is in BA 7

DoD S&T - Macro Scale

- S&T Investment and % of DoD Total Obligation Authority (TOA) -

DoD S&T – Historical Context

- In FY08 Constant Dollars -

FY09 S&T request is among the highest

DoD R&E Funding By Budget Activity

- President's Budget Requests (in FY08 Constant Dollars) -

Strategic Context and Investment Focus

Desert Storm

- US dominance over Soviet-era systems "shocked" potential adversaries and combined to give US conventional superiority
 - Precision Weapons
 - Night Vision
 - Low Observability
 - Networked Systems
- The advent of information-based warfare feed the emergence of irregular warfare

Strategic Framework

- US National Security Strategy (March 2006) set national imperative to continue the war on terrorism
- 2006 Quadrennial Defense Review also restated the need for DoD to balance its capabilities across four categories of challenges:
 - Traditional
 - Irregular
 - Catastrophic
 - Disruptive

 DDR&E S&T initiatives memorandum to SECDEF (24 Aug 07)

National Defense Strategy— Types of Programs Needing Technology

THE PARTS OF THE P

<u>Irregular</u>

- Language Translation
- Cultural Awareness
- Combating Terrorism
- Small Unmanned Aerial Vehicles
- Rapid Terrain Mapping
- Constant Surveillance
- Active & Conventional Armor

Higher Catastrophic

- Ballistic and Cruise Missile Defense
- Chemical Weapon Defense
- Bio Weapons Defense (includes research into state of genetic engineering
- Remote Detection of Weapons of Mass Destruction Materials and Components

Lower

Traditional

- Conventional Ground, Sea, and Air Vehicles
- Standard Weapons
- Precision Weapons
- Stand Alone (Single Service) Command & Control Systems

Disruptive

Higher

- Nano, Bio, Information Techs.
- Hypersonics
- Directed Energy
- Networks on the Move
- Autonomous Systems
- Distributed Sensors
- Defeat of Speed of Light Weapons
- Metamaterials
- Plasma Research

Lowe

QDR Priority Formulation

- Strategic Challenges
 - Traditional
 - Irregular Warfare
 - Catastrophic
 - Disruptive
- Strategic Outcomes
 - Defeat Terrorist Networks
 - Defend the Homeland in-Depth
 - Shape Choices of Countries at Strategic Crossroads
 - Prevent the Use and Proliferation of WMD

Capabilities to Defeat Terrorist Networks

- Persistent surveillance
- Locate, tag, and track terrorists in denied areas
- Human intelligence
- Capabilities to fuse intelligence
- Language and cultural awareness
- Joint coordination, processes and systems
- Urban warfare capabilities
- Prompt global strike
- Riverine warfare capabilities

Kinetic effects

Non-kinetic effects

Capabilities to Defend the Homeland In Depth

- Interoperable, joint command and control
- Enhanced air and maritime awareness
- Consequence management
- Broad spectrum medical countermeasures

Non-kinetic effects

- Tailored deterrence, including prompt global strike
- Air and missile defense

Kinetic effects

Capabilities to Shape the Choices of Countries at Strategic Crossroads

- Improved language and cultural awareness
- Persistent surveillance (penetrate and loiter)
- Cyberspace shaping / defense
- Secure broadband communications

Non-kinectic effects

- Prompt, high-value global strike
- Integrated defense against all missiles
- Air dominance
- Undersea stealth

Kinetic effects

Capabilities to Prevent the use of Weapons of Mass Destruction

- Locate, tag, track, and characterize
- Stand off fissile material detection
- Wide area persistent surveillance
- Fusion of HUMINT, ISR, and open source information

Non-kinetic effects

- Capabilities to "render safe" WMD
- Non-lethal weapons

Kinetic effects

National Defense Strategy Drives S&T Investment

National Defense Strategy

Quadrennial Defense Review

- Strategic Challenges
- Strategic Outcomes

Desired Operational Capabilities

Enabling Technologies

Supporting Demonstrations

Progress: Capability Increase

02/10/98 1700

S&T Enabling Technology Priorities--Supporting the QDR Strategic Outcomes--

Technology focus areas:

- Biometrics and Biological exploitation
- Information Technology and applications
- Persistent Surveillance Technologies
- Networks and Communication
- Human, Social, Cultural, and Behavioral Modeling
- Language Translation Technologies
- Manufacturing Technologies
- Cognitive Enhancement
- Directed Energy Technologies
- Autonomous Systems Technologies
- Hyperspectral Sensors
- Nanotechnology
- Advanced Materials
- Energy and Power Technologies
- Organization, Fusion, & Mining Data
- Combating Weapons of Mass Destruction Technologies
- Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President's Budget Request

S&T Enabling Technology Priorities--Supporting DDR&E Investment Initiatives--

- S&T Area Investment Initiatives from 24 Aug 07 memorandum to SECDEF:
 - Foundational Sciences
 - Active & Conventional Armor
 - Defeat of Speed of Light Weapons
 - Adaptive, Interactive, Full Immersion Training for Soldiers/Marines
 - Metamaterials
 - Information Warfare
 - Information Assurance
 - Networking Technologies
 - Manufacturing Science Technologies
 - Neuro-Ergonomics
 - Directed Energy Technologies
 - Autonomous Operation of Networks of Unmanned Vehicles in Complex Envir,
 - Advanced Medical Research
 - Software Development Technology
 - Energy and Power Technologies
 - Organization, Fusion, & Mining of Large Data Sets for Enhanced Decision Making
 - Combating Weapons of Mass Destruction Technologies
 - Energetic Materials

Reliance 21 and the R&E Portal

Defense S&T Reliance

Defense S&T Reliance provides the framework to enable the DoD S&T community to work together to enhance the Defense S&T program and eliminate unwarranted duplication. It strengthens cooperation among the Services and Agencies thereby improving responsiveness to their warfighting and acquisition customers.

S&T Plans and Reliance 21

Defense Science and Technology Strategy and Plans

- Defense S&T Strategy (Replaced with DDR&E Strategic Plan)
- Basic Research Plan (6.1) BRP -(As necessary, new plan at printer)
- Defense Technology Area Plan (6.2, 6.3) - DTAP - (Replaced with Technology Focus Teams)
- Joint Warfighting Science and Technology Plan - JWSTP (Biennial, even years)
- Defense Technology Objectives (DTO)
 Volume that supports JWSTP and DTAP (Replaced by Marquee Programs in JWSTP)

Research & Engineering (R&E) Portal (https://rdte.osd.mil)

- Provide DoD R&E community (civil service, military, approved contractors) with <u>single-point</u> access to all current R&E information:
 - Reliance 21 S&T planning documents
 - New E-Gov database
 - R&E Points of Contact
 - Congressional budget query
 - RDT&E budget data
 - DDR&E website
 - Dialog NewsEdge (24/7 breaking news on technology)
 - DoD In-House S&T Activities Report
- Be able to <u>intelligently search</u> all data

R&E Portal Access (https://rdte.osd.mil)

Welcome to the DoD Research & Engineering Portal

To view a video about the R&E Portal, click here!

The R&E Portal will be the focal point for obtaining information on research and engineering activities within DoD. It is sponsored by the o ffice of the Director of Defense Research & Engineering (DDR&E) and maintained by the Defense Technical Information Center (DTIC). Within the R&E Portal, you will find:

- Data from systems that focus on the areas of Financial Management, Strategic Planning, and Congressional Reporting.
- Information on areas of strategic importance and current initiatives within DDR&E.
- Tools to facilitate collaboration, communication, and reuse of information and artifacts.
- Robust text searching tools to query the wealth of DoD and engineering information held by DTIC and other seagencies.

Access to the R&E Portal is controlled by the degistration Process. If you are not currently registered, click here to learn sore.

Sign In DoD CAC Card Sign In or sign in using your user name and password: User Name: Password: Sign In Cancel Click here to change your password or update your profile. Click here if you forgot your password or it has expired. If you wish to bookmark the site, please wait until you have logged in successfully before adding it to your list of favorites.

This is a Department of Defense Computer System. This computer system, including all related equipment, networks, and network devices (specifically including Internet access) are provided only for authorized U.S. Government use. DoD computer systems may be monitored for all lawful purposes, including to ensure that their use is authorized, for management of the system, to facilitate protection against unauthorized access, and to verify security procedures, survivability, and operational security. Monitoring includes active attacks by authorized DoD entities to test or verify the security of this system. During monitoring, information may be examined, recorded, copied and used for authorized purposes. All information, including personal information, placed or sent over this system may be monitored.

Use of this DoD computer system, authorized or unauthorized, constitutes consent to monitoring of this system. Unauthorized use, including registering or attempting to register for access using personal identification other than your own, may subject you to criminal prosecution. Evidence of unauthorized use collected during monitoring may be used for administrative, criminal, or other adverse action. Use of this system constitutes consent to monitoring for these purposes.

Research & Engineering (R&E) Portal

Summary

- PBR09 S&T investment is driven by:
 - DoD R&E Strategic Plan (guided by National Security Strategy and the QDR)
 - S&T Initiatives in 24 Aug 07 memorandum from DDR&E to SECDEF
- PBR09 shows SecDef's commitment to a strong S&T program – especially basic research
 - PBR09 is 4% higher than PBR08, in real terms
 - PBR09 is within \$200M of highest request (PBR07), in real terms
 - SecDef directed increase in Basic Research is 16% higher than PBR08, in real terms

Backup

DDR&E Organization

FY09 President's Budget Request (

TY\$M		FY08 Enacted	FY09	FY10	FY11	FY12	FY13
ARMY	Basic Research	379	379	367	383	395	424
	Applied Research	1,175	724	727	741	736	736
	Advanced Development	1,337	738	730	724	754	782
	Total S&T	2, 891	1,842	1,824	1,848	1,885	1,943
NAVY/	Basic Research	498	528	539	548	576	608
MARINE	Applied Research	801	633	612	660	732	787
CORPS	Advanced Development	722	679	649	663	6264	596
	Total S&T	2,021	1,840	1,800	1,871	1,935	1, 991
AIR	Basic Research	421	452	470	493	502	513
FORCE	Applied Research	1,170	1,044	1,103	1,059	1,096	1,112
	Advanced Development	664	578	669	632	642	659
	Total S&T	2,255	2,075	2,242	2,184	2,240	2,284
DEFENSE	Basic Research	336	339	392	417	440	445
-WIDE	Applied Research	1,912	1,844	1,770	1,700	1,720	1,721
	Advanced Development	3,264	3,536	3,594	3,408	3,498	3,563
	Total S&T	5,512	5,718	5,756	5,525	5,659	5,730
DoD	Basic Research	1,634	1,698	1,768	1,840	1,914	1,990
	Applied Research	5,058	4,245	4,213	4,160	4,284	4,357
	Advanced Development	5,987	5,532	5,642	5,427	5,520	5,600
	Total S&T	12,679	11,475	11,623	11,428	11,718	11,947

Characterization of the FY09 DoD S&T Program

Funding

- Current year S&T dollars: \$10.77B FY08 to \$11.48B FY09
- Percent of DoD funding: 2.24% FY08 to 2.22% FY09
- Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)

DoD S&T program is focused on "sensing and shooting"

S&T Breakout

- Services and Defense Agencies as % of Total S&T -

Marquee Program Count

- Army 25
- Navy 65
- Air Force 26
- DARPA 44
- DTRA 4
- MDA 1
- AS&C 28

Total = 193

The Need for Manufacturing Innovation and Readiness

Mark Gordon

Director, Defense Programs
National Center For Advanced Technologies

NDIA Science and Engineering Technology Conference April 17, 2008

Topics

- Why Manufacturing is Key to Technology Transition
- The DoD Manufacturing Technology Program
- Current ManTech Priorities
 - Manufacturing Science and Technology
 - Manufacturing Readiness Levels
- MRL Implementation & Policy
- Questions

Why Consider Manufacturing In Transition?

- The ability to manufacture a component:
 - Is not subservient to technology development cycle, but central to it.
 - Determines a large percentage of the total cost and schedule.
 - Can in itself bring about <u>innovative technologies</u> (MEMS, LAM, Flexible Displays, Complex Dimensional Composites, CMCs)
- The capability to produce a technology/material is often <u>not</u> seen as part of technology transition or innovation, and <u>may be ignored</u> by the Science and Technology community.
 - However, it is a <u>core focus in highly competitive commercial markets</u> (Aerospace, Automotive, IT, & Transportation.)
 - System engineering models require the maturation of technology along with the ability to manufacture, support, and test.

 In Defense, practice is often to demonstrate the performance of complex systems, then change the design late in development for production / support.

<u>Customer</u> priorities requirements.

Contracting structure allows cost increases.

The foundation of <u>affordable</u> transition is the access for program manager to technology with <u>demonstrated levels</u> of performance, producibility and support. These attributes allow for effective design trades with knowledge about cost.

GAO: Knowledge Based Acquisition

- During GAO assessments of Acquisition Programs, a disturbing trend of growing cost and schedule overruns led to a conclusion that poorly performing DoD programs did <u>not possess the knowledge</u> required to achieve a successful design at key points during development.
- \$135B in Cost Growth (2004-2007)
- They determined best practices in successful DoD and commercial development and defined three Knowledge Points:
 - Knowledge point 1: Resources and needs match [Best practice: MS B]
 - Knowledge point 2: Product design is stable [Best practice: CDR]
 - Knowledge point 3: Production processes are mature [Best Practice: MS C]
- In multiple assessments (2000-2008) of the DoD acquisition portfolio, there was found to be was a <u>strong correlation</u> between delayed knowledge points and poor performance.
- In typical defense program practices, these knowledge points were achieved <u>significantly later</u> in the development process, meaning that system design changes continued far into integration and production.
- Reversing this practices resulted in a strong policy requiring Technology Readiness at MS B, Configuration Control Boards and increasing use of Prototypes in competition.

<u>Finding:</u> Most Programs Proceed With Low Levels of Knowledge Resulting in Cost/Schedule Increases

In a recent annual review of DoD programs (n=62), GAO found:

- Only 16% of programs achieved mature technology at MS B.
 - programs that demonstrated mature technologies averaged 2.6% cost growth and a 1 month schedule delay
 - programs that did not have mature technologies averaged 32% cost growth and a 20 month schedule delay
- At critical design review:
 - 44% of programs achieved technology maturity
 - 27% of programs demonstrated design stability (90% drawings releasable)
- At MS C, the start of Production:
 - Only 67% of programs achieved technology maturity
 - 33% of programs had still not achieved design stability
 - 10% of programs were collecting data on process control. (0% in control)
 - 47% reported they have already conducted or planned to conduct a developmental test of a production representative article (i.e., prototype)

Technology Status at Based on **Beginning of Development** 62 programs Mature **Immature** RDT&E 2.6% 32.3% **Cost Increase Acquisition Unit** <1% >30% **Cost Increase Average** 1 month 20 months **Schedule Delay**

Defense Acquisitions: Assessments of Selected Major Weapon Programs. GAO-07-406. Washington, DC.: March 2007.

The DoD Manufacturing Technology Program

- ManTech is critical for moving <u>disruptive technologies</u> into <u>disruptive capabilities</u>
- If you can't build it, build it affordably, reliably, and in a timely manner, you don't have IT.
- To have true capability, must be able to move beyond the prototype "One-Off"
 - Operates Under Title 10 (Section 2521)
 - Manufacturing process investments that provide product performance, operational, & affordability improvements
 - All About Affordable & Timely Equipping of the Warfighter
 - Defense essential needs <u>beyond normal risk</u> / interest of industry
 - Pervasive needs across systems, platforms, or components
 - Transition of Validated Technology
 - Scale-up of processes for S&T, ATDs, IR&D, & ACTD products
 - Focus: Manufacturing process investments

Joint Defense ManTech Panel - (JDMTP)

Focus – Joint Collaboration

Manufacturing Technology Program Examples

Warfighter Relevance

Solved #1 B-2 Mission Capable MX Issue New capability will have the greatest impact on B-2 Fleet Availability

Developed new LO Magnetic Radar Absorbing Material (MagRAM) for B-2, reduced mx downtime for LO materials from 36 hrs to 7 hrs.

Created force multiplier for battle tanks

- Improved Accuracy through Cannon Tube Reshaping
- 20 fold tighter tolerance; 65% reduction of shot group dispersion;
- Resulted in greatest increase in "loss exchange ratio" in 20-plus years

Solved #1 C-17 MX Issue – Structural Damage to Doors on undeveloped runways

AF – ManTech developed new stitched resin infusion process to prevent delamination.

Met Tank Tread Demand Surge for OIF

- Vital Track component experienced accelerated failures
- Advanced casting tooling method enabled industry to meet surge and demand

Developed New Capability - New Marine Composite-to-Steel Joining Capability - Reduces Logistics Footprint and enables DD(X) to meet Program Requirements

New Adhesive Joint replaces 5120 bolts that failed to meet technical req'ts of DD(X)

Manufacturing Technology Program Top Priorities

- OSD Manufacturing S&T Program
- SBIR- Manufacturing
- MRL/MRA Implementation
- Strategic Planning

MRL: Background

- Immature technology and unstable manufacturing processes are major acquisition drivers
- Manufacturing Readiness Levels (MRL) Developed
 - In collaboration with industry
 - Common Standard and framework for identifying, communicating, and managing manufacturing risks
 - Reconciled with TRLs
- Policy Required
 - Establish and promote manufacturing risk management as basic principal of technology development and acquisition programs
 - Plan and budget for incorporating manufacturing readiness to support successful transition
 - Establish DoD standard for manufacturing readiness at key milestones
 - Milestone A MRL4
 - Milestone B MRL 6
 - Milestone C MRL 8
 - FRP Decision MRL 9
 - Support the development and maintenance of necessary knowledge and skills within the DoD workforce to support this best practice already used by key U.S. defense industries
 - Provide guidance for the new DoD standard
- MRL Process Owner: DDR&E

MRL Definitions & Descriptions

MRL	MRL	Definition	Description	Phase			
1		Manufacturing Feasibility Assessed					
2		Manufacturing Concepts Defined					
3		Manufacturing Concepts Developed					
4		Capability to produce the technology in a laboratory environment.					
5		Capability to produce prototype components in a production relevant environment.					
6		Capability to produce a prototype system or subsystem in a production relevant environment.					
7		Capability to produce systems, subsystems or components in a production representative environment.					
8	8 Pilot line capability demonstrated. Ready to begin low rate producti						
9		Low Rate Production demonstrated. Capability in place to begin Full Rate Production.					
10		Full Rate Production demonstrated and lean production practices in place.					
		Floduction.	monitoring ongoing. LRIP cost goals met, learning curve validated. Actual cost model developed for FRP environment, with impact of Continuous improvement.	decision (FRP)			

Full Rate Production demonstrated and lean production practices in place.

Full Rate Production demonstrated and lean production practices in place.

Full Rate Production and meet all engineering, performance, quality and reliability requirements. All materials, manufacturing processes and procedures, inspection and test equipment are in production and controlled to six-sigma or some other appropriate quality level. FRP unit cost meets goal, funding sufficient for production at required rates. Lean practices well established and continuous process improvements ongoing.

MRL Criteria Matrix / Threads

		NAD.							
		MR	L Criteria	Matrix II	nreads				
	Technology and Industrial base								
	Design								
			Cost ar	nd Fundin	g			lity ods, her	
Materials	(Raw Ma	terials (Compone	nts Sub-	assembli	es and	Sub-syster	ns)	
			lucibility				,) ogy efforts	
		tech	nologies/	compon	ents and			process .	
			lucibility t	=				i for	
		com	pleted. R	kesults u	sed to sh	nape		All mods, I other	
		-	em Devel			-			
ty	Evaluate product lifecyle	Systems E plans	s for SDD	•	0,	uci	Major product design features are	Product design is stable. Desig	
12	performance requirements.	the rest a	rtion.			ita	stable and LRIP produced items are proven in product testing. Design change traffic is limited to minor configuration changes. All	limited to those required for continuous improvement or in	
ds	r	managem risk for the Initial Key				are hat ces	KC's are controlled in production to three sigma or other appropriate quality levels.	are controlled to six sigma or other appropriate quality levels.	
_hreads		Paramete				nan ntiy	ose nge y arristics		
t st	and materials based on engineering details at MRL 1-2. High-level process chart cost	Detailed process chart cost models driven by key characteristics and process variables. Manufacturing, material and specialized reqt. cost drivers identified.	map cost model for major system		Cost models updated with detailed designs and features, collected quality data, plant layouts and designs, obsolescence solutions.	Engineering cost model dri detailed design and validat data from relevant environr	ted with FRP environment. Variability	Cost model validated against actual FRP cost.	
	representative scenario analysis for focus S&T initiatives and address scale-up issues.	Material, manufacturing, and specialized reqt. costs identified for design concepts. Producibility cost risks assessed and manufacturing technology initiatives identified to reduce costs.	design choices, make/buy, capacity, process capability, sources, quality, key characteristics, yield/rate, and	Cost analysis of mfg future states, design trades, supply chain/yield/rate/SDD/technology insertion plans. Allocate cost targets. Cost reduction and avoidance contract incentives identified.	Costs rolled up to system level and tracked against targets. Detailed trade studies and engineering change requests supported by cost estimates. Cost reduction efforts underway, incentives in place.	Cost analysis of proposed changes to requirements o configuration.		FRP cost goals met. Cost reduction initiatives ongoing.	
ing t Budget	N	Program has budget estimate for reaching MRL 5. All Risk Mitigation Plans required to raise deficient elements to MRL of 4 are fully funded.	reaching MRL 6 by MS B. Estimate includes capital investment for Production-	Mitigation Plans required to raise deficient elements to MRL of 6 are fully funded.	reaching MRL 8 by MS C.	investment for Full Rate	P lean implementation during FRP. icludes All Risk Mitigation Plans required to improve deficient subsystems to MRL of 9 during FRP are fully funded.		

Implementation: MRL/MRA Experience in

Industry

- Industry Associations and companies are supportive of DoD Manufacturing Readiness efforts and support policy
 - Participated in Three DoD-Industry Workshops
- OEMs and Second Tier Suppliers are using the first or second generation definitions, published in the Technology Readiness Assessment Guide
- Many companies have developed their own manufacturing maturity measures.
 - Rockwell Collins Manufacturing Maturity Index
 - Sikorsky Production Readiness Index
- Other companies have adopted our MRLs, and are using them within the company's gated development process.
 - Lockheed Martin Missiles and Fire Control
 - Raytheon (Tuscon)
 - Pratt & Whitney
 - General Electric Power Systems
 - Boeing (EMRLs for MDA, MRLs for FCS)
 - Goodrich
 - ... and the list is growing

Implementation: MRL/MRA Experience in DoD

Air Force

- MRAs completed on 21 Air Force Advanced Technology Demonstrations using the manufacturing readiness level (MRL) criteria; additional 12 are in process
- Used MRL criteria to perform MRAs on two ACAT 1 Programs

Army

- Uses MRLs on all 6.3 Programs that have manufacturing or producibility issues tied to Army Technology Objectives- Manufacturing (ATO-M)
- Army also uses MRLs and MRAs on selected SBIR Projects
- Army to incorporate MRLs and MRAs into the management aspect of planned Commercialization Pilot Program.

MDA

 Applies related scale (EMRLs) to manage high risk prototype- production technologies.

Implementation – Statute and Policy

- Manufacturing Readiness Levels
 - <u>Definitions</u> and framework developed, socialized with industry, Services
 - Criteria Matrix developed, piloted, revised, and posted (Version 6.5, April 2008)
- Developed AT&L Policy
 - Coordinating with DAU on Defense Acquisition Guidebook Inputs
 - Signed Policy triggers 5000 updates
- Manufacturing Readiness Guidebook "Why" posted 2006
- Manufacturing Readiness Deskbook "How"
 - Piloted under AF
 - Lessons Captured
 - DoD MRA Deskbook Developed
 - DoD MRA Deskbook Red Teamed
 - SOO/SOW language
 - DoD MRA Deskbook Post on DAU Website April 2008
- Coordination with TRA
 - Incorporated MRL into TRA Deskbook Revision Appendix I
 - Mapping MRA Deskbook to TRA Deskbook Coordinating with OSD
 - De-conflicting existing policies

Summary

- Manufacturing is a <u>core attribute</u> for transition of Innovative Technology, <u>particularly for affordability!</u>
- There is an obvious need for <u>pacing development and</u> <u>demonstration</u> of manufacturing processes concurrent with technology.
 - Targets \$135B cost growth in Defense System Costs.
- DoD ManTech Program is <u>shifting forward</u> to include disruptive / high performance topics.
- Manufacturing Readiness Levels represent a <u>stable</u>, <u>proven</u> <u>tool</u> for tracking either a technology's or system's manufacturing maturity, and <u>will be adopted by DoD Policy</u> this year.

Questions?

Mark Gordon Mark.gordon@ncat.com 813-899-4545

https://www.dodmantech.com

Headquarters U.S. Air Force

Integrity - Service - Excellence

USAF Science, Technology & Transition

Presentation to NDIA S&E Conference 16 April 2008

Mr. Terry Jaggers, SES

Deputy Assistant Secretary
(Science, Technology and Engineering)

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
- Summary

AF S&T Overview

- AF executing \$1.7B core in FY08 with 2,200 Scientists & Engineers in 10 core technical areas
- FY09 budget on Hill is \$2.1B, increasing focus on:
 - AF Tech Vision
 - Basic Research
 - MANTECH
 - Cyber
 - Defensive Counterspace
 - Directed Energy

- Revolutionary Propulsion
- Thermal Management
- Alternative Energy
- Composites
- Sense & Avoid for UAVs
- Improving Tech Transition is 1 of 5 guiding principles for AF S&T
 - SAE Commitment, OSD Initiatives, and JCTDs changes within AF
 - Organizing to align R&D development to 3 AF priorities, and tech transition efforts to 20-year AF roadmap
- Imperative for AF S&T tech transition to be synergized and leveraged with other tech transition efforts

- AF S&T Overview
- National Imperatives
 - The AF Transition Program
 - AF Transition Policy
 - Summary

Winning the Current War

- The Nation must maintain technological superiority to win the GWOT
 - Winning the GWOT is the top priority of the AF
 - Terrorists exploit available technology faster than we can adapt and field ours
 - The AF leverages over \$200M per year in transition assistance programs aimed at rapid technology transfer
 - <u>Effective</u> transition of technology is needed to maintain technology superiority and win the GWOT

Winning the Next War

- History has shown that Nations fail without modern militaries
 - Modernization is one of the top 3 priorities of the USAF, second only to GWOT and people
 - The AF has a 20-year modernization roadmap
 - The AF will spend over \$15B in non-system specific managed 6.3/6.4 tech development over next 20 years
 - Efficient transition of this technology is a key enabler to AF modernization success and National Security

- AF S&T Overview
- National Imperatives
- ■The AF Transition Program
 - AF Transition Policy
 - Summary

AF Tech Transition Program

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy
 - Summary

AF Transition Policy

- Tech transition office created on Air Staff to coordinate myriad of policy, processes & programs across AF
- Developing AF R&D policy for tech development and transition
- Key linkages to systems engineering policy for system developer insertion planning and corporate AF configuration control
- Policy recognizes differences in transition for air, space and cyber domains and adjusts for differences
- Tailored transition plans applied to achieve desired end-state for type of tech transition (to warfighter, to prime, to subtier) and lifecycle insertion point
- Tech transition requires risk identification, management, and acceptance by the customer and leadership

Full spectrum of tech transition across the life-cycle including policy, people and resources

- AF S&T Overview
- National Imperatives
- The AF Transition Program
- AF Transition Policy

Summary

- Technology transition is a key enabler to winning the GWOT, while preparing to fight and win the next war
- Technology transition program consists of multiple programs, processes and overarching policy
- Tech Transition office developing policy that aligns the right programs/processes to the right domain and endstate

Transition Technology

- Stand-up AF Technology Transition office
- Small Business Innovation Research (SBIR) Commercial Pilot Program (CPP) implementation
- Management/coordination of AF Joint Capability Technology Demonstrations (JCTDs)
- Policy for S&T Advanced Technology Demonstrations (ATDs)/ JCTD transition to acquisition
- Policy/coordination of lab urgent needs (Core Process 3) with AF Rapid Response Program
- Clearinghouse for Quick Reaction Funds, Technology Transition Initiatives, etc.
- Advanced development, prototyping, and risk reduction BA 4 initiative

Successful Transitions

- Certified 50/50 blend of Fischer-Tropsch alternative fuel on B-52
- Provided PNT support to SOCOM Joint Precision Air Drop System
- Demonstrated Automated Air Refueling for ACC
- Completed all TACSAT-2 S&T experimental objectives for USSTRATCOM
- Transitioned Angel Fire into a USMC Operational Assessment for IED detection
- Deployed Spiral 2 of PANACIA to NASIC and the 480th MASINT Cell
- Inserted adaptive optics technology at Starfire and began transition to MSSS for AFSPC
- Successfully tested Focused Lethality Munitions technologies and transitioned to Small Diameter Bomb Program

John Carney
Director, Navy ManTech
ONR 03T MT
17 April 2008

Office of Naval Research 03T Organization

Examples Addressing Manufacturing Early Cross ONR Spectrum

Near

OSD Partnered / Quick Reaction S&T (\$223M, 12%)

Acquisition Enablers (\$655M, 36%)

Leap-ahead Innovations (\$197M, 11%)

Discovery & Invention (\$765M, 41%)

Innovative Naval Prototypes (INP) Overview

- Investments planned with critical mass to achieve a level of maturity suitable for transition within 4-8 years
- Likely disruptive
- A primary goal is to move the risk from Acquisition (Billions of \$\$) back to S&T (Millions of \$\$)
- Higher technological risk than Future Naval Capabilities
- INPs are approved by the Navy Corporate Board (Assistant SecNav Research Development Acquisition, Vice Chief of Naval Operations, Assistant Commandant of the Marine Corps)
 - INPs with a technology focus:
 - Electromagnetic Rail Gun
 - Free Electron Laser
 - Integrated Topside
 - INPs with a capability focus:
 - PLUS
 - Seabasing
 - Tactical Satellite

Integrated Topside Vision

- Dominate the RF spectrum
- Enable innovation through a RF Open Architecture (hardware and software)
- Create affordable systems that are scalable across platforms

Current State of The Art	Integrated Topside
Overcrowded	Combined apertures (multi-function, multi- beam)
Poor performance due to blockage and EMI	Optimally placed apertures, integration of RF functions to control EMI
Expensive to acquire and maintain	Reduced acquisition and total ownership cost
Significant Size, Weight and Power requirements (SWaP)	Significantly reduced SWaP

RF functions simultaneously share apertures and signal processing Topside continually optimized to meet highest priority needs

DISTRIBUT public re

Integrated Topside (INTOP) Objective

- Develop and demonstrate an integrated, multi-function, multi-beam top-side aperture construct that has:
 - A scalable family of EW, RADAR (not high power) & communications capability to support multiple classes of ships
 - Modular open RF design (apertures and electronics) to facilitate best of breed technology and cost effective upgrades
 - Shared apertures for multiple functions
 - Software defined functionality
 - Cost effectiveness up front and over the life cycle
 - Increased operational capability
 - Spiral development to reduce risk and costs and have high probability for transition of technology to the fleet

Future Naval Capabilities (FNCs) Overview

The FNC Program:

- Composed of Enabling Capabilities (ECs) which develop and deliver quantifiable products (i.e., prototype systems, knowledge products, and technology improvements)
- In response to validated requirements
- For insertion into acquisition programs after meeting agreed upon exit criteria within five years

ECs

- Currently aligned with four of the pillars of Naval Power 21 (Sea Shield, Sea Strike, Sea Base, and FORCEnet)
- Additional group for crosscutting technology improvements (Enterprise and Platform Enablers) for operations and maintenance cost savings

Aligns requirements, acquisition, Fleet, and S&T Communities to increase impact of S&T investment

FNC Overview (cont) Keys to Transition

- S&T passes mature technology to acquisition into development and production programs
- Agreement must exist on the maturity and readiness at the stage this happens (Technology Transition Agreement or TTA)
- Key components agreed upon in a TTA:
 - -- Description of Product
 - -- Completion/Transition Year
 - -- Level of Risk (Technology Readiness Level)

- -- Demonstration of TRL
- -- Exit Criteria

EC Number/Title: PKT-FY04-09: Advanced Communication for FORCEnet. EC Manager: Advanced Communication for FORCEnet. Cost Schedule Gap Number/Title: Chip 81-7311 / 733-590 2012 / despiton in any mid Gap Number/Title: Chip 81-7311 / 733-590 2012 / despiton in any mid Gap Number/Title: Chip 81-7311 / 733-590 2012 / despiton in any mid FYA TRL: Start - Stop: FY03 (TRL: 3) - FY05 (TRL: 6) Acquisition Program 35N600 and Tindent Micdentzation, PEO Citi and Space, PMM 173, Ruth Youngs Lew Resource Sponsor: NP7 and NY0-00000 Despiton Agric (Baythean) Transition Status: Signed TTA PMM 173 Transition FY06 Deliverables: NaO-band Internet arrays: I-band Receive Antay design utilized by COX. Funding PE Transition FY06 SAT 6-2-0-3.5 DOSS 307 (S0.3) NOSS 307 (S0.3) NOSS 307 (Project XOTA) Transition (6-46-5)							_	Asse	ssmer
Gap NumberTittle: Gap 16: Utiliquitous, Secure Communications and Network Infrastructure. Technical FYA TRI, Start - Stop: #103 (TRI, 3) - F105 (TRI, 6) Acquisition Program 3551609 and Todent Medientzation, PEO Ciff and Space, PMN 173, Ruth Youngs Lev Resource Sponsor: 197 and NOV COCO) Design Agent (Raythean) Transition Status: Gyace TTA PMN 173 Transition F105 Deliverables: NaO-band Inserent arrays. K-band Riscove Array design utilized by COC. Freeding: PE Number: F156 F150 F150 F150 F150 F150 F150 F150 F150	EC Number/Tit	:FNT-FY04-08	Advanced	Communica	ation for FOR	CEnet.		-	
FYS. TRL. Start - Stop: FV30 (TRL.3) - FY05 (TRL.6) Acquisition Program SSN4080 and Todard Modernization, PEO Citi and Space, PMN 173, Ruth Youngs Lev Resource Sponsor: IV7 and NPS COCV) Design Agent (Raytheen) Transition Status: Space TTA FAM 173 Transition FY05 Deliverables: KaSO band transmit arrays. K-band Receive Array design utilized by CCX. Freeding PE Nameber PY05 PY05 PY07 PY08 PY00 PY10 PY1 AST 6.3-6.3 DOWN START SSN SSN SSN SSN SSN SSN SSN SSN SSN SS	EC Manager: Adviso Bey / 311 / 703 508 2012 / eleys@oncnary.ml						Schee	dule	
Acquisition Program 3531600 and Todard Michaeland, PEO Cill and Space, PMN 173, Ruth Youngs Lever Resource Sponsor: 197 and NPS CODQ Design Agard (Raythean) Transition Status: Signed TTA PAN 173 Transition F105 Deliverables: NSA-Dand transmit arrays. K-band Receive Array design utilized by CCX. Funding PE Newberr P105 F105 F105 F107 F106 F107 F108 F108 F108 F108 F108 F108 F108 F108	Gap Number/T	tte Gup 16 - Uti	quitrus, Sec	оине Сотити	mications an	d Network h	nfrastructure.	Techr	nical
Resource Sponsor: N7 and N76/COC/) Design Agent (Raytheen) Transition Status: Space TLA PMW 1/27 Transition F106 Deliverables: KaO-band transmit arrays: F106 Five P106 F106 F107 F108 F109 F109 F109 F109 Set (-3.3)	FY& TRL Start	- Stop: FY03	(TRL3) - F1	105 (TRL 6)				Trans	ition
Resource Sponsor: N7 and N76 COO() Design Agent (Raythean) Transition Status: Signed TTA PMN 173 Transition F106 Deliverables: KaO-band Internet arrays: Kbod-band Receive Array design utilized by DOX. Fyeding PE Desiber F106 F100 F107 F108 F109 F109 F10 Soft 6.3-6.5 Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array Array	Acquisition Pro	pramissission	and Triden	e Moderniza	tion, PEO C	40 and Space	e, PMW 173, F	Ruth Youngs	Lew
Transition Status: Signed TTA PANY 173 Transition FT06 Deliverables: PAO band Internet arrays. K-band Riccieve Amey design villated by DCX. Fueling PE Newber F706 F7150 F7157 F7150									
Deliverables FAGO band transmit aways: K-band Rhouve Army design utilized by COX.						,			
Deliverables FAGO band transmit aways: K-band Rhouve Army design utilized by COX.	Transition Stat	Signed TTA	PMW 173 T	ransition F1	106				
S&T (6.26.3) S&T (6.26.3) Transition (6.46.5) Transition (6.46.5) Transition (6.46.5) Organization (6.46.5)						design utili	red by DOX.		
Transition (6.46.5) Transition (6.46.5) SIDJM SI6.736 S34.0M SI4.0M SI3.096 Transition (6.46.5) Omment Ind Supers (but form and O land were feel before difficulties whith required attracted by the yearding in a pellow size above. The period of the p		PE Number	F198	F106	FY07	FYOR	FY09	FY10	FY31
Transition (6.46.5) Project X07.42 Onversed Sol Source Solt There is and O lased every has before all officially every manual attendance (fill unusually) in a selfore source above. There is no selfore and on several mode for the observations of and permittenesses, linearize the O learn's districtives due to delicate could not self-observation of the delicated on the delicated of could leave the observations.	Funding								_
Transfer (6.45.5) Organization (6.45.5)			\$2,100			_			
commendad is supera. But their, and 0 hand arrays had believed afficulties which required athedade shift, reading in a selfow score advisor. There are no major issues to the 0 hand array and and performance, unless the 0 load destination on the advisored of coefficient than		060V30:BV	\$10.1M	\$16,734	\$34.0M	\$14.0M	\$13,954		
Dolln their and Q band arrays had technical difficulties which required sitretules that recording it is sellow soon above. There are the major could be Q benchmark could and performance. Unless the Q band arcterial can be delivered at cod less than EXCELLER and a service can be delivered at cod less than EXCELLER and a service can be delivered at cod less than	S&T (0.2/0.3)	060430:8V Project X0742	\$10.1M	\$16.734	\$34.0M	\$14.0M	\$13.956		
\$300 interior and inspectable transfers of Mil. \$7.60 phased arms with the in property.	S&T (6.26.5) Transition (6.46.5)	060430:8V Project X0742	\$10.1M	\$16.734	\$34.0M	\$14.004	\$13.954		
Bids in and the band arrand are unable for Wildeland Capitles Taleitte and bids, disagra are being used of ALC AS program.	S&T (6.26.3) Transition (6.46.5) omments/Issues	080430:9V Project X0742	\$10.1M						
	Transition (6.46.5) Original States But their aid O ber There are two many	ORON30.9V Propert XOT40	\$10.1M	id-required a	Penkir mit.o			at codi less/th	_
	SAT (6.26.3) Transition (6.46.5) Omment I supplement of	DEON 30.2V Project 2/0742	\$10.1M	of required a	Pentile pit, o	eading the in	flow score above can be delivered		m
"S&T_Cost/Schedule/Technical "Transition	SAT (6.26.3) Transition (6.46.5) comments (6.46.5) comments (6.46.5) comments (6.46.5) purple of the same (6.46.5) purple of the same (6.46.5) purple of the same (6.46.5)	OSON 30 SV Proglect X/07 42 di arrayo had technica source for the Gi bando orazinanation of Mil. I ennapti are unidate to	SIO.1M	of required a	Personal or of the control of the co	eading n e is band arbonia gns are beng	flow score above can be delivered		en .
Preen: S&T On-Track for Delinery Green: Adequate Funds Programmed	Transition (6.46.5) Originated I stage in their and 0 ten have see the map in position or maps in their and the ten	OSON 30 SV Proglect X/07 42 di arrayo had technica source for the Gi bando orazinanation of Mil. I ennapti are unidate to	SIO.1M	of required a	Personal or of the control of the co	eading n e is band arbonia gns are beng	flow score above can be delivered		
Fellow: Identified Delivery Issues/Risk but Manage able Yallow: Funds Planned/IPT Committed PRed: No Funding Plan	SAT (6.26.3) Transition (6.46.5) commental states that flex and 0 has there are major (6.00) "SAT CostSe Green, SAT On Track	OSON 30 SV Project 300° 42 d erreys had technical seven for the G basels parts benefities of Mil. I fer high are unlated to hedul of Technical for Delin any	\$10.1M	ich-nequired is figer following write including lapition Saleston	Predate and or United the O	eading it a se band artervia grasses tengs ansition	flow soors above can be delivered used or AVCAS p		en .

Transition is the responsibility of all stakeholders

FNC Project Highlight Affordable Common Radar Architecture

Objectives

- Common scalable architecture for:
 - USMC HELRASR/USAF KMDS
 - Integrated SPN-43, SPS-48, SPS-49 retrofit.
- Emphasize scalability and open architecture for procurement and life cycle affordability

S&T Design Issues

- Affordable OA core relevant to afloat & expeditionary systems
- Extended reliability by design
- Address permanent and near-land use prohibitions from spectrum loss
- Address mid-latitude ducting limitations
- Fixed or rotator TBD depending upon procurement and lifecycle costs
 - If rotator, address Doppler resolution limitations
- ECCM
- High resolution for NCID and closely spaced objects
- Affordable scalable architecture meeting joint needs

Budget (\$M)

	FY09	FY10	FY11	FY12	FY13	Total
ACRA	2.75	7.26	8.25	5.39	3.3	26.95

Manufacturing Technology (ManTech) Overview

• Mission:

- Develop enabling manufacturing technology -- new processes and equipment -- for implementation on DoD weapon system production lines
- DoD 4200.15 states investments should:
 - Transition emerging S&T results to acquisition programs
 - Improve industrial capabilities in production, maintenance, repair and industrial base responsiveness
 - Advance manufacturing technology to reduce cost, improve performance, and responsiveness

Stable at approx. \$60M

• Execution:

- Nine Centers of Excellence (COEs)
 - 8 Contracted, 1 Government

ManTech Overview (cont) Execution

Navy ManTech is executed through nine Centers of Excellence (COEs):

- Execute projects; manage project teams
- Serve as corporate expertise in technological areas
- Collaborate with acquisition program offices / industry to identify and resolve mfg issues
- Develop and demo mfg technology solutions for identified Navy requirements
- Provide consulting services to Naval industrial activities and industry

Anderson, SC

ManTech Overview (cont) FY09 Investment Strategy

- Focused Shipbuilding Affordability Initiatives
 - Concentrate resources on few high priority naval platforms for maximum benefit
 - Working with Program Offices and industry to select and execute projects to reduce acquisition cost
 - Acquisition Program Office prioritizes projects for platform portfolio
 - Platform IPTs oversee platform portfolios (ONR, COEs, Program Office, industry)

PEO (Ships) DDG 1000

PEO (Carriers)

PEO (Ships)

PEO (Subs)

PEO (Ships) LPD 17 DDG 51

PEO (T) F-18 Family EA-18G

PEO (IWS)
Missiles
Weapons
Munitions

PEO (W)
N-UCAS

LCS Build Strategy (LCS)

- LCS Program Office asked ManTech for suggestions for improving acquisition process for Littoral Combat Ships
 - Recommendation LCS bidders be required to include a Build Strategy in proposal
- LCS Program Office agreed and requested that ManTech develop -
 - Draft build strategy requirements that could be included in the LCS solicitation and
 - 2. Evaluation criteria that the Navy could use to assess strategies submitted
- CNST teamed with First Marine International (internationally recognized leader in providing specialist services to marine industry) to develop requested documents
 - Delivered to ONR and forwarded to LCS Program
 Office on 10 Jan 08

Build Strategy should:

- Describe how the ship is going to be built:
 - Block and unit definition
 - Outfit module definition
 - Interim product definition
 - Assembly methods and processes
- Demonstrate that there are sufficient resources to the build the vessel as described:
 - Labor, facilities and infrastructure
- Demonstrate that the shipyard has the capability to carry out project as proposed:
 - Realistic schedule
 - Alignment of resources to schedule
 - Material acquisition plan
- Describe overall plan:
 - From principal product breakdown and supply chain plans to test and commissioning plans

Done properly, build strategies will reduce cost by matching the production approach to the shipyard process capabilities and will reduce risk to Navy and industry

ManTech Project Highlight Laser Image Projection (VCS)

• Goal: Automate the layout of attachments during early outfitting

Benefits:

- Automate layout process
- Eliminate paper templates and string measurements wherever possible

Background:

- Technology made possible by EB's One-Stop tool, developed under CNST's Product Centric project
- One-Stop enables extraction of attachment data from EB's 3-D Product Model

Impact

- Partially implemented on Hull 781 (8 cylinders)
 - ~2000 hangers (~4000 studs) for Electrical & HVAC attachments
 - 2,910 hours saved (~84% savings) on partial use
 - \$650,000 saved per hull (conservatively estimated at \$65/hour)
 - Project cost (\$622K) re-couped in one hull
 - Additional application being evaluated

Retro-reflective targets placed on already marked ship's grid system points can be used to position projection system.

Projector marks center-point location of stud (green laser light dot). Technician punch-marks & labels attachment point on face of frame flange.

• Background:

- CVN 78 requires improved performance and higher strength for reducing weight and to meet application requirements
- Implement HSLA-115 at higher strength level and acceptable protection, toughness, welding and structural performance for weight reduction and increased factors of safety

• Payoff:

- Potential weight savings of 100 200 long tons per hull for one application
- Cost neutral to \$1M savings impact anticipated
- Reduced top-side weight, lower center of gravity 0.2-ft
- Potential for additional future applications that require high strength and toughness

Achievements:

- NAVSEA / PMS 378 issued official letter to NGNN approving the use of HSLA-115 in baseline design and requiring successful completion of this project
- NNS Management and Technical Review Board (TRB) officially approved incorporation of HSLA-115 into CVN 78 design (2 Nov 2007)

ManTech Project Highlight Design for Production (DfP) Projects (VCS)

 Goal: Develop and implement Design for Production (DfP) techniques for VIRGINIA Class submarine construction cost reduction

• Background:

 4 inter-related DfP projects at Electric Boat

• Payoff:

- Reduced design costs
- Improved configuration management
- Ability to consider design alternatives based on mfg costs
- Standardized best mfg practices for re-use in design
- Improved build sequencing
- Reduced construction costs
- Total est. cost savings of \$4.8M/hull

Identifying design / process drivers to reduce construction costs

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Summary

- Affordability is a key Navy theme
- Navy Science and Technology programs starting to address affordability and manufacturability
- Affordability needs to be addressed while developing next generation capability
 - Affordability as part of the technology development concept (open systems, modular)
 - Difficult to insert affordability once technology has been developed
- Navy ManTech addressing shipbuilding affordability
 - High return on investment from areas such as Design for Production and Outfitting Process Improvement

Deputy Under Secretary of Defense

Advanced Systems & Concepts

~

9th Annual Science & Engineering Conference

The Advanced Systems and Concepts Portfolio of Opportunities

~

OSD/AT&L/DDR&E/AS&C

UNCLASSIFIED

John J. Kubricky
DUSD(AS&C)
15 April 2008

UNCLASSIFIED

OSD/AT&L/DDR&E/AS&C Mission

- Find, Integrate, Demonstrate, and Transition operational concepts and technologies for multi-Service, Joint & Coalition Warfare Needs
- •Leverage RDT&E Defense-wide resources through partnerships with Services and Agencies to meet the <u>Most Critical Needs</u> of the joint warfighter as defined by <u>Combatant Commanders</u> (COCOMs)
- •<u>Induct Innovative Technologies</u> inside the traditional Planning, Programming, Budgeting, and Execution (PPBE) process that result in an enduring <u>Capabilities-based Portfolio</u> to defeat asymmetric threats

OSD/Advanced Systems & Concepts

Multi-Service Needs-Driven

- Monthly meetings with COCOMs Progress on Deliverables
- Frequent meetings with Intel Community
- Participation in JCIDS and in JS/StratCom/DDR&E-sponsored studies

Technological Awareness

- Formal searches, pursuits and harvests of specified critical technologies
- Briefings from industry (Domestic and International)
- Intimate with technology development and assessment organizations
 - Services, Agencies, Intel Community, DHS, DOE, etc.

Program Oversight

- Organize, vet, select, and defend programs and projects
- Validated Service and CoCom Priorities; IPLs and Most Pressing Needs
- Wholly or partially funding projects a core function
- Closely monitor program and project execution

Transitioning Capabilities and Transferring Technologies

- Identify transfer and transition partners, pathways, PORs and POMs
- Oversee transition process and progress; stimulate as necessary
- Fund select game-changing technology enablers and transformation

Advanced Systems & Concepts Portfolio

MRLs - - a Technology Transition Risk Reducer

OSD/Advanced Systems & Concepts

Manufacturing Readiness Levels

FY08 Emerging Defense-Wide ManTech Initiatives

OSD/Advanced Systems & Concepts

Current D-ManTech Program Drives 6 New Initiatives (examples):

- Ceramic Matrix Composites Manufacturing Initiative: to reduce cost and establish manufacturing technologies needed to develop and sustain advanced turbine engines
- System-on-Chip Manufacturing Initiative: advance manufacturing processes for packaging of system-on-chip systems; initial applications in communication and precision guided weapons
- Prosthetics and Orthotics Manufacturing Initiative: to integrate advanced manufacturing processes and materials that result in custom composite orthotics and prosthetics for wounded warrior amputees

Out-year and Potential FY08 D-wide ManTech Rolling Starts:

- Identify/transition advanced manufacturing processes/technologies to create significant productivity/efficiency in defense manufacturing base
- Radically alter defense industrial base through "disruptive" manufacturing
- Examples: solder-free electronics, advanced fixed and rotary wing aircraft structures, ballistic protection, conformal load bearing antennas

Defense Acquisition Challenge (DAC)... ...DoD's On-Ramp to Industry

OSD/Advanced Systems & Concepts

Scope:

- Allows anyone to propose innovations that could quickly improve -
 - ✓ Affordability, manufacturability, performance, or capabilities at a system, subsystem or component level
- Competitive: Annual BAA in Federal Business opportunities and unsolicited proposals
- Proposals "challenge" existing technology
 - ✓ Evaluated for merit & feasibility
 - If testing successful, innovations inserted into a program of record
 - ✓ Provides industry entry into DoD acquisition

Metrics & Measures

- > Over 1200 proposals submitted
- > 68 projects awarded & ongoing
- > 70 companies from 26 states
- > 70% are small / medium enterprise technology providers
- > ROI (14 completed projects) is > 9:1

Spray Cool Technology: Electronics Sprayed with Non-Corrosive Coolant in a Hermetically Sealed Housing

Before SprayCool: 482

Pounds & 17 Cubic feet

Employed in Counter Targeting System - Part of OVERWATCH ACTD

4 units deployed to Iraq

16.00

After SprayCool: 100
Pounds & 2.6 Cubic feet

Mini Combat Trauma Patient Simulation System: Training medics at Camp Pendleton

Casualty simulator improves skills of medical personnel in mass casualty & triage - over 3500 medics trained & deployed to Iraq; attrition rate of trainees reduced from over 20% to 6%

Enhanced Performance Location Report System Tactical Data Network: Replaces manual network planning with automated system

Reduces complexity and need for manpower redundancy, deployed to 900 users (MEF II) in Iraq, enabling rapid and accurate information flow and data priority on the joint/coalition battlefield

CTO* FY08 Emerging Opportunities Defense Acquisition Challenge (DAC) Program

OSD/Advanced Systems & Concepts

Current DAC (Examples) - - Supports 13 continuing projects (\$13M)

- Omni-directional Antenna for M156 Magneto-Inductive Remote Activation Munition System (MI-RAMS)...Test 3-Axis Antenna for Army/SOF MI-RAMS allows placement of demolition charges and their initiator in any attitude (vice vertical only)
- Mobile IP Interface to Tactical Data Links (TDL)..Test TDL to enable uninterrupted and real-time coordination/re-tasking of combat missions, challenging current system that requires manual reconfiguration
- Sinuous Spiral Antenna for AN/ALQ211 EW System ... Test antenna candidate that may enable warfighter to better identify enemy transmission signals, improving threat geo-location and threat detection and defeat in all aircraft attitudes

Out-year / Potential DACs: Estimate 8 to 12 new start FY09 projects (\$15M)

- Address warfighter operational issues / functional capabilities (effectiveness, employment, survivability, force protection, and/or sustainability)
 - How: 'Challenge' existing legacy systems/equipment by testing mature technology for use in acquisition programs-of-record
 - Examples: Improved medical trauma simulation equipment; rapid armor or composites repair kits at unit level; better chemical / biological protective clothing; improved, lighterweight, longer-lasting sources of power

Foreign Comparative Testing (FCT)...

...the search for world-class technologies

OSD/Advanced Systems & Concepts

• Scope:

- > Seeks international technologies for US warfighting needs
- > Leverages mature technologies for economic/speedy buys
- > Provides US Forces with new capabilities
- ➤ Technologies assessed for use, bought from foreign source or manufactured under license in US

- **➢OSD** investment of \$1.1B has avoided \$7B in costs
- >567 projects started, 488 completed, 266 met test req's
- **≻184** projects resulted in procurements worth about \$8B
- **≻** Accelerated fielding averaging 5–7 years
- > Participation from 27 allied and coalition partners
- **≻** Vendor partnerships in 33 U.S. states
- ➤ Past 5 years: Transition rate from test-to-procure > 80%

UK system can refuel two aircraft at once, avoiding \$40 million in R&D

South-African developed Buffalo mine clearing vehicle probing & clearing mines & IEDs in Iraq

Russian erosion-resistant coating triples life of compressor blades in MH-53 helicopter, avoiding \$1.6 million annually

Korean fiber optic mesh detects breaks and enhances perimeter security

Italian venture, the Joint Service Combat Shotgun, used in Iraq as a "door-buster"

Swedish bunker buster system fired from confined spaces, used in Afghanistan and Iraq

CTO* FY08 Emerging Opportunities Foreign Comparative Testing (FCT) Program

OSD/Advanced Systems & Concepts

Current FCTs (Examples) - - Supports 12 continuing projects (\$17M)

- Fire Control System for SOF Combat Assault Rifle (SCAR) Grenade Launcher
 - Test fire control and ammunition programming systems for enhanced grenade launch module for SCAR, improving range and suppressing hostile fire and other threats
- A/C Arresting System for F-22 and JSF Test computer-controlled caliper-disk aircraft arresting system that increases functionality and capability to arrest both heavy aircraft and lightweight fighters
- Advanced Airborne Expendable Infrared Countermeasures (IRCM) Test the
 effectiveness of expendable IR countermeasures to counter emerging advanced
 infrared Man-Portable Air Defense Systems

Out-year / Potential FCTs - - Support 8 to 12 new start FY09 projects (\$16M)

- Address warfighter operational issues / functional capabilities (effectiveness, employment, survivability, force protection, and/or sustainability)
 - How: Test mature, non-development allied equipment and technology for use in acquisition programs-of-record
 - Examples: Light-weight, high-energy density batteries; health monitoring systems; improved active and passive armor protection; real-time, persistent surveillance

The Technology Transition Initiative (TTI)

OSD/Advanced Systems & Concepts

- Objectives
 - Accelerate transition of new technologies from DoD S&T programs into acquisition for production and deployment to US Armed Forces
 - Demonstrate new technologies in relevant environments
- Partners and Processes
 - Technology Transition Council
 - Technology Transition Working Group

Countermeasures Protection System

- Improves force protection against radio-controlled IEDs
- Deployed in GWOT

Water Purification Pen

- Eliminates risk of exposure to diseases and bio-chemical pollutants
- Deployed in IRAQ with each of the Services
- Sent as part of Tsunami relief effort in S.E. Asia

Semantic Web Network

- Incorporated into Marine Link
- Deployed w/1st and 2d MEF in Iraq
- Saves Analyst 4-5 hours per manual query

Technology Transfer Programs

OSD/Advanced Systems & Concepts

Objectives

- Ensure full use of the Nation's investment in R&D (15 USC 3710)
- Rapidly enhance warfighter capabilities via technology exploitation

> Benefits

- Clear path from DoD S&T to application of technology
- Commercial source for DoD items using DoD-developed technologies
- Speed to deployment and cost-saving advantages

> Partners

- US Industry (as opposed to contractual relationship)
- Funds to support joint R&D efforts (funds from CRADAs)
- Royalties on licensed inventions to reward inventors and perform R&D

OSD/Advanced Systems & Concepts

Current TTI Projects (Examples): 12 continuing projects (\$20M)

- Accelerate Extremely Insensitive Detonating Substances (EIDS) and Insensitive Munitions (IM) Solution in 155mm Artillery Ammunition: Greater soldier survivability and reduced ammo storage/relocation detonation risk while retaining weapon lethality
- Improved Heating Technology (IHT) for the Unitized Group Ration: Selfheating group ration that sustains warfighters in remote, austere locations
- Joint Service General Purpose Mask (JSGPM) Filter End-of-Service-Life Indicator: \$10M/yr savings in reducing unnecessary filter exchanges
- Solid State Laser Igniter for Artillery Applications: Safer, cheaper, more reliable means of firing 155mm artillery
- Tactical Idle Reduction Equipment for Heavy Tactical Vehicles: Saves 15M gallons/year in fuel with associated reduced fuel convoy personnel risks

Out-year/Potential TTI Projects: 6 to 8 new start FY09 projects (\$10M)

Focus on TTI projects that enable affordable and decisive military superiority

Address the following high-level mission areas: Battlespace Awareness;
 Stability of Operations; Cultural Awareness; Force Management; Command,
 Control and Information Management; Net-Centric Operations; Protection;
 Joint Training; Tailored Force Application

FY08 Defense Production Act Title III Initiatives

OSD/Advanced Systems & Concepts

Current DPA/T3s:

Atomic Layer Deposition Hermetic Coatings: ...domestic ALD for electronic components; transition to fabrication process for DDG-1000.

<u>ALON/ Spinel:</u>...domestic source of durable ceramics for transparent armor and apertures used in IR equipment and ballistic windows.

Beryllium Production: ...domestic source of high purity beryllium for defense sensors, missiles and satellites, avionics, weapon applications.

Boron Fiber: ...modernizing manufacturing processes of sole domestic source of boron fiber.

<u>Coal-based Carbon Foam:</u> ...establishing high-volume production for carbon foam materials in light weight tooling & non-structural components.

Reactive Plastic CO2 Absorbent: ...expanding production of reactive plastic CO2 absorbent to reduce hazards/increase diver mission duration.

<u>Lithium Ion Batteries for Space:</u>...long-life cells for space systems using assured domestically produced materials.

Military Lens Systems: ...advanced optics for multi-spectral fused imagery.

FY08 Defense Production Act Title III Initiatives

OSD/Advanced Systems & Concepts

Emerging/Imminent DPA/T3s:

<u>Armstrong Titanium Production</u>...project aims to develop capabilities that lead to domestic production of low-cost titanium (RFP in-process).

Methanol Fuel Cells: ...components for soldier-portable equipment power.

SWORDS Safety Confirmation Testing and Production ... establish capability to produce a modified robotic system for confirmation testing.

<u>Life Cycle Support Center for Unmanned Systems</u> ...expanded capacity to support unmanned systems upgrade and repair for DoD and first responders.

<u>Light-Weight Ammunition & Armor</u>...establish production capacity for rigid polymer ammo cartridges to reduce weight for warfighters and transportation.

Out-year/Potential DPA/T3s:

Gallium Nitride (GaN) Radar Monolithic Microwave Integrated Circuits

S-Band radar: affordable production capability for GaN MMICs on SiC (fy09)

X-Band radar: affordable production capability for GaN MMICs on SiC (fy10)

Joint Capability Technology Demonstrations

OSD/Advanced Systems & Concepts

- Enable Combatant Commanders to fill seams and gaps in core warfighting capabilities...particularly multi-Service operations
- Deliver new and relevant technology to warfighters quickly
 - The JCT <u>Demonstration</u> Program is not a procurement program
 - JCTDs provide options that can lead to accelerated procurement
- Overcome resistance to transformational concepts (eg, tech risk)
- Integrate technology, joint doctrine and coalition operations
- Chartered to bypass delays in fielding innovative capabilities...
 ...requires Transition Planning upfront.

A Deliberate Technology Transition Strategy is Required to Begin a JCTD

JCTDs are not developmental projects...

- Development (Integrate to Demonstrate)
- ...JCTDs integrate, demonstrate and deliver new capabilities for urgent COCOM needs within 1 3 years and become enduring warfighter resources.
- Adaptation, Modification, Refinement, Prototype, Tech Insertion, Improvement, Revision, etc. to enable Joint, Coalition or multi-Service operations

JCTDs apply, integrate, prototype, modify, adapt and deliver new capabilities to satisfy validated COCOM urgent needs.

FY08+ JCTD Initiatives & Emerging Opportunities

OSD/Advanced Systems & Concepts

Current JCTDs:

Communications Air-Borne Layer Expansion (CABLE) (STRATCOM/USAF):
Airborne communications backbone network for IP-based, high capacity
data transfer with secure gateways to interconnect data links and voice
Joint Force Protection Advanced Security System (JFPASS) (STRATCOM /
USN / USAF): Integrated system protects expeditionary military installations
Hard Target Void Sensing Fuze (HTVS) (STRATCOM / USAF): Competitive
prototype of survivable, void sensing fuze to destroy deeply buried targets
Shadow Harvest (SOUTHCOM / USAF): Demonstrate a rapidly configurable
non-traditional ISR pod on a C-130 aircraft to find obscured targets

Out-year/Potential JCTDs:

Net Zero Plus (CENTCOM / USA): Utilizes alternative energy technologies to reduce energy footprint at military facilities and forward operating bases Cross Domain Collaborative Information Environment (CD-CIE) (JFCOM / DISA): Open standards, non-proprietary, secure, scalable, cross domain collaborative info environment for multinational information exchange Collaborative Security Environment (CSE) (SOUTHCOM / JFCOM): Integrated decision and assessment tool to support coalition security Joint Recovery and Distribution System (JRADS) (TRANSCOM / Army): Integrates joint cargo handling system for intermodal load and recovery ops

Strategic Initiative on Innovation and Tech Transfer

OSD/Advanced Systems & Concepts

- Technology access has changed throughout the world; proliferation of potentially disruptive technologies is the new way of global competition and economic success; DoD is no longer at tje forefront of most tech research; fewer sources for growing numbers of warfighter-relevant technologies with shorter threat/refresh/support cycles
- The Strategic Initiative for Innovation and Technology
 Transition is tasked to create an action plan that will
 accelerate the movement of technology to Warfighters
 - particular emphasis on global outreach, flexible contracting, and strategic linking of the Department's agile acquisition initiatives to set conditions for an "outward looking" culture ... a transformation!

OSD/Advanced Systems & Concepts

Advanced Systems & Concepts (AS&C)

Joint Capability Tech Demo (JCTD)

Comparative Test Office (FCTs)

Office of Technology Transition

www.acq.osd.mil/asc 703-695-5036 www.acq.osd.mil/actd 703-697-5558 www.acq.osd.mil/cto 703-602-3740 www.acq.osd.mil/ott/tti 703-607-5316

Considering Warfighter R&D Investments...

OSD/Advanced Systems & Concepts

...questions should be answered affirmatively:

- 1. Does the action address the COCOM's needs¹?
- 2. Is a significant Joint capability or military advantage gained?
- 3. Do we have a clearly stated and attainable goal/outcome?
- 4. Have risks and costs been fully and frankly analyzed?
- 5. Have all other DOTMLPF means been fully explored?
- 6. Is there an exit strategy to avoid endless development?
- 7. Have consequences of inaction been fully considered?
- 8. Can support be garnered from the Services³ and Congress?
- 9. Are experienced people available to execute the effort?
- 10. Can results be demonstrated to project champions (<PCS)?

¹ Integrated Priority Lists and Most Pressing Military Issues – as validated by JCS J8

² DOTMLPF: Doctrine, Organization, Training, Materiel, Leadership, Personnel and Facilities

³ Enduring outcomes are all about timely transition to an affordable and sustainable capability

⁴ Demonstrate 80% capability before CoCom champion/sponsor moves to next assignment

Air Force Materiel Command

Development and Insertion of Innovative Technologies Across the Lifecycle of a Weapon System

Janet C. Wolfenbarger
Brigadier General, USAF
Director, Intelligence and Requirements
Director, D&SWS AFSO21 Office

Overview

- Ongoing AF/AFMC initiatives to improve technology insertion:
 - Pre-MS B: AFSO21 Develop and Sustain Warfighting Systems (D&SWS) Technology Development (TD) Initiatives
 - Sustainment: Sustainment Technology Process (STP) to develop focused sustainment technology investments

Integrated Life Cycle Management

Development and Sustainment of Warfighter Systems "Technology Development Process"

TD 1-14
Tech Needs

TD 1-12 Tech Maturity TD 1-13
Tech Transition

Sustainment Technology Process

Air Force Special Operations for the 21st Century (AFSO21)/D&SWS

Funding Our Priorities

"We will fund transformation through ... organizational efficiencies, process efficiencies, reduction of legacy systems and manpower while sustaining GWOT and ongoing operations in support of the Joint Fight."

- Michael W. Wynne, SECAF

Integrity - Service - Excellence

The Status Quo is Out

Develop and Sustain Warfighting Systems (D&SWS)

D&SWS Sub-Processes

Sub-Process Owners, Co-Leads, Design Team Leads

As-Is Technology Development Process

War-Winning Capabilities ... On Time, On Cost

D&SWS Technology Development Initiatives

AF-wide process to identify and prioritize tech needs linked to capability gaps and program requirements

Benefits: Best technologies needed to achieve AF's highest priorities receive highest investment priority.

"Tech Push" better influences capability planning.

Establish comprehensive "yardstick" to assess maturity of technologies (more than technology readiness levels: include testability, manufacturability, integratability, supportability, etc)

Establish disciplined and collaborative "stage-gating" process to ensure highest confidence in successful technology transition

Benefits: Reverse the trend of starting SDD with immature technologies which cause RDT&E and production cost growth and schedule slips

Integrated Life Cycle Management

Development and Sustainment of Warfighter Systems "Technology Development Process"

TD 1-14
Tech Needs

TD 1-12 Fech Maturity

Tech Transition

Sustainment Technology Process

Strategy Development

Top Down Capability Driven Process to Support Strategic Sustainment Technology Investments

Strategic Drivers

E-Log21

 Reduced O&S Costs and increase system availability

AFMC Balance Scorecard

- Sustain Weapon Systems
- Improve equipment availability at reduced cost
- Enhance Sys Reliability

Customer Needs

- MAJCOMs
- AFMC

AFRL FLTC

 Affordable Mission Generation & Sust

Agile Combat Support

 Agile, Responsive & Effective Sustainment

Strategic Thrusts

- Improve the sustainability of weapon systems, and influence the sustainability of new systems in development
- Improved Inspection, Fault Detection, Prognostics and Diagnostics Capability (Sense and Respond)
- Apply Advanced Practices for Maintenance, Repair & Overhaul, Production Processes, and Supply Chain management

Focus Areas

- Crack & Corrosion Detection
- Coat/Decoat
- NDI
- LO Maintainability
- CBM + Integrity
- Maintenance Shop Improvements
- Aircraft Subsystem Diagnostics
- AGE, Test Equip
 Avionics
- Obsolescence Management
- Supply Chain Enhancements

Technology Working Groups

Airframe
Sustainment - TWG

Propulsion
Sustainment - TWG

MRO&P Sustainment - TWG

Combat Sustainment - TWG

Governance Structure

Accomplishments

- Expanded S3C membership to include MAJCOMs
- S3C approved sustainment technology needs:
 - Submitted for OSD transition/sustainment funding sources, i.e., Quick Reaction Funds, Reduction in Total Ownership Cost (RTOC)
 - Guided FY09 APOM and FY10 POM (Aging Aircraft and S&T supporting Affordable Mission Generation & Sustainment)
 - Funded projects include: Condition Based Maintenance Plus, Non-destructive Inspections, LO Maintainability, and Improved Depot Processes

STP Next Steps

- Leverage Industry Research & Development (IR&D) and Small Business Innovation Research (SBIR) Commercialization Pilot Program (CPP)
- Technology Roadmap Development
 - Provides a WBS structured approach to acquire, test, and implement critical sustainment technology to meet a specified capability
 - Utilizing A2/5 modified Capability Based Roadmap Tool
- STP Performance measures being developed and implemented ECD: Jun 08
- Finalizing governance document: AFMCI 61-103; S&T and Technology Transition Planning

Summary

Objective is to develop and insert innovative technologies across the lifecycle of a weapon system

- Pre-MS B: D&SWS initiatives focus on identifying highest priority needs, improved technology maturity assessments and establishing high confidence gated technology transition
- Sustainment: Strategy-to-task driven process to support cross-cutting sustainment technology investments

AFMC and the AF are pressing forward with revolutionary initiatives to

Develop & Insert Innovative Technologies into AF Weapons Systems

JANET C. WOLFENBARGER
Brigadier General, USAF
Director, Intelligence and Requirements
Director, D&SWS AFSO21 Office
HQ AFMC/A2/5 and CCO
937-257-3024 or DSN 787-3024
janet.wolfenbarger@wpafb.af.mil

The DoD T&E / S&T Program

Gerry Christeson

Defense Test Resource Management Center
Deputy Program Manager
Test & Evaluation / Science & Technology Program

NDIA 9TH Annual Science & Engineering Technology Conference

Test Resource Management Center (TRMC) Sec. 231, FY 2003 National Defense Authorization Act DoD Directive 5105.71, March 8, 2004

- DoD Field Activity
 - Established to ensure that the DoD T&E infrastructure is adequate to support the development and acquisition of defense systems
- Annually certify that the T&E budgets of the military departments and defense agencies are adequate
- Develop a biennial strategic plan that assesses T&E requirements for a period of ten years and identifies required T&E infrastructure investments
- Responsible for T&E infrastructure policy for DoD's Major Range and Test Facility Base (MRTFB)
- Administer three major T&E investment programs:
 - Joint Mission Environment Test Capability Program (JMETC)
 - Central Test and Evaluation Investment Program (CTEIP)
 - Test and Evaluation/Science and Technology (T&E/S&T) Program

TRMC T&E/S&T Direct Report to USD(AT&L)

Synergy through Aligned Investment

T&E/S&T Program

Overview

- Test & Evaluation / Science & Technology (T&E/S&T)
 Program started in FY 2002
 - Joint DDR&E / DOT&E initiative

Mission

- Investigate and develop new technologies required to test and evaluate our transforming military capabilities
 - ➤ Include any system that makes our warfighters more survivable and effective in combat
 - ➤ Mature test technologies from TRL 3 to 6

Goal

 Transition emerging technologies into test capabilities in time to verify warfighting performance

Shaping Technology into Tomorrow's T&E Capabilities

Why a T&E/S&T Program?

- Nanotechnology
- Biometrics
- Genetic algorithms
- Microelectromechanical systems
- Adaptive optics
- High power microwaves
- High energy lasers
- Synthetic instrumentation
- Multispectral seekers
- Autonomous systems
- Hypersonics
- Intelligent agents

T&E/S&T Program Office

What We Do?

- Fund high risk / high pay-off T&E R&D projects
- Foster technology transition to MRTFB and other DoD T&E field activities

How We Do It?

- Issue annual Broad Agency Announcement (BAA)
- Tri-Service working groups draft BAAs and participate in proposal evaluation
- Award T&E R&D projects starting at TRL3 and mature to TRL6
- Executing Agents (EA) manage test technology Focus Areas

• Who Do We Fund?

- Academia
- Industry
- Government laboratories
- Teams of academia / industry / government labs

Technology Readiness Level

TRL 9	Actual system 'flight proven' through successful mission operations
TRL 8	Actual system completed and 'flight qualified' through test and demonstration
TRL 7	System prototype demonstration in an operational environment
TRL 6	System/subsystem model or prototype demonstration in a relevant environment
TRL 5	Component and/or breadboard validation in relevant environment
TRL 4	Component and/or breadboard validation in laboratory environment
TRL 3	Analytical and experimental critical function and/or characteristic proof of concept
TRL 2	Technology concept and/or application formulated
TRL 1	Basic principles observed and reported

T&E Technology Transition

FY 2008 Funding Distribution

Note: numbers apply only to FY08 funding profile

FY 2008 Project Distribution

Note: numbers apply only to FY08 funding profile

FY08 T&E/S&T Focus Areas

- Directed Energy Test (DET) On-board and off-board technologies to assess performance of high energy laser and high power microwave weapon systems
- Hypersonic Test (HST) Technologies to provide high fidelity environments, M&S and instrumentation for testing of air breathing hypersonic vehicle propulsion and flight systems
- Multi-Spectral Test (MST) Technologies to enable real-time, realistic T&E of multi-spectral and hyperspectral seekers and sensors through scene injection and projection
- Non-Intrusive Instrumentation (NII) Technologies for non intrusive sensors, data storage, and power sources to provide continuous, nonobtrusive T&E

FY08 T&E/S&T Focus Areas

(cont.)

- Netcentric Systems Test (NST) Technologies to measure and assess the performance of the physical, information and cognitive domains of Joint, integrated architectures
- Spectrum Efficient Technology (SET) Technologies to enable more efficient use of legacy telemetry bands and expand into nontraditional areas of the RF spectrum and the optical spectrum
- Unmanned Autonomous Systems Test (UAST) Technologies for T&E of unmanned systems ranging from full tele-operation to totally autonomous, learning performance

111 active projects

T&E/S&T Program Management

Working Groups

	AMRDEC	IEW			
	AMSAA	NVESD			
	ARL	ОТС			
Army	ATC	PEO STRI			
	ATEC	RDEC			
	ATTC	RTTC			
	HELSTF	TRADOC			
	NAVAIR	NAWC			
Navy	NAVSEA	NUWC			
	NRL	SPAWAR			
	AEDC	AFRL			
Air Force	AFEWES	AFWDC			
All Foice	AFFTC	46 th TW			
	AFOTEC	452 nd FLTS			
	DDR&E	JCS			
DoD	DISA / JITC	JFCOM			
	DOT&E				

T&E/S&T Program Annual Budget

T&E/S&T Program Project Selection Process

BAA Schedule

Activity	Govt FY 2008							Govt FY 2009				
Activity	<u>Jan-0</u> 8	Feb-08	Ma <u>r-0</u> 8	Apr-08	May-08	Jun-08	Jul-08	Aug-08	Sep <u>-08</u>	Oct-08	Nov-08	Dec-08
FY09 Project and Study Selection												
EA's Draft BAA Topic Areas												
Industry/Academia Days		\Q										
PMO Topic Area Approval		4										
EA's Issue Solicitations			\Q									
Offeror White Paper Submissions					\rightarrow							
EA WG's White Paper Review												
PMO/EA Coordinate Selected White Papers / Develop Clarifications												
Letter RFP Issued to Selected Offerors						\Q						
Offeror Proposal Submissions								\limits				
EA WG's Proposal Review & Recommendations to PMO												
PMO Proposal Recommendations Review & Decisions												
Clarifications, Negotiations & Contract Awards												

BAA – Broad Agency Announcement

EA – Executing Agent

WG – Working Group

PMO – Program Management Office

RFP – Request for Proposal FY –

FY – Fiscal Year

The Proposal — Key Criteria

- Meets a T&E Need
- Requires S&T work
- High Risk / High Payoff
- Broad application (more than one DoD test activity)
- High potential for transition to development of a test capability

Technology Development Framework

Partnerships

- Partnerships between universities, industry & DoD laboratories
 - Form the best research teams possible
- Collaborate to pursue bigger opportunities
 - Leverage each others' core competencies
 - Share resources
- Increase transition opportunities through increased involvement in the T&E/S&T Program

Success Stories

- In-Situ Pressure Measurement
 - Transitioned to the hypersonic HyFly program which is sponsored by the Office of Naval Research and the Defense Advanced Research Projects Agency
- Tactical-Report Generation Test Bed
 - Transitioned to the CTEIP Interoperability Test and Evaluation Capability (InterTEC) program and to Joint Forces Command for automated netcentric test planning and scenario development
- Steerable Beam, Directional Antenna Concepts
 - Transitioned technology to the CTEIP integrated Network Enhanced Telemetry (iNET)

Success Stories (cont.)

- Heat Flux Sensor
 - Transitioned to Arnold Engineering Development Center for aerothermal measurements by miniaturized heat flux sensors at high temperatures—used in the Shuttle Returnto-Fly Program
- Directed Energy Data Acquisition Transformation
 - Transitioned to Naval Surface Warfare Center, Dahlgren for conducting T&E of High Power Microwave Systems
- Multi-Spectral Stimulator Injection Test Method
 - Transitioned to U.S. Army Redstone Technical Test Center Future Force/Future Combat Systems for hardware-in-theloop testing of multispectral systems

Summary

- Only DoD S&T program for T&E
- Tri-Service participations
- Focus on transition
- Partnerships
 - Government labs / ranges
 - Industry
 - academia

Questions?

Contact Information:

Mr. Gerry Christeson

Defense Test Resource Management Center

Deputy Program Manager

T&E / S&T Program

Gerald.Christeson@osd.mil

Back Up

T&E Needs

The R&D project:

- Addresses the T&E requirements
- Fills known T&E gaps
- Articulates how the above are to be achieved

Example: T&E Need

Ground test facilities generally use combustion processes to create representative flight conditions for hypersonic engine testing. The effects of vitiates on the engine performance is not well known. Ground test facilities need a clean air test capability to more realistically simulate actual flight conditions to accurately predict engine performance in flight.

S&T Challenges

The R&D project:

- Develops new test & evaluation capabilities that do not currently exist
- Utilizes /develops beyond state-of-the-art technologies that can be high-risk
- Pushes technology to new limits

Example: S&T Challenges

- Develop resistively heated elements to routinely operate between 2200 to 2400 Kelvin (4535 to 4927 deg F)
- Develop electrical interface materials that can maintain high current (60 Amp or greater) electrical and mechanical connection at extreme temperatures
- Develop element materials and shapes that can withstand temporal temperature cooling gradients of at least a thousand degrees a minute and maintain air seal to prevent internal cooling air from leaking into external airflow and cooling it

Manufacturing Readiness Levels (MRLs) Manufacturing Readiness Assessments (MRAs) In an S&T Environment

Jim Morgan

Manufacturing Technology Division Phone # 937-904-4600 Jim.Morgan@wpafb.af.mil

Why MRLs?

"Advanced weapon systems cost too much, take too long to field, and are too expensive to sustain" -- Congress, OSD, CSAF, GAO

- Production/manufacturing processes are major contributor
 - A GAO study of core set of 26 programs: RDT&E costs up by 42% and schedule slipped by 20%
 - \$42.7B total cost growth
 - 2.5 years average schedule slip
 - Characteristics of successful programs:
 - Mature technologies, stable designs, <u>production processes in control</u>
 - <u>S&T organization responsible for maturing technologies</u>, rather than program or product development manager
- Need way to mitigate impact of diminishing manufacturing infrastructure
 - People, policy, programs gutted
 - Lost recipe on how to manage manufacturing risk
 - Won't get infrastructure back but still need to manage manufacturing risk

Technology Readiness Levels (TRLs)

Provide a common language and widely-understood standard for:

- Assessing the performance maturity of a technology and plans for its future maturation
- Understanding the level of performance risk in trying to transition the technology into a weapon system application

TRLs leave major transition questions unanswered:

- Is the technology producible? Reproducible?
- What will these cost in production?
- Can these be made in a production environment?
- Are key materials and components available?

Manufacturing Readiness Levels (MRLs)

- Common language and standard for
 - Assessing the *manufacturing maturity* of a technology or product and plans for its future maturation
 - Understanding the level of manufacturing risk in trying to produce a weapon system or transition the technology into a weapon system application
- Designed to complement TRLs
- Designed to help set the agenda for manufacturing risk mitigation
- Usage
 - Army, for Future Combat Systems development efforts
 - Missile Defense Agency using EMRLs on all development programs
 - Several defense primes using on weapon system programs
 - Mandated by AFRL on all hardware CAT I ATDs

MRL Relationships

Relationship to System Acquisition Milestones

Relationship to Technology Readiness Levels

MRL Evaluation Criteria (Threads)

- Technology and Industrial Base
- Design
- Materials
- Cost and Funding
- Process Capability and Control
- Quality Management
- Manufacturing Personnel
- Facilities
- Manufacturing Management

MRL Evaluation Criteria (Threads)

S&T Phase		6.2 / 6.3	6.3 / 6.4	6.3 / 6.4 / 7.8	6.4 / 6.8 / 7.8	7.8		
Acq Phase		Pre CR		TD		SDD		
Thread	Sub-Thread	MRL 3	MRL 4	MRL 5	MRL 6	MRL 7		
Technology & Industrial Base	Technology Maturity	TRL 3	Should be assessed at TRL 4.	Should be assessed at TRL 5.	Should be assessed at TRL 6.	Should be assessed at TRL 7		
	Technology Transition to Production	Potential manufacturing sources identified for technology needs. (Commercial/Government, Domestic/Foreign)	Industrial Base capabilities and gaps/risks identified for key technologies, components, and/or key processes. Industrial Base assessed to identify potential manufacturing sources.		Industrial Capability Assessment (ICA) for MS B has been completed. Industrial capability in place to support mfg of development articles. Plans to minimize sole/foreign sources complete. Need for sole/foreign sources justified. Potential alternative sources identified.	Industrial capability to support production has been analyzed. Sole/foreign sources stability is assessed/monitored. Developing potential alternate sources as necessary.		
	Manufacturing Technology Development	Initial demonstration of Mfg Science	Mfg Science & Advanced Mfg Technology requirements identified	Required manufacturing technology development efforts initiated.	Manufacturing technology efforts continuing. Required manufacturing technology development solutions demonstrated in a production relevant environment.	Manufacturing technology efforts continuing. Required manufacturing technology development solutions demonstrated in a production representative environment.		
Design	Producibility Program	Evaluate relevant materials/processes for manufacturability & producibility	Producibility & Manufacturability assessment of design concepts completed. Results guide selection of design concepts and key components/technologies for Technology Development Strategy. Manufacturing Processes assessed for capability to test and verify in production, and influence on O&S.	Producibility & Manufacturability assessments of key technologies and components initiated. Systems Engineering Plan (SEP) requires validation of design choices against manufacturing process and industrial base capability constraints.	Producibility assessments of key technologies/components and producibility trade studies (performance vs. producibility) completed. Results used to shape System Development Strategy and plans for SDD or technology insertion programs phase.	Detailed producibility trade studies using knowledge of key design characteristics and related manufacturing process capability completed. Producibility enhancement efforts (e.g. DFMA) initiated.		
	Design Maturity	Evaluate product lifecyle requirements and product performance requirements. Systems Engineering Plans and the Test and Evaluation Strategy recognize the need for the establishment/validation of manufacturing capability and management of manufacturing risk for the product lifecycle. Initial Key Performance Parameters (KPPs) identified.		Identification of enabling/critical technologies and components is complete and includes the product lifecycle. Evaluation of design Key Characteristics (KC) initiated.	Product requirements and features are well enough defined to support detailed systems design. All product data essential for manufacturing of component design demonstration released. Potential KC risk issues have been identified and mitigation plan is in place. Design change traffic may be significant.			

Air Force MRL Implementation Approach

In partnership with Joint Defense Manufacturing Technology Panel (JDMTP)

- Conduct pilot MRAs on various programs
 - Advanced Technology Demonstration programs
 - Weapon system acquisition programs
 - Demonstrate benefits of using MRLs
- Conduct training for key program personnel
 - What are MRLs, how to conduct an MRA
 - Air Force ManTech personnel
 - Category I ATD IPTs and ACAT pilot program personnel
 - Utilize various training materials that can be tailored
 - Transition to DAU once MRLs are in policy
- Put MRLs into policy documents
 - AFRL, AFMC, AF, DoD

MRL Incorporation into AFRL ATDs

- AFRL/RXM conducted ATD pilot assessments on five ATDs, Nov 04 – May 05
 - Identified gaps in manufacturing maturity that would delay technology transition upon ATD graduation
 - Highlighted what was required to turn technologies into products
 - Tasked by AFRL/CA to implement MRLs into all "hardware" intensive ATDs
 - Developed three year plan to reach steady state
 - Developed basic MRL implementation process
 - Developed training for ATD IPTs and ManTech personnel
- Identified core ManTech funding for MRAs and selected follow-on MRL maturation
- Now taking on all CAT I "hardware" intensive ATDs

Manufacturing Readiness Level Implementation Approach (ATDs)

MRA Deliverables

- Identification of current MRL
- Identification of key factors where manufacturing readiness falls short of target MRL
 - Define driving issues
 - Define high risk areas
- Identify programs and plans to reach target MRL
 - Generate the manufacturing maturation plan (MMP)
- Assess type and significance of risk to cost, schedule and/or performance

Emerging MRA Successes

High Durability Hot Exhaust Structures

- Provided identification of high risk processes and single point failures driving scale-up from MRL 3
- Maturation plan provides awareness of issues relating to move to new production facility
- Follow-on MRA at new facility will help ensure transition success

F135

- Enabling opportunity to accelerate transition for F135 thrust improvement by ~4 years
- Advanced feature high cost driver: must overcome producibility issues
- Developed plan to mature from MRL 3 to 5 leveraging commercial and military IR&D, F135 program, and ManTech funding

Emerging MRA Success

Sensor Hardening for Tactical Systems (Two contractors)

- Identified common manufacturing readiness driver among both contractors -- Optical Power Limiter (OPL) -- MRL 3
- Drilling down into OPL supplier processes to identify root issues -- OPL also likely driver on Sensor Hardening for UAS ATD
- MRA enabling identification of common manufacturing issues and ManTech investment opportunity

ACAT MRA Pilot

- Translate the successful MRL ATD process to acquisition programs
- Common themes
 - Utilize approximately the same process
 - Utilize current MRL definitions to assess against
 - 3-5 people per MRA
- What is different
 - ATDs focus on MRL 3 MRL 6
 - Assess manufacturing maturity with a goal of transition/implementation
 - ACATs focus on MRL 4 MRL 9
 - Schedule, cost, manning considerations
 - Milestone decisions
 - Production planning process
 - Will require a more rigorous approach
- Develop and document a structured ACAT assessment approach
 - MRA Deskbook
 - First draft completed Mar 07 based on ATD and limited ACAT experience
 - Drafted with SAF/AQRE, MRL Working Group, and ASC/EN
 - Test drive on acquisition programs
 - Update based on lessons learned

Manufacturing Readiness Implementation Approach (ACATs)

ACAT MRA Process

AMRAAM

- What: Performed a system-level MRA on the AMRAAM C-7 variant
 - Looked at all test and assembly steps, including FACO
 - Fourteen key suppliers; over thirty-five technology areas examined
- Impact: Based on independent assessment, AMRAAM Group received go-ahead to proceed to next production lot for C-7 variant; reduced testing cycle time in particular cell by 90%

Some MRA Thoughts

- MRLs are not a report card
 - MRL 7 might not be good
 - MRL 3 might not be bad
- MRLs are a tool to manage and mitigate manufacturing risk
 - A common language used to assess manufacturing maturity
 - Provide insight not <u>oversight</u>

Some MRA Lessons Learned

- Process is more effective if company is actively engaged in the assessment
- System integration and test operations are often ripe for maturation efforts
- Resources required to conduct an MRA will vary significantly
 - Not all programs are equal
- Subject matter expertise is needed to "do it right"
- Templates and guidelines developed
 - Not a one size fits all solution
 - Engineering skills/judgment still need to be used
 - Avoid a checklist mentality

Future Steady State

- Programs utilizing MRLs
 - Funding MRL maturation
 - Understanding of manufacturing concepts
- Use of MRLs in policy
 - Program offices staffed/trained
 - Manufacturing a key component for milestone reviews
- Training
 - DAU acts as the primary DoD training agent
 - AFIT supports detailed manufacturing training

Additional Information

- MRL definitions can be found at DAU web site:
 - https://acc.dau.mil/CommunityBrowser.aspx?id=18231
 - Look for MR definitions
 - Look for MR matrix (threads)
 - Look for MRL tutorial
 - Look for MRA Deskbook
- Google manufacturing readiness assessments

In Closing

- Using a three-pronged approach to implementation
 - Piloting and incorporating into various programs
 - Training
 - Policy insertion
- Overall implementation is progressing
 - Air Force
 - DoD
- We are still learning and applying lessons learned

Air Force is Leading DoD-wide Implementation

Headquarters U.S. Air Force

Integrity - Service - Excellence

Rapid Prototyping: Leapfrogging into Military Utility

Mr. Randy Walden

Air Force Rapid Capabilities Office (SAF/RCO)

9th Annual NDIA Science & Engineering Technology Conference 16 April 2008

Rapid Prototyping Needed

- Asymmetric threat has a very short timeline for change
 - COTS timeline available to threats
 - WWW used by threat
- DoD Acquisition has relatively long timeline
 - Limited access to COTS
 - Budget process is multi-year
- Complex systems stress definition of requirements/architecture
 - Requirement trade-offs delay system
 - Only as fast as slowest element

SAF/RCO Rapid Prototyping

Objectives

- Rapidly develop new capabilities to counter the increasing pace of threat evolution
- Improve acquisition process; facilitate faster transition of S&T to warfighter
- Realistic definition of requirements & architectures for complex problems; prototype to innovate

Enablers

- Mindset: acceptance of 80% solution
- Team: leadership support, warfighter involvement, "A-team" executing
- Investments for the future: open architectures, etc.
- Experience: practice to improve

"Rapid Prototyping" in Commercial Industry

A tool for rapid design & manufacturing ...

A way to rapidly get products to market ...

A way to innovate ...

Not a new idea; approaches well established in commercial industry

Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary

Air Force Rapid Capabilities Office

- Established April 2003
- Mission: Expedite development and fielding of select DoD systems
 - Leveraging defense wide technology development efforts and existing operational capabilities
- Reports directly to Board of Directors
 - SecAF, CSAF, SAF/AQ, and USD(AT&L) chairs
 - Responds to Combat Air Force (CAF) and Combatant Command (COCOM) requirements
- Rapid Prototyping Example: National Capital Region (NCR) IADS
 - Enhanced Regional Situational Awareness (ERSA)
 - Norwegian Advanced SAM System (NASAMS)

National Capital Region Airspace

ADIZ – Air Defense Identification Zone

FRZ – Flight-Restricted Zone

IAD – Dulles International Airport

DCA – Reagan National Airport

ADW - Andrews Air Force Base

National Capital Region Airspace

ADIZ – Air Defense Identification Zone

FRZ - Flight-Restricted Zone

IAD – Dulles International Airport

DCA – Reagan National Airport

ADW - Andrews Air Force Base

RCO Rapid Developments

Enhanced Regional Situational Awareness (ERSA)

- Integrated air defense system for National Capital Region (NCR) in 2 years
- Operational for Jan 2005 Presidential Inauguration
- Developed and Fielded
 - Tower Mounted Radars
 - Aircraft ID
 - Visual Warning

Norwegian Advanced Surface to Air Missile System (NASAMS)

- Developed & integrated system into NCR IADS
- 9 months from Chairman JCS tasking to IOC

Rapid Prototyping Visual Warning System (VWS)

Visual Warning System developed by rapidly integrating COTS to create a new capability

Visual Warning System (VWS)

- Provide visual warning to errant pilots entering NCR airspace
- Eye safe system at aperture and beyond
- Precision pointing at single aircraft
- Special Flight Advisory has been published on meaning of lights
- Operational on 21 May 2005

Warning Sequence with translucent covers on

• Nighttime aircraft view from 3 nm, 28 Jan 05

NORAD uses the Visible Warning System U. S. Capitol, 12 March 2008

washingtonpost.com

Sign In | Register Now

The Washington Post
Print Edition | Subscribe

washingtonpost.com > Metro

AIR SAFFTY

Small Plane Enters Restricted Space

2nd Incident in a Week Prompts Calls to Refine Evacuation Process at Capitol

By Mary Beth Sheridan

Washington Post Staff Writer Thursday, March 13, 2008; Page B06

A small plane penetrated restricted air space and flew within six miles of the U.S. Capitol yesterday before being intercepted without incident, officials said.

A NORAD spokesman cites the use of the Visible Warning System

When air-traffic controllers couldn't reach the pilot by radio, military personnel on the ground aimed red and green warning lights at the cockpit, said Maj. Brian Martin, a spokesman for the North American Aerospace Defense Command, or NORAD. That prompted the pilot to veer west, Martin said.

Two F-16 jets from <u>Andrews Air Force Base</u> and a <u>Coast Guard</u> helicopter escorted the plane to <u>Leesburg</u> airport, where the pilot was questioned by the <u>Secret Service</u> and the FAA, officials said. He was not considered a threat, they said.

NDIA 2008 Walden-Rapid Prototyping - 12

12

12 March 2008 Events

- A Cessna 177 crosses the Air Defense Identification Zone (ADIZ) in violation of airspace rules
- NORAD warns pilot using the Visible Warning System
- The Cessna is escorted to Leesburg Airport by F-16 interceptors

NASAMS Integration Timeline

Chairman JCS Direction

AT&L funding **A**

Fire Control Cue Developed 🛕

Integration with fire control unit A

Fire Distribution Center

Live Fire Tests ▲ ▲

NORAD Validation and Acceptance Testing

NASAMS IOC in NRC

NASAMS developed, deployed and operational in nine months

NCR IADS

15

Key Attributes for Rapid Fielding

- Clear Charter with Clear Priorities
 - Schedule was #1; field ERSA by inauguration day 2005 (18 months)
- Senior DoD, Joint Staff, US Air Force, & US Army leadership buy-in
 - Short chain of command facilitated quick decisions
- Small, Focused, Empowered Team; 5 Program Office, 7 Contractor, plus key external POC's
 - Experienced, solution oriented, A-team type personnel
 - QRC focus Long hours, 6 & 7 days/week were routine
- Recognition of Need for After-Fielding Clean Up
 - Formalized needed leases and MOAs/MOUs
 - Minor safety adds to installed equipment
 - Long-term transition planning

Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
- E
 - Enablers to rapid development
 - Prototyping to innovate
 - Summary

Enablers to Rapid Development

• Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities

Enablers to Rapid Development

prototyping, and fielding of critical military capabilities

Open System Architecture Advantages

- Commonality allows lower cost ...
 - Plug and play pieces reusable from system to system
- Innovation enabler ...
 - Allows entrance of "smaller" players, often with innovative ideas
- Rapid development & rapid upgrades ...
 - Open design allows replacement of individual components
 - Allows isolation of components that evolve technically at differing rates (e.g., rapid Moore's Law advance in computing)
 - Upgrades vs. replace; more responsive to agile threats

Open Systems Support "Leverage Adapt" Strategy

- Open Systems supports "leverage and adapt" strategy; allows DoD to leverage commercial industry's investment
- Continuous upgrade/refresh possible to meet evolving threats and obsolescence

Layered Open System Architecture Approach

Change with technology and readily add new capabilities

Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
- Prototyping to innovate
 - Summary

Prototyping Facilitates Innovation

"It is far easier for [users] to articulate what they want by playing with prototypes than by enumerating requirements."

[†] Schrage, Michael, Serious Play: How the World's Best Companies Simulate to Innovate, Harvard Business School Press, December 1999.

Key additional use of rapid prototyping is for innovation; "simulate to innovate" concept

Development Approaches

Linear / "Waterfall" Approach Fixed Design

Design Build Use

Rapid Prototype Approach Inherent Feedback

- Assumes "design" can be accomplished apriori
- No developer / user co-design

- Build prototypes to explore "design" approach
- Iterate based on user feedback; design influenced by user response

Prototype to Innovate

National Capital Region IADS

 Integrated Air Defense for protection of the National Capital Region

Touch Table

 Vehicle for novel data extraction / representation and action

X-37B Orbital Test Vehicle

 Unmanned reusable vehicle test platform for new space technologies

Summary

- Rapid prototyping permits timely, cost effective military capability development
 - Strongly motivated by increasing pace of threat cycle
- Air Force Rapid Capabilities Office (SAF/RCO) established to expedite development of selected DoD systems
 - Number of successful projects (e.g., ERSA, NASAMS)
- Success of rapid developments dependent on variety of factors
 - 80% solution mindset, strong team, enabling investments (e.g., Open system architectures)
- Additional rapid prototyping role in innovating new military capabilities
 - Rapid prototyping cycle allows refinement of solution

Challenge to S&T Community

- Traditional "S&T Gap" still exists; greater warfighter interchange needed
- Apply rapid prototyping approach earlier in S&T development

Early insertion of new technologies
Faster innovation
Discovery of new / advanced capabilities

Mr. Randy Walden / (703)696-2407 / safcroworkflow@pentagon.af.mil

9th Annual Science & Engineering Technology Conference / DoD Tech Exposition

Boeing's Approach to Innovation & Technology Integration

Dr. David Whelan

Vice President & Deputy GM, Advanced Systems & Chief Scientist, Integrated Defense Systems The Boeing Company

April 16, 2008

The Boeing Company Today

Boeing Technology

Integrated Defense Systems

Boeing Commercial Airplanes

Integrated Defense Systems

Customers Demanding Connected, Integrated and Intelligent System of Systems

Boeing is balancing a customer pull for integrated systems with technology push for "Innovation"

Copyright © 2007 Boeing. All rights reserved.

Innovation Strategy

Boeing Technology

Integrated Defense Systems

- Leverage Boeing technology to find & develop growth platforms:
 - Markets & businesses that meet Boeing criteria
- Create competitive advantage in new markets and businesses
 - Leverage Boeing's differentiated assets
 - Focus on Breakthrough Technology
 - Create new verticals via development/acquire
- Leverage outside R&D resources (DARPA, military labs, universities,...)
- Efficient Stage/Gate Innovation Process
 - Migrating growth opportunities to comfort zone

Strategy for Technology Integration – Spiral to Core

Boeing Technology

Integrated Defense Systems

The Key was to move FCS toward the core by:

- ✓ Partnering
 - Experimentation & Customer Feedback
 - Teamed with SAIC
 - Army Land Combat domain knowledge
 - **3** Army LSI for FCS
 - UDLP & GD added
- √ Spiral Development
 - Phased Technology Increments
- ✓ Spiral Out
 - **5** To Current Force

Technology Integration Driven by Customer Requirements (Pull) and Innovation (Push)

Boeing Technology

Integrated Defense Systems

Understand Customers Most Important & Deficient Capability Needs

Spin-off to Adjacent Markets (Next Square²)

Develop Market-Driving Growth Strategies

Identify
Capability Needs &
IP Considerations

Capability Gap

Identify Technology Needs (Technology, processes, skills)

Competitor Analysis State of the Art Analysis*

Technology Sources

- Phantom Works
- IDS Businesses
- Strategic Partners
- Suppliers
- CRAD
- Government Labs
- Strategic Universities

Capability Currently Available

Prioritize & Allocate Investments

Develop,
Integrate
& Protect
Technologies

Transition and Insert
Technically Superior
Solutions For
Achieving Growth
And Productivity

* - Technology Watch and Disruptive Technologies - STFs

21st Century Defense Technology Vectors

Boeing Technology	eing Technology Integrated Defense Systems	
Key Vectors	Boeing Perspective Products Development Research /	<u>Imperatives</u>
Precision Sensing, Navigation & Timing		mall SDB 10 x improvement, Integrate Comms &
Integrated C4ISR	FCS SOSCOE EP-X Un-blinking Ey P-8A <u>TSAT</u> Foliage Pe	between ISR Systems
Info Assurance	EA-18G JTRS High Integrity Knowledge Railhead Secure Network Server (SNS)	High Integrity Networks & Computer Systems
Nano-electronics & Nano Technology	G-bytes/sec Analog-Digital RF & Digital Systems on ASIC Processors Mission Specific Processors	Chip Intelligence at the edge, 20 yrs till Silicon = Human
Laser & Photonics	ABL Laser Comms ATL Solid State HE Lase	Communicate, Tag and Engage at the Speed of Light
<u>Unmanned</u> <u>Systems &</u> <u>Robotics</u>	ScanEagle FCS Robotics Variably M A-160 Orbital Express	
Energy & Environment	Lorroctrial Solar Colle RWR	High Efficiency, Zero Emissions, Alternate Energy, Alternate Energy,

Successful Technology Integration Requires M&S, Experimentation, and Rapid Prototyping

Boeing Technology Integrated Defense Systems Rapid Build a Little **Prototyping Lessons Learned** Test a Little **Experimentation** Think a Lot **Modeling &** Simulation Conceptual Idea

Key Components for Successful Technology Integration

Copyright © 2007 Boeing. All rights reserved.

Modeling & Simulation Environment

Boeing Technology

Integrated Defense Systems

Live-Virtual-Constructive enables Pilots to fly real hardware in live events without live fly costs

Copyright © 2007 Boeing. All rights reserved.

Technology Evaluation through Experimentation

Boeing Technology

Integrated Defense Systems

- Experimentation, using M&S, enables exploring the impact of new technology at every level of insertion...before building or buying
 - For example, improved sensor and data link capability in A&M aircraft supporting BP counter drug operations (existing military or entirely new)
 - Or new counter cruise missile radar/sensor capabilities
 - Or better forest firefighting equipment
 - Or new WMD detection capabilities
 - Or direct hospital to first responder medical support technologies
 - Or ...

Copyright © 2007 Boeing. All rights reserved.

Boeing's & Iridium's "Group Call" On-Orbit Upgrade

Boeing Technology

Enables Iridium Cellular system to function a "UHF Satcom Radio"

- Service(s)
 - Support DOD customers
 - Encrypted service, does not require call intercept
 - Three types of Services
 - Push to talk (PTT)
 - Broadcast
 - Position Location Information (PLI)
 - GC shall not impact the call performance of non-GC users
- Security
 - All group calls shall be encrypted
 - System shall have the capability of disabling specific users if equipment is lost or stolen
 - Encryption key management shall be provided
 - All group members shall have the latest encryption update prior to joining a GC

Boeing has already been able to upgrade the constellation to offer new services with Army utility

High Integrity GPS (iGPS Enhancement via Iridium)

Enabled by Horizontal (ground) Integration of Iridium Nav-Com System & GPS

- Disruptive innovation opportunity to address unmet needs
 - Antijam, Accuracy, Integrity, Availability
- Creates a more Robust PNT Constellation
- Integrates GPS's Psuedorange multilateraltion with Transit's FDOA
- Initial capability deployable by 2010

Application: Early SOF iGPS Capability to SOCOM

Boeing Technology

Integrated Defense Systems

US Opportunity:

Decisive Navigation Superiority that is Secure and Dependable

- More Robust GPS
 - Accuracy, integrity, and availability
- Keep GPS During Electronic Countermeasures
 - iGPS AJ Prevents ECCM from interfering with DAGR
- Improve GPS Availability in Restrictive Environments
 - Forests, Mountainous, Urban
 - iGPS Redundant Dynamic Ranging Counteracts Sky Blockage in spite of High Mask Angles
- Support Global JBFSA
 - iGPS offers 2-way satellite data link and JBFSA GUI embedded in DAGR
 - Network of DAGRs can triangulate enemy jammer locations
- Rapid (<2 min) Time to First Fix under Severe Jamming (>70 dB J/S)
 - Improves battery life for extended missions

Boeing Technology

- Autonomous Vertical-UAS utilizing Optimum Speed Rotor technology coupled with other design features to achieve long endurance and long range with significant payload capability
- Wide mission range
 - C4ISR
 - Organic armed ISR
 - Utility missions
- DARPA-Army program, began in 1998 presently in Phase I (started Aug 2003)

- Advanced Rotor
 - Optimum (Variable) Speed Rotor (OSR), 50-100% RPM
 - Low Disk Loading
 - High Lift/Drag Blade Airfoils
 - Hinge-less Rigid In-Plane Rotor for Precision Control
- Fuselage
 - Aerodynamically clean retractable main gear
- Autonomous Vehicle Flight Control
 - Flight Waypoint Control
 - Auto take-off and land
- Structure
 - Lightweight high stiffness blades
 - Lightweight fuselage
- High Fuel Fraction

A160 Phase I Performance Goals

Boeing Technology

Integrated Defense Systems

- 20 hrs (sea level) endurance with 300 lb payload
- HOGE of 15,000 ft altitude; flight at 30,000 ft altitude
- >2,200 nm range
- Airspeed to 140 knots

- Re-supply delivery of 1000 lb payload to a radius of 500 km
- System reliability to enable 1,000 flight hours between air vehicle losses

DARPA & Boeing's Orbital Express: On-orbit servicing enhances space missions

Autonomous Rendezvous & Soft Docking allows:

- Inspect & service satellites / spacecraft
- Deliver commodity consumables / cargo
- Assemble large space structures

Future Systems Enabled by Orbital Express

Boeing Technology

Integrated Defense Systems

Demonstrated key technologies to build a future operational system.

The concept of operations provides:

- A servicing vehicle to rendezvous with client vehicle.
- Required services.
- Rendezvous with a commodities depot to replenish supplies before servicing the next client vehicle.

Capabilities enabled by servicing include:

- Refueling Avoidance

Maneuverability De orbit

Resolution Repositioning

Time over target Contingency refueling

Increased life Coverage patterns
Randomization Reduce launch mass

- Replace or upgrade component

P3I – new technology infusion

Contingency replacement or repair

- On-orbit assembly, test, and checkout

Large space optics

NASA exploration concepts

- Asset Inspection

Blended Wing Body

Boeing Technology | Phantom Works

Blended Wing Body – Multi-Role Platform

BWB Low Speed Vehicle (X-48B)

Investigate

- Stall characteristics & departure boundaries
- Asymmetric thrust controllability
- Control surface hinge moments
- Dynamic ground effects

Vehicle Characteristics

- Max Equiv Airspeed: 118 kts
- Max Altitude: 10,000 ft MSL
- Vertical Load Factor Limits: +4.5 to -3.0 g's
- Flight Duration: 30 to 50 min
- Emergency Recovery System (Drogue, Parachute, and Air Bags)

X-48B As Initial Flight Mechanics Risk Reduction

Boeing Technology | Phantom Works

Blended Wing Body - Multi-Role Platform

- First flight July 20, 2007;
 11 flights completed
- Addressing risk reduction
 - Low speed flight environment
 - Flight mechanics (flight control laws, stability and control characteristics)
 - Secondary Power (control surface / actuator power)

Summary: Transitioning Technology

Boeing Technology | Phantom Works

Blended Wing Body – Multi-Role Platform

- Fulfilling Customer Needs via Technology Innovation
- Balance of Technology Push and Systems Pull
- M&S, Experimentation and Demonstrations Critical

Connect – Detect – Protect – Project...FCS

FCS (BCT) System-of-Systems Schedule

Potential for Inserting Technology/Capabilities

FCS Technology to the Force

B-Kit Spin Out 1 Status

KEY ACCOMPLISHMENTS:

- ✓ Abrams, Bradley and HMMWV NET
- ✓ SO1 B-Kit FQT SW to Current Force Vehicles
- ✓ B-Kitted HMMWV, Abrams and Bradley delivered for test

FY08-09:

- AETF Evaluation Events
 - PTRR: 2Q FY08
 - TFT Dry Runs Start: 2Q FY08
 - TFT: 2Q FY08FDT&E: 3Q FY08LUT: 3Q/4Q FY08
- Abrams and Bradley Final Safety Release: 2Q FY08
- Complete Abrams and Bradley IQT at APG: 3Q FY08
- SO 1 Milestone C: 2Q FY09

UGS Spin Out 1 Status

U-UGS

KEY ACCOMPLISHMENTS:

- **✓ UGS NET**
- √ T/U UGS prototypes delivered for test

FY08-09:

- AETF Evaluation Events
 - PTRR: 2Q FY08 - IQT: 2Q FY08
 - TFT Dry Runs Start: 2Q FY08
 - TFT: 2Q FY08 - FDT&E: 3Q FY08
 - LUT: 3Q/4Q FY08
- SO 1 Milestone C: 2Q FY09

ISR Sensors

Sensors

T-UGS

EO/IR Sensors

Non Line of Sight Launch System (NLOS-LS) Spin Out 1 Status

KEY ACCOMPLISHMENTS:

- ✓ Current Forces Integration
- √ (AFATDS (FA Control Cell), FOS, CFFT)
- ✓ Container Launch Units (CLUs) Delivery
- ✓ Five prototype CLUs delivered
 One additional CLU in Feb
- ✓ Conducted NLOS-LS NET
- ✓ Conducted NLOS-LS LOG Dem

FY08-09:

- NLOS-LS Flight Testing
 - CFT-12: 2Q FY08
 - CTV-2: 2Q FY08
 - CFT-13: 3Q FY08
 - NLOS-LS GTV 1-9: 4Q FY08 1Q FY09
- AETF Evaluation Events
 - TFT: 2Q FY08
 - FDT&E: 3Q FY08
 - LUT: 4Q FY08
- Award of Long Lead Items Contract: 2Q FY08
- SO 1 Milestone C: 2Q FY09
- NLOS-LS Flight LUT: 2Q FY09
- Production Decision/LRIP I Award: 3Q FY09

CLU

Class I Unmanned Aerial Vehicle (UAV) Block 0 Acceleration

Key Accomplishments

- AETF NET
- Acceleration Reviews
- MAV Deployed with EOD and other units

FY08-09:

- Continue in theater assessment: pres-FY09
- C4 Network Integration: 1Q-3Q FY08
- E3 and Environmental Safety Tests: 3Q FY08
- Blk 0 Delta NET: 3Q-4Q FY08
- Proceed decision: 4Q FY08

Small Unmanned Ground Vehicle (SUGV) Block 1 Acceleration

Key Accomplishments:

- Mobility testing
- Drop test
- EMI testing
- Water resistance
- ✓ Safety release
- AETF NET Soldiers Trained
- 3 Prototypes delivered

FY08-09:

- NET: 2Q FY08
- User events/test: 3Q/4Q FY08
- C4 Network Integration: 2Q/3Q FY08
- Deliver 22 units to the AETF (3Q FY08) for experimentation testing scheduled for the Summer of 2008.
- Proceed Decision: 4Q FY08

NLOS-Cannon Status

- ✓ July 07 Completed Stability Testing
- ✓ Nov 07 Completed ROF/ACCS/DI Testing
- ✓ Dec 07 Fired Excalibur Mass Simulators w/Tactical Bases
- √ >1500 Rounds Fired on the Firing Platform as of 18 Feb 08

FY08-10:

- Safety Release Maintenance & Re-Arm: 3Q FY08
- NLOS-C P1 Roll Out at Army Ball: 3Q FY08
- NLOS-C Congressional MS C: 1Q FY09
- Soldiers Driving/Firing NLOS-C at YPG: 2Q FY09
- NLOS-C Fielded to AETF: 4Q FY09

FCS Technology to the Force

FCS – Reducing the "Log FOOTPRINT"

One Team-The Army/Defense/Industry

FCS Increment 1 Threshold Design (2012-2014)

Current Force Maintenance

58 Abrams

109 Bradley

27 Hercules

78 = Field Level

19 = Sustainment

FCS Maintenance

60 MCS

102 ICV

10 FRMV

10 = Field Level

<11 = Sustainment

Fewer soldiers required for logistics

FCS MGV Reliability Design Improvement Over Current Force Platforms

Mean Times Between System Abort (MTBSA) in Hours (More is Better)

Maintenance Ratio (MR) (Less is Better)

Commonality maintains high, consistent component reliability across FCS platforms

- MTBSA Source: RAM-T Cases, Sept 04
- MR Source: Affordability and Strategic Integration IPT
- All costs based on LSI estimates, not the Army Cost Position.

Cyberspace: New Frontiers in Technology Insertion

Dr. John S. Bay, ST
Chief Scientist,
Air Force Research Laboratory,
Information Directorate

AFRL Structure

AFRL/RI Core Technical Competencies (CTCs)

Information Exploitation Information Fusion & Understanding Information Management Advanced Computing Architectures Cyber Operations Connectivity Command & Control

CyberSpace Operations

DoD Definition: Cyberspace is a domain characterized by the use of <u>electronics</u> and the <u>electromagnetic spectrum</u> to store, modify, and exchange data via <u>networked systems</u> and associated infrastructures

Lt Gen Bob Elder

Some Important Characteristics of Cyber Operations

- Low cost of entry
 - The enemy can be a disgruntled individual with a cheap computer
- Not characterized by physical or geographic boundaries
 - The enemy can be anywhere and everywhere, outside and inside
- R&D and Operations are done in highly classified environment
 - Makes information sharing difficult
- Often relies on exploits that are easily discovered and repaired
 - Sometimes, we only get "one shot"
 - Offense and defense are tightly coupled
 - Technology turnover/refresh

Characteristics of AFCYBER that Catch Our Attention

- Effects, C2, and assessment are to be implemented as integrated capabilities
 - Integrated with other kinetic and non-kinetic capabilities
- The 8th AF capabilities will be organized around an AOC
 - Implies known structure, CONOPs, and doctrine, but only for air and space domains
- The executing authority is the COMAFFOR/JFACC
 - Implies known resources, training, responsibilities, but only for air and space domains

The parity of Cyber with Air and Space domains suggests parallel concepts in C2, battle management, and intelligence technologies

Cyber Operations Technology Thrusts

1. Access

2. Stealth & Persistence CYBER

3. Cyber Intelligence OFFENSE

4. Effects (D5) Deny, Disrupt, Degrade, Deceive & Destroy

5. Avoid

6. Defeat CYBER

7. Survive DEFENSE

8. Recover

9. Situational Awareness CYBER

10. Education SUPPORT

Warfighting Concepts with a Cyber Twist

ATR

- What is a "target" in cyberspace?
- How do we recognize it when we see it?

ISR

– What sensors can we deploy, and how are these assets shared?

EBO/EBA

- In cyberspace, the observability of effects is tenuous
- Second-order effects and cause/effect relationships even more so

BDA

Cyber effects propagate in hard-to-detect ways; including in peoples' behaviors. What
is total effect? Can we determine in real-time?

AOR

Can cyberspace be sensibly decomposed into manageable combatant commands?

SA and PBA

- "Situation" is an abstract concept in cyberspace.
- Visualizations and dynamics (motion, patterns) are ill-defined

C2 tools

- Can kinetic and cyber tools be controlled with a single toolset?
- Can kinetic and cyber tools be integrated/synchronized in a single operation?
 Approved for public release; distribution unlimited. Document number Document Number WPAFB 08-2520

AFCYBER Key Areas

FY 07

- Cyber ORM
- Software Assurance
- Critical Infrastructure Identification
- Offensive Cyber Program Research

FY08

- Mission Assurance
- Security Enhancements (Full CAC compliance)
- Expanded data encryption (at rest and in transit)
- Sensitive data offline storage
- Globally Linked AOCs
- Offensive Cyber Program
 Development (Integrated with Air and Space C2)
- DIB IA

FY09

- Expeditionary Networks
- Counter IO: Data protection
- IP camouflage
- Active Defense
- Critical Infrastructure Protect
- Boundary monitoring
- Cyber Control

FY10

- Network Survivability
- Cyber Attack
- Cyber Interdiction
- Sensor Disruption
- C2 Disruption
- Cyber enabled weapons degradation
- Electronic Sys Attack (w/ DE)

"Traditional" AFRL Transition

6.1 → 6.2 → 6.3, Critical Experiments and Advanced Technology Demonstrations

Advanced Technology Council

<u>Lab</u> (☆☆)

- Identify ATD Candidates
- Budget for Technology Programs
- Develop Transitionable Technologies

User (☆☆☆)

- Define Requirements
- Budget Transition
 Funds

Center (☆☆☆)

- Interpret Requirements
- Build Transition Program
- Integrate Into Systems

POM-Oriented Transition

ATD Categories

- Category 1: MAJCOM or Agency supports and has programmed required funding for transition within the FYDP
- <u>Category 2A:</u> MAJCOM or Agency supports and is committed to identify transition funding in the next Program Objective Memorandum (POM) cycle or Amended POM
- Category 2B: MAJCOM or Agency supports but is not currently able to program for transition funding

Traditional Acquisition

Traditional acquisition practices support the development, deployment, and sustainment of long term, highly capable systems

- Focus on minimum risk
- Stable requirements (or a known roadmap)
- Dedicated development and test cycles
- Refined over years based on large body of experience
- 10 year cycle typical for development to transition & Integration

Research

TRL 1

Technology Readiness Levels

Basic principles observed and reported

ution unlimited. Document number Document Number WPAFB 08-2520

The Current Landscape

Applied Technology Council

Means for Tech Transition Advanced Technology Demo (ATD) Advanced Concept Tech Demo (ACTD) Technology Planning IPT Technical Events (JEFX, CWID etc.) SPD Initiative Industry Initiative Senior Leader Initiative

Fech Transition "Seam"

Emphasis is Necessary on Technology Transition

- Sustained Senior Leader Emphasis
- Continuous Communication
- Integrated Process
- Budget For Production Incorporation

Document number Document Number

The S&T Transition Struggle

Technology Standards

New Ideas

Tech. Push

Strategic

- Meets Planners Projections
 - General Technology
 - Future Capability
- General Applicability
 - Enhances Performance
 - Foundation (i.e. Open Syst.)
 - Lead Industry
- Expandability General
- Flexibility General

Tran Sit Gap

Acquisition Standards

Tactical

- Meets User Need
 - Specific Capability
- GOTS/COTS Avail.
- TRL Level Validated
- Production Capable
- Allows COTS Prod. Integration

Req Pull

Current Needs

CYBER Transition Requires new Acquisition Processes

- Cyber Acquisitions may require:
 - Very rapid, urgent fielding needs (days to weeks)
 - Agile development and fielding (months)
 - Traditional development, fielding, and sustainment (months to years) with regular capability "releases" or spirals
- Application to very short cycle times requires alternative approaches
 - Decreased research & development time
 - Limited test and verification
 - "Short tail" logistics
- Strategies to continually innovate and assess
 - threats and emerging technology,
 - Rapid prototyping
 - Supporting AFCYBER stated capability needs
 - Develop key partnerships
- Migration of some development and assessment efforts to "preneed" phase
 - Emerging threat R&D strategy to complement reactive acquisition strategy

Full Spectrum Acquisition

Alternative Transition Paths

Conclusions: The Changing Battlefield of CyberSpace

"Transition to WHAT?"

Summary

- Rapid research & development strategies
- Constant reassessment of changing landscape resulting in short duration R&D efforts and rapid technology transition
- New acquisition strategies required
- New relationship between research and acquisition
- Innovative challenges/opportunities for community to develop a responsive cyber research and development strategy to work with a full spectrum acquisition capability
- AFRL/RI to lead R&D for the cyber big "A" team

Questions?

The Battle in Cyberspace

NDIA Science and Engineering Technology Conference/ DoD Technology Exposition

April 17, 2008

Gary Powell
OUSD(AT&L)
gary.powell@osd.mil

Defense Budget Trends

(DoD Budget Authority)

Source: USD (Comptroller) National Defense Budget Estimates for the FY 2009 Budget (Green Book)

GAO

United States Government Accountability Office

Report to Congressional Committees

March 2008

DEFENSE ACQUISITIONS

Assessments of Selected Weapon Programs

GAO-08-467SP

"...total costs for the fiscal year 2007 portfolio of major defense acquisition programs increased 26 percent from first estimates ...development costs ... increased by 40 percent ... In most cases, programs also failed to deliver capabilities when promised - often forcing warfighters to spend additional funds on maintaining legacy systems...Of the 72 weapon programs we assessed this year, no program had proceeded through system development meeting the best practices standards for mature technologies, stable design, and mature production processes – all prerequisites for achieving planned costs, schedule, and performance outcomes."

Why Should DoD Invest in Basic Research?

A Presentation for

The 9th Annual NDIA Science & Engineering Technology Conference/DoD Tech Exposition

Dr. William S. Rees, Jr.

Deputy Under Secretary of Defense
(Laboratories and Basic Sciences)

Office of the Director

Defense Research and Engineering,

April 15-17, 2008

- The growth rate of the world population is declining
- 90% of population growth is in developing and poorer countries
- 40% of the world's population 2.5 billion people live on less than \$2 per day
- Proportion of working age adults (15-59) is expected to decrease in every area except Africa
- 880 million people were illiterate, 250 million children worked and 110 million school age children did not attend school, as of 2000

- By 2030, China is expected to have 348 million people over 60, nearly as many as the entire projected population of the US
- 13% of the global population lived in cities in 1900. Today the global proportion of the urban population is 49%. 60% of the globe's population - 4.9 billion people - will live in urban areas by 2030
- Massive urbanization 17 of 22 "mega cities" will be in the developing world by 2015.

- Since the 1970's, weather/climate-related losses have increased about 10% per year and accounted for 88% of all property losses covered by insurers from 1980 to 2005
- India and China will develop "first world" energy appetites
- Many oil exporting countries may use production for their own economies

- Current major supplies of petrochemical products will not keep pace with projected demand
- Only 12 years from now, machine intelligence could equal or surpass that of humans – eventually, it will become impossible to differentiate between man and machine
- Weapons of mass effect will shrink and proliferate: nuclear, bio, directed energy, nanotechnology, and CYBER

- Science, technology, and engineering are available globally
- US scientific leadership is at risk
- Multi-disciplinary technologies will have revolutionary impact - 70 % of world R&D is conducted outside the US
- China is now the third largest investor in R&D (adjusted for purchasing power), behind only the US and Japan

 The United States is today a net importer of high technology products (+\$54B in 1990 to -\$50B in 2001)

OUTLINE

DoD Basic Research

DoD STEM Education

Prize Competition

Leaders support Basic Research

President Bush :

"...double federal support for critical basic research in the physical sciences..."

The Secretary of Defense supports Basic Research

"... greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget."

Basic Research

 Basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts <u>without specific</u> <u>applications towards processes or products in</u> <u>mind.</u>

It is farsighted high payoff research that provides the basis for technological progress.

Source: DoD Financial Management Regulation, Volume IIB, Chapter 5, June 2004, 050201 RDT&E Budget Activities.

Why Does DoD fund Basic Research?

- DoD is perpetually, permanently in the capability business
- By Te We cannot know when a discovery will
- Ba become a capability but we know with ide absolute certainty that without
 Th discovery, our capabilities remain
- Sci static.

tetmos

- Technologies move rapidly across borders
- If technology exists, it will be used, first in weapons

Why Does DoD fund Basic Research?

- Generates discoveries, new knowledge, and improved understanding
- Achieves technological superiority
- Prevents technological surprise
- Educates scientists and engineers in physical science disciplines
- Ensures that scientific expertise and engineering rigor supports DoD technical decisions
- Sustains the human talent and research infrastructure

DoD S&T Requests

Note: Advanced Technology Development funding began in FY78

DoD Basic Research Funding FY1998-2009

RDT&E Budget Request Growth

FY09 Compared to FY08

RDT&E Budget Request Growth

FY09 Compared to FY01

FY08 & 09 DoD 6.1 Budget Request

Sources & Destinations of Defense Basic Research Funding

Sources: FY09 President's Budget & DoD component inputs to NSF

Recipients of DoD S&T Funds

FY09 President's Budget Request for DoD Basic Research

TOP AND THE STATE OF THE STATE

Conceptual Strategic Planning Process

Joint Operational Capability Gaps

QDR, SPG

Not all joint operational capability gaps will have S&T capability gaps

Joint S&T
Capability Gaps

JWSTP

Extant Service specific Basic Research program

Not all joint S&T capability gaps will demand basic research investment

Map S&T Gaps Against Services' Basic Research Programs

Joint, Basic Research investment gaps

Some Service basic research initiatives address enterprisewide issues

Department-level Basic Research Investment Guidance

classified

Quadrennial Defense Review

Irregular

Defeat

Terrorist

Extremism

Catastrophic

Counter

WMD

Defend

Homeland

"Shifting Our Weight"

Today's Capability
Portfolio

Traditional

Shape Choices

Disruptive

Desired S&T Investment Areas

FY07 DoD Basic Research

(by Taxonomy Category)

Addition to DoD Basic Research

\$M	FY08 PBR	FY08 Appropr iation	FY09 PBR	Change from PBR 08	Real Change from PBR 08
Army	305.8	381.5	379.4	24.06%	21.36%
Navy	467.2	506.1	528.3	13.06%	10.61%
Air Force	375.2	407.7	452.3	20.55%	17.93%
Defense- Wide	279.9	338.3	338.7	21.00%	18.37%
Total Basic Research	1,428.1	1,633.7	1,698.6	18.94%	16.36%

OUTLINE

DoD Basic Research

DoD STEM Education

Prize Competition

A Unique National Security Problem

Job Applicants

Desired Employees

Job Applicants

Not Clearable

Glearability

Clearable at highest level

Opportunities

- "The development of a strategic S&T scouting effort linked to the US university and private
 - "When I compare our high schools to what I see when traveling abroad, I am terrified for our workforce of
- tomorrow."

- Bill Gates

technology, and engineering education in the United States."

Source: "Joint Operating Environment" United States Joint Forces Command, December 2007, page 53

- They watch wars and revolutions live on TV and the Internet
- Elvis died 20 years before they were born
- Satellite radio has been around since they were 5 years old
- They have only known two presidents
- WWI started nearly a century before they were born
- They have never seen a film camera
- There have always been hybrid cars

- They have always been online
- They have never known a world without digital phones or DVDs
- Soviet Union fell 7 years before they were born
- When Sputnik was launched, their parents were in kindergarten
- Their buddy lists span the globe.
- There has always been one Germany
- One electronic device does it all: TV, Internet, Phone, Music, Data, Computing

Globalism

- Millennials grew up seeing everything in the world as:
 - Global
 - Connected
 - Open for business 24/7

They are taking longer to graduate from college

- Only 37% of first-time freshmen at four-year schools earned their bachelor's degrees in four years
- Another 6% took up to six years

- They are technology sophisticates
- Through media multitasking kids are spending 6.5 hours a day with media, but are packing more than 8.5 hours worth of exposure into that time

Younger kids have more and more media devices; of those 8-14 years old -

- 39% have cell phones
- 24% have a hand-held Internet device or PDA
- 12% have a laptop computer

NDEP Portfolio Components

Potential DoD Employees

Undergraduate Graduate

SMART

DoD **Employees**

Post-**Graduate**

NSSEFF

DoD **Affiliated Faculty**

SMART's National Impact

NDSEG -Fellows' Undergraduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers

NDSEG –Fellows' Graduate Schools

As percentage of fellows selected for given year, with respect to FY07 top numbers

OUTLINE

DoD Basic Research

DoD STEM Education

Prize Competition

Wearable Power Prize

- 1st Prize \$1M, 2nd prize 500K, 3rd prize: \$250K
- Goal: Reduce weight of Warfighters' power systems
- Competitors will produce prototypes that provide 20W average electric power continuously for 4 days, attach to a vest, and weigh 4 kg or less
- Capstone event will be held on October 4th, 2008, at the Marine Corps Air-Ground Combat Center, Twentynine Palms, California. See: http://www.dod.mil/ddre/prize

Wearable Power Prize Team Registrations

U. S. Department of Defense

Dr. William S. Rees, Jr. Deputy Under Secretary of Defense (Laboratories and Basic Sciences)

Office of the Director
Defense Research and Engineering

(703)-692-4592 william.rees@osd.mil

DOD Technology Innovation & **Transition**

Science and Engineering **Technology Conference** 15 April 2008

Strategic Initiative for Innovation and **Technology Transition**

Kathleen L. Harger Assistant Deputy Under Secretary of Defense Innovation and Technology Transition

The Landscape Has Changed

Drivers Behind the Change

- Technology access now on a global scale
- Proliferation of potentially disruptive technologies
- Greater uncertainty of security challenges
- Fewer resources
- DoD no longer at forefront of most technology research
- Warfighting-relevant technologies have short refresh cycle
 - → "Time-to-market" is the imperative

But...

- Linear acquisition process
- "Inward-looking" culture
- Barriers to entry for non-traditional businesses

The Call to Change

Congress

- Public Law 107-314, Dec 2, 2002 Technology Transition Initiative
- Section 255 of the FY06 Defense Authorization Act Requesting DOD Report on Technology Transition Barriers and Challenges
- Public Law 109-163, Jan 6, 2006 Technology Transition
- GAO Report, "Best Practices: Stronger Practices Needed to Improve DoD Technology Transition Processes" (2006)

Advisory Committees

- Defense Science Board Task Force, "Technology Capabilities of non-DoD Providers" (2000)
- National Research Council of the National Academies, "Committee on Accelerating Technology Transition" (2004)
- Defense Science Board Summer Study, "21st Century Strategic Technology Vectors" (2006)
- Defense Science Board Task Force, "Defense Industrial Structure for Transformation" (2007)

The Call to Change

Office of the Secretary of Defense

- Defense Acquisition Performance Assessment, Jan 2006
- Advocate for Innovation & Technology Transition created in Mar 2007
- DoD Report to Congress on Technology Transition, Sep 2007
- Strategic Initiative on Innovation and Technology Transition, Dec 2007

DepSecDef: "Breakdown the walls...that inhibit the efficient transfer of commercial technology into Warfighter hands"

USD (AT&L): "Drive the capability to defeat any adversary on any battlefield"

Strategic Initiative on Innovation & Technology Transition

Create an Enterprise-wide strategy for accelerating the movement of technology from any source to our warfighters

Technology Life Cycle

Innovation and transition must be inextricably linked in the Technology Life Cycle to address both urgent wartime needs and long-term military requirements

Solution Focal Points

Across Defense and

Beginning of turning outward, End-to-end existence proof, Seeds of acquisition reform And 21st century leadership

Expansion of outward focus. Leverage defense base for harvesting, remove global barriers

Routine outreach, defense industry walls porous with routine commercial access, globally-savvy, entrepreneurial leadership

Near-Term Initiatives

- Global Outreach: Harvest technology and innovation in the private/global marketplace through collaborative venues whereby non-traditional sources can access information concerning DoD needs, opportunities for interactions, and streamlined approaches to doing business with DoD.
- <u>Barriers to Entry for Non-Traditional Suppliers</u>: Promote flexible contracting instruments through creation of a "non-traditional business cell" pilot program.
- Strategic Linking of Agile Acquisition Programs: Create enterprise-level strategy for deliberate and aggressive use of authorities and investment opportunities associated with agile acquisition.
- <u>Culture of Harvesting</u>: Create environment that rewards global outreach and attracts the best and brightest to collaborate with/work in our S&T and acquisition communities.

How Will We Know We've Succeeded?

- When we have an 'outward' looking culture in which we seek and access innovation from any source
- When it becomes standard practice to collaborate inside and outside the Department
- When we embrace the use of flexible contracting as a way of doing business
- When the linking of our agile acquisition authorities and investments, driven by a corporate strategy, results in more affordable and effective capabilities
- When our Warfighters can defeat any adversary on any battlefield

Contact Information

Ms. Kathleen L. Harger
Assistant Deputy Under Secretary of Defense
(Innovation & Technology Transition)
Office: 703.607.5311

Email: Kathleen.Harger@osd.mil

11

The Men and Women of Lockheed Martin

4

- 140,000 Employees
- 70,000 Scientists and Engineers
 - -25,000 IT Professionals
- Operations in 1,000 Facilities, 500 Cities,
 50 States and 75 Countries

Partners to Help Customers Meet Their Defining Moments

Redefining What Is Possible

Hypersonics

Biometrics

Return of Crew Space Exploration

A Passion for Invention

Large Scale Friction Stir Welding (FSW) for Performance & Cost

LO2 Barrel Welds (OB)

4 each 8 -feet long Tapered Thickness **LH2 Barrel 1 (Longeron Welds)**

4 each 15-feet long Tapered Thickness

Barrel Welds 8000 inches out of 36,000 total inches

LH2 Barrels 2, 3 and 4 Welds

24 each 20-feet long

LH2 Barrel 1 Welds (HB1)

6 each 15-feet long

FSW – An Amazing Innovation!

Friction Stir Welding

The Concept

Produced by Graphic Services

Lockheed Martin Space Systems Company

Michoud Operations

LOCKHEED MARTIN

FSW Versus Fusion Welding

	FSW	Fusion
Weld Set Up	Schedule Selection Pin Tool Selection	Schedule Selection Shield Cup Design Orifice size Tungsten position Tungsten size/type Wire alloy and diameter
During Welding	Plunge depth/load Rotation speed Weld speed Centerline position Pin length (tapers)	Current Voltage Travel speed Wire feed rate APC/AVC Additional Reverse Current Plasma gas and flow Shield gas and flow
Friction Stir Welding vastly reduces and simplifies the process variables		Back side Purge gas and flow Pulse Frequency/Duty Cycle Arc gap Oscillator width (Cover pass only) Oscillator dwell (Cover pass only) Oscillator speed (Cover pass only)

FSW Barrel Weld Tool

Manufacturing Process Simplicity on a Large Scale

Shop Floor Innovation: Flexible, Reconfigurable Factories

- Modular workstations with quickconnect utilities wired underneath the floor
- The workstations are daisy chained together forming work cells
- The stations are mobile, can be customized, and can be set to a variety of heights and configured with numerous shelving options
- They can be converted to class 10K flow booths to meet production needs
- The workstations and cells are so flexible that entire cells can be reconfigured in two hours

Fire Control Factory Engineered Workstations

Engineered Workstation

- Standardized approach and design engineered for flexibility and functionality
- Integrated casters and utility chase allow workstations to be disconnected, relocated and reconnected in a matter of minutes
- Utility chase for power, air, phone and LAN
- Need a class 10K flow booth? Simply wheel the portable flow booth to the workstation

Lean + Agility = Affordability

10K Flow Booth Option

Relocate, Connect and Go

Fire Control Factory Engineered Equipment

Self-contained Oven and Mix Booth

- Factory equipment designed to support rapid rearrangement & flexibility
- Custom designed oven set-up and mix station incorporate filtration system eliminating need to vent to the outside environment
- Casters and standard 110v power operation further simplifies rearrangement

Integrated Composite Technology for Large Aircraft Structures

Optimize Cured Laminate Compensation (CLC) Process

- Highly Accurate Thickness Control
- Integral to Cure Process
- No Machining Required
- Supports LO

Future Mobility Platforms

Variable Stiffness Tailored Laminates

- Increased design freedom
- Load path optimization

- Sandwich stiffened
- Elimination of fasteners

Common "Digital Thread" Is Key to Reduced Cost, Schedule and Risk

- Solid Model Data Source
 - Single Exact Definition
 - Reduces Span Time for Creation
- Data Re-Use
 - Eliminates Interpretation Error
 - Reduces Task Span Times
- Digital Product / Process
 Verification
 - Form, Fit, & Producibility
 Verified Prior to Build
 - Improves Quality
 - Reduces Cost and Risk
- Concurrent Development Process
 - Reduces Program Span Time

Form, Fit and Producibility of Parts and Tools To Be Verified in the Digital Mock-up Prior to BTP Release

Exploiting the "Digital Thread"

Large Scale Assembly Innovations Using Common Digital Thread

Automated Drilling Systems

Digital/Optical Wire Harness Assy.

- Optically Identifies Connector Locations for discrete Wire locations
- Reduces Assembly Span Time by 50%
- Reduces Error in FACT Test Errors by over 100%.

Electronic Mate / Assy.

- Laser Tracking / Real Time Location
- High Tolerance Servo-Driven Jacks
- Eliminates Massive / Inflexible Tools

Laser Projection Systems

- Real Time Updates to Associated Data
- Projected at the Point-of-use
- Eliminates Need for Discreet Work Instructions/Drawing Access

Automated Robotic Paint/Coating Systems

- Accurate / Repeatable Application
- Digitally Driven from Engineering Data

Ed Morris
Director, Hardware and Manufacturing
Lockheed Martin Corporate Engineering and Technology
973-603-9710
ed.morris@lmco.com

Industry Perspective:

The Challenge of Transitioning Innovative Technology

NDIA-Charleston 15 Apr 08

Mal O'Neill, PhD, NAE LTG USA/CTO LMC (ret)

Agenda:

- Situation
- People
- Difficulties
- Successes
- Actions

What's happening to our products?

- Complexity is following Moore's law
- Transformational system requirements are daunting
- Customers' expectations increasing and expanding

Innovative Modernization is 4-D

- New customer
- New developer
- New process
- New product

Innovative Technology:

- Promises major long term improvements in performance, cost, quality, and/or totally new capabilities
 - Largely unproven
 - Faces competition/adversaries
 - Lacks advocates, especially with customer
 - Forces change
 - Adds risk for industry, developer and user

- Aging workforce experience for
- HS Math/Science scores poor
- Engineering enrollments down
- System Engineering only On-job
- Growing Demand for Engineers

Where are tomorrow's innovators?

nhilo@mit ad

Why is Transitioning So Difficult?

- Uneducated decisionmakers
- New customers
- Acceptable legacy systems
- Monies needed
- Unknown unknowns
- Doctrine/Force Structure threatened
- Community of Practice damaged

Warfighter is Critical

- Operational Insights
- •Value/impact of potential capability
- •When/how much new capability is needed
- But he ---
 - Doesn't understand the technology/potential
 - Might be wrong customer
 - •Can't articulate key knowledge to developer

"If I'd asked my customers what they wanted – they would have asked for a faster horse" Henry Ford

Industry Reluctant To Lead Transition

Prefers incremental modernization

Hesitates to provide leadership and resources

Doubts credibility of innovators

Success - Nano Testimony

- Don't say "innovative" avoid frontal assault
- Engage suppliers in modernization strategy
- Worst vice is overselling!!! Credibility is Key!!

Interview, Dr. Tom Cellucci, Pres/COO, Zyvex Corp.

Nanomaterials Hit the Field

Success: DOD Nanomaterial

- Multifunctional Nano-Structures
 - Ultra Light Weight
 - Strength, rigidity
 - Producibility
 - Mission Adaptability

Extended Wing LOCAAS

Courtesy of Dr. Les Kramer, LMMFC

Success - JSF Lift Fan

- Lean team '87: USMC, DARPA and Lockheed
- USMC stayed in-charge
- DARPA support before IRAD \$
- PM designed/advocated "lift fan"
- Competitor influenced final "lift fan" decision
- AF code convinced engine teams
- AF added strong staff/tech support

Interview, Dr.P. Bevilaqua, NAE Skunk-PM, Invented Lift Fan

FIRST: STO-SSDash-VL

Courtesy of LMAero

Action: Materiel Developer

- Engage the internal R&D community
- Strengthen focus on new ideas
- Refresh labs/RDECs to ensure inhouse capabilities in SE and across new domains

Reference: Mike Marshall, "From Science to Seapower"

Action: DOD AT&L

- Fund designated innovative technologies
- Add strong system engineering discipline
- Hire/support new S&Es
- Engage Industry/DOE/DHS/NSF

Action: Warfighter

- Include industry in Combat Developments
- Train cadre to examine capability options
- Use concept of "pilot" operations in field to evaluate new hardware
- Be willing to revise Doctrine, TOEs, TTPs

Action: Industry (1)

- Develop accountability
- Allocate resources
- Shield innovative technologies
- Develop credibility with customer
- Convince BOD/shareholders

Action: Industry (2)

- Establish Skunkworks
- Develop Mod-Sim-Test
- Tie above to Warfighter/Developer
- Explore the potential of new tech
- Educate system engineers, et al
- Allow failure

Summary/Conclusion

Transition is hard but essential for DOD success

Technical and engineering skills are vital

A team is required —

Industry/Warfighter/Developer

"I must work longer and harder each day to weave a world in which I can live."

Callahan, <u>Adrift – 76 Days Lost at Sea</u>

ANY QUESTIONS?

People Make Products Work

- John Roebling designed the Brooklyn Bridge, alone
- Frank Crowe drove the construction of Hoover Dam alone
- Ed Heinemann knew the Grumman A-4 better than anyone else
- Kelly Johnson knew <u>every</u> Lockheed airplane better than anyone else

Where are system engineers today?

philg@mit.ed

Aerospace Workforce Aging

Source: BAH Study

Industry losing many experienced SE's annually

Engineering Enrollment Down ...

Engineering Graduates Selected Disciplines

Discipline*	1991	2000
Aerospace	4,072	2,175
Electrical	29,024	21,424
Mechanical	19,443	17,241
Computer	8,259	15,351
Total	60,798	53,189

Source: National Science Foundation – Science and Engineering Indicators 2000 Source: Engineering Workforce Commission

*System Engineering Discipline not available in most universities

U.S. 12th Graders Underperform in Math and Science

IEA Third International Mathematics and Science Study (TIMSS) 1994–95, 1999

... While Demand Growing

U. S. Engineering Job Growth- Selected Disciplines 1998-2008

Discipline*	1998	2008	% Change
Aerospace	53,000	58,000	9.4
Electrical	357,000	450,000	26.0
Mechanical	220,000	256,000	16.4
Computer	5,626,000	11,144,000	98.0
Total	6,056,000	11,908,000	96.6

Source: U. S Bureau of Labor Statistics

*System Engineers needed for most DOD applications

Comparison **Between Commercial** and Defense **Manufacturing Maturity**

Bob Schafrik
GE Aviation
17 April 2008

Overview

- GE Aviation
- Commercial engine environment
- Military engine environment
- Materials technology examples
- Takeaways

GE Aviation Product catalog ... world's largest fleet

Commercial Power

CF34 CT7 **CF34** CFM56 CF6 **GEnx GP7000 GE90**

Military Power

T58/64 **T700 TF34** J79/85 F108 F103 F404/14 F101/18 F110 F136

Marine & Industrial Power

LM1600 LM500 LM2500 LM5000 **LMS100** LM6000

Today ... highest R&D commitment in history ... \$8.3B since '00

Comparison of Environments

	Commercial	Defense
Development Time	short	long
Cost Risk	OEM	DoD/Services
Schedule Risk	OEM	DoD/Services
*Build Rate	high	rarely high
No of Customers	large	limited
Product Improvements	Frequent	limited

Both environments are highly competitive

Commercial Engine Business Model

Commercial Business Case Perspective

- What does the Technology add to Customer Value
 - Benefits
- Will the Technology deliver the Benefits
 - How well do we understand the risks
 - What are mitigation plans
- What will the Technology Cost
 - Learning Curve
- Is the Business Plan prudent

Manufacturing Maturity Underpins the Answers to These Questions

Commercial Programs Integrate TRL & MRL

- Producibility evaluated early in technology development cycle
 - Will not proceed without a clear path
 - Program gets added plus if MRL is high
 - Development uses production process
- Determine if Supply Base can meet production rate and cost goals
 - Single source vs. Dual source
- May need to develop new supply chain
 - Estimate Business Case for Suppliers

Commercial Development Stages

Producibility Challenges for Military Programs

- Mixed message to Supply Base
 - Early focus on OEM design & tech demos
 - Competition strongly encouraged
 - Social policy, political forces
- Long, drawn-out development timeline distorts investment decisions
 - Difficult to discern the "real" program
 - Limited trade-off of Performance vs. Producibility
 - Maintain budget profile by reducing production quantities

GE Aviation Support For MRL – TRL

Compatible With Commercial Development Cycle

Materials Examples

- Powder Metal Turbine Disks
- Composite Technology
- Titanium Aluminides

Go-Forward: Integrated Materials & Process Models

Processing

Microstructure

Properties

Curve Generator

Takeaways

- Commercial program perspective
 - Develop a producible competitive system
 - Success depends on ability to perform
 - Manufacturing Readiness essential
- Military program perspective
 - Develop highly capable affordable system
 - Want leading edge technology NOW
 - Assume that market forces for supply chain
- OEMs are key to developing, focusing supply chain

Contact Information

Robert Schafrik

(513) 243-0167

robert.schafrik@ge.com

Department of Defense Science and Technology Program -- A Time of Continued Change --

Mr. AI Shaffer
Principal Deputy
Defense Research and Engineering
15 April 2008

The Evolution to New Ideas

The DoD, Like the World, is moving from Physics Based to Multidisciplinary and Non-Kinetic Science

"Any sufficiently advanced technology is indistinguishable from magic." ~Arthur C. Clarke

"In times of change, learners inherit the Earth, while the learned find themselves beautifully equipped to deal with a world that no longer exists"

Eric Hoffer

A Changing World . . .

Disruptive **Military** Uses of **Commercial** Tech

Expansion Of R&D **Funding**

entieveniz Technolog

The Black

Swan

Syndrome

Expanding Education

Economic Mega **Trends**

Collaboration/

There are students in China, Australia, Austria, Bangladesh, and the USA who

collaborate

on projects everyday

Pace of Technology Continues to Increase

- Time between modeling of semiconducting properties of germanium in 1931 and first commercial product (transistor radio) was 23 years
- Carbon nanotube
 - Discovered by Japan (1991)
 - Researchers recognized carbon nanotubes were excellent sources of field-emitted electrons (1995)
 - "Jumbotron lamp" nanotube-based light source available as commercial product (2000)

International R&D trends

• R&D expenditures are increasing robustly around the world, driven by both governments and industry.

Figure 1. Estimated worldwide R&D expenditures: 1990-2002

Source: National Science Foundation, S&E Indicators 2006

Global Technology (R&D) Spending and Growth

(Circle size reflects R&D spending levels.)

^aR&D spending as a percentage of GDP and spending growth are defined in Figures 1 through 3. R&D spending levels are in current billions of PPP dollars. ^bGrowth rates are calculated since 2000, except for Russia, which was calculated since 1992 due to high uncertainty in the regression since 2000. Sources: OECD, Main Science and Technology Indicators Volume 2005; UNESCO, Science Report 2005; Indian Ministry of Science and Technology, S&T Annual Report 2004-2005; H. Arfaei, "Status of Scientific Research -- Iran 2005", April 2005; CIA World Fact Books, 1981-1990, 1997- 2004; and World Bank, Development Indicators database, 1981-1990, 1997-2004.

Demographic Trends

- Demographic trends are the most predictable of the trend sets
- The major trends with significant defense implications:
 - North-South divide in age structure
 - Demographic "bonus" India, Latin America
 - Youth bulges in fragile states and migrant populations
 - Aging and low birth rates in key allies
 & China
 - International and internal migration
 - Push away from trouble
 - Pull to economic opportunity
 - Migrating political interests
 - Youth, conflict, and ideology
 - Urbanization

Massive Population Growth

Demographic change will increase stress on fragile states, create risks around access to resources, and generate a range of governance, societal, cultural, & health issues as states adjust to population transformations within and between states

The "Black Swan" Syndrome

Cognitive biases create false expectations of predictability.

Acknowledging uncertainty may allow us to adapt better to unforeseen events.

- "Black Swans": large-impact, impossible to predict, and rare event beyond the realm of normal expectations
 - 9/11, Google, internet bubble
- "Outside context problem": Problem outside
 a given groups experience, with an
 immediate, ubiquitous and lasting impact
 upon it
 - Perry's Black Ships arriving in Japan
- "Accelerating change": increase in rate of technological/ cultural/social progress in history (contrast to linear view)
 - Accumulation of knowledge, access to knowledge and lowering of transactional barriers to knowledge

March/April 2008 MIT Innovations List of 10 Emerging Technologies

- Cellulolitic Enzymes
- Atomic Magnetometers
- Surprise Modeling
- Connectomics
- Probabilistic CMOS
- Reality Mining
- Offline Web Applications
- Graphene Transistors
- Nanoradio
- Wireless Power

Comparison of Scientists & Engineers (S&Es)

Growth of Educated Asian Population

International S&E labor force data can only be approximated.

Figure 20. Population 15 years and older with tertiary education, by country/region: 1980, 2000

SOURCE: Adapted from R.J. Barrow and and J. Lee, Center for International Development: International Data on Educational Attainment, 2000

U.S. trade balance – high tech industries

The trade balance of U.S. high technology industries has turned negative

Figure 12. U.S. trade balance for five high technology industries: 1990-2003
Billions of dollars

 $NOTE: Includes\ aerospace;\ pharmaceuticals;\ office\ and\ computing\ equipment;\ communication\ equipment;\ and\ scientific\ instruments.$

SOURCE: Global Insight and S&E Indicators 2006

Forecasting Future Disruptive Technology—Mass Collaboaration

- DoD & National Academies
- Teaming to produce a recurring technology forecast that is a:
 - Multidimensional Description of the technology
 - Estimation/description of impact
 - Temporal profile of development
 - Based on a wide group of experts
 - Develop a New web collaboration environment
 - Industry, academia, venture capitalists, government experts, etc.
 - Use collaboration environment to access a global community
 - Examines both traditional and nontraditional technology trends

Looking more than 15 years ahead . . .

Using mass collaboration as the tool for "Effective Forecasting"

Disruptive Technology

The Non-Textbook Definition

- Rapid evolution from old, stable technology to new, <u>dominating</u> technology
- A technology surprise that gives a competitor an advantage
 - Business Technology that overturns market
 - Military Technology that causes a fundamental change in force structure, basing, and capability balance
- Disruptive Technologies can be intended or unintended - but both represent change
- Disruptive Technologies may arise from systems or enabling technology

Desert Storm

- The advent of informationbased warfare feeding the emergence of irregular warfare
- US dominance over Sovietera systems "shocked" potential adversaries and combined to give US conventional superiority
 - Precision Weapons
 - Night Vision
 - Low Observability
 - Networked Systems

R&D Expansion & "Disruption" --Applications of Commercial Technologies--

- Fundamentally can have global impact & change the balance and approach to force expression
- Drives and fuels the need for & new innovative concepts
- Includes how new capabilities are built on emerging technology
- Appearing increasingly from the global commercial marketplace

Wireless

Devices

An information age Pearl Harbor?

NO....but this guy is far cry from Imperial Japan

George Hotz, 17, of Glen Rock, New Jersey holding the iPhone® that he separated from the AT&T network and used on the T-Mobile Network. Career goal: hack the human brain

- □ Apple and AT&T released the iPhone on 29 June
- □ An exclusive agreement guaranteed the iPhone could only be used on AT&T's mobile network
- ☐ Hotz spent approximately 500 hours working on his "summer project"
- ☐ The hack was announced on 24 August.
 - □AT&T market cap: \$245B
 - annual revenue: \$90B
 - □Apple market cap: \$117B
 - annual revenue: \$23B
 - □Hotz PRICELESS

This is the new asymmetry—victory goes to the agile and innovative

Trends

Increasing

- International Science and Technology Relative to the US
- Industrial Globalization of R&D
- Pace of Technology Development
- US Trade Balance in High-Tech Goods
- Potential for "Hybrid" Disruption
- Mass Collaboration "Flattening" the world

Decreasing

US Production of Global Scientists and Engineers relative to World

US High Technology Advantage not Assured Competition Increasing

Therefore, Have to Work on "High Payoff" Areas

Where are we going?

S&T Strategy and Plans

Where is the DoD S&T money going?

Funding

- Current year S&T dollars: \$10.77B FY08 to \$11.48B FY09
- Percent of DoD funding:2.24% FY08 to 2.22% FY09
- Over 50% of total investment in 4 functional areas:
 - Information Systems (1.8B)
 - Sensors, Electronics / EW (1.7B)
 - Basic Research (1.7B)
 - Weapons (1.1B)

DoD S&T program is focused on "sensing and shooting"
But is changing......

2006 QDR Challenge Construct

IRREGULAR

Those seeking to erode U.S. influence and power by employing unconventional methods, such as:

- Terrorism
- Insurgency
- Civil war
- Emerging concepts such as "unrestricted warfare"

Likelihood: very high

Vulnerability: moderate, if not effectively checked

Lower vulnerability

TRADITIONAL

Those seeking to challenge U.S. power by military operations, such as:

- Conventional air, sea and land attacks
- Nuclear forces of established nuclear powers

Likelihood: decreasing (absent pre-emption)
due to historic capability-overmatch and
expanding qualitative lead

Nulnerability law if transformation is

Vulnerability: low, if transformation is balanced

balanced

SOURCE: U.S. Defense Department

CATASTROPHIC

Those seeking to paralyze U.S. leadership and power by employing weapons of mass destruction or WMD-like effects in surprise attacks on symbolic,

critical or other high-value targets, such as:

- Sept. 11, 2001
- Terrorist use of WMD
- Rogue missile attack

Likelihood: moderate and increasing Vulnerability: unacceptable; single event could alter American way of life

Higher vulnerability

DISRUPTIVE

Those seeking to usurp U.S. power and influence by acquiring breakthrough capabilities, such as:

- Sensors
- Biotechnology
- Miniaturization on the molecular level
- Cyber-operations
- Space
- Directed-energy and other emerging fields

Likelihood: low, but time works against U.S. Vulnerability: unknown; strategic surprise puts U.S. security at risk

DEFENSE NEWS GRAPHIC BY CHRIS BROZ

Four Hard Problems

- 1. Build partnerships to defeat terrorist extremism
- 2. Defend the homeland in-depth
- 3. Prevent acquisition or use of WMD by hostile actors.
- Shape choices of countries at strategic crossroads

National Defense Strategy Drives Investment Strategy

Science and Technology Enabling Technology Priorities

Technology focus areas:

- Biometrics and Biological exploitation
- Information technology and applications
- Persistent Surveillance Technology
- Networks and Communication
- Human, Social, Cultural, and Behavioral Modeling
- Language
- Cognitive Enhancement
- Directed Energy
- Autonomous systems
- Hyperspectral sensors
- Nanotechnology
- Advanced Materials
- Energy and Power
- Affordability
- Combating Weapons of Mass Destruction Technologies
- Energetic Materials

In Blue—Areas with Substantial Increases in FY08/09 President's Budget Request

Increased S&T Requests Addresses Capability Gaps

- Special ("non-kinetic"/enabling) technologies:
 - Clandestine Tagging, Tracking and Locating
 - Biometrics
 - Human, Cultural, Social Behavior Modeling
 - Networks
 - Persistent Surveillance

- EO Badar Sensors
- Technologies to decrease energy consumption/increase alternatives
- Combat and tactical armor for protection against a range of threats
- Accelerating transition to fielded systems

Increased S&T Requests Addresses Capability Gaps

New technology/emphasis areas

- \$270M increase to Basic Research
 - SecDef initiative to increase peer-reviewed basic research
 - To develop innovative solutions
 - Enhance the science and engineering personnel base
 - Increase will support targeted focus areas for
 - Early to mid-career scientists and engineers with a team of students and post docs
 - Single Investigator awards with larger grants
 - Emphasis will be on emerging technology areas, e.g.,
 - Cyber protection and information assurance
 - Biosensors and biometrics
 - Human sciences (cultural, cognitive, behavioral, neural)
 - Software sciences and materials
 - Immersive sciences for training and mission rehearsal
 - Power and energy management
 - Anticipate about 500 focused research efforts

Increased S&T Requests Addresses Capability Gaps

- New technology/emphasis areas (Cont'd)
 - Increased protection for dismounted troops and ground forces
 - Research in plasma and meta-materials to address emerging threats
 - Cyber protection
 - Hypersonics/Prompt Global Strike (Blackswift) New technology prototype **

Shocks from the Past Century

Categories of trends Conflict Demographics Economy Environment Governance Science & Technology

- Strategic shocks can change how we think about security and the role of the military, e.g.:
 - - Reduced role Led to two-front of military in war: Made society intelligence a core element of operations
- Nuclear warfare and capability become primary military mission
- Space as a military domain

leveraged for

and prestige

national power

· Led to the drawdown of the U.S. military shifted focus to peace-keeping missions

End of bipolar

world

 Made homeland defense and irregular warfare central military missions

security for the

Redefined

 Increased military role in managing domestic catastrophes

Note: Size of circle indicates impact

Reinforced isolationist tendencies in the U.S.

Security

mplications for:

- Great **Depression**
- Recognition of vulnerability - led to international engagement and industrialization for war on home front
 - Pearl Harbor
- Emergence of Space MAD and escalation management

Revolution

- **Sputnik** Atomic
 - Cold War Fall of the **Soviet Union**

· American public

079

9/11

Attacks

Katrina

In retrospect, these shocks were the product of long-term trends

Analysis of Potential Shocks (2 of 2)

Relative impact and likelihood out to 15 years

Young Memo

Technology focus areas:

- Active and Conventional Armor Technology
- Defeat Speed of Light Systems
- Immersive Training
- Cyber Protection
- Handling Large Data Sets
- Human, Social, Cultural, and Behavioral Modeling
- Cognitive Enhancement
- Autonomous systems
- Hyperspectral sensors
- Nanotechnology
- Advanced Materials
- Energy and Power
- Biometrics
- Network Technology
- Combating Weapons of Mass Destruction Technologies

In Blue—Areas with Substantial Increases in FY08/09 President's Budget Request

2006 RAND Study*: Top 16 Technology Applications

Need to understand the second-order effects of emergent technologies on the DoD

- ⇒ Cheap solar energy
- ⇒ Rural wireless communications
- ✓ Communication devices for ubiquitous information access anywhere, anytime
- Genetically modified (GM) crops
- ⇒ Rapid bioassays
- ⇒ Filters and catalysts for water purification and decontamination
- ⇒ Targeted drug delivery

- Green manufacturing
- ✓ Ubiquitous RFID tagging of commercial products and individuals
- ⇒ Hybrid vehicles
- ✓ Pervasive sensors
- ⇒ Tissue engineering
- ⇒ Improved diagnostic and surgical methods
- ⇒ Wearable computers
- ✓ Quantum cryptography
- Cheap autonomous housing
 - √ Direct Military Application
 - ⇒ Indirect Military Application
 - No Military Application

Analysis of Potential Shocks (1 of 2)

Relative impact and likelihood out to 15 years

Source: Compare and contrast three symposiums: 08 June, 27 August, 25-26 September 2007 and 18-19 December 2007 Johns-Hopkins University APL Warfare Analysis Laboratory, Laurel MD and Booz Allen Hamilton Inc, Herndon VA

Decade of Strategic Evolution

Building the Science and Engineering Base

- We need to continually develop, mature and field technology to stay ahead of our adversaries
- President Bush acknowledged the importance of science and engineering development in his January 2008 State of the Union address

"To keep America competitive into the future, we must trust in the skill of our scientists and engineers and empower them to pursue the breakthroughs of tomorrow... I ask Congress to double federal support for critical basic research in the physical sciences and ensure America remains the most dynamic nation on Earth.."

President George W. Bush, State of the Union address, January 28, 2008

"As changes in this century's threat environment create strategic challenges – irregular warfare, weapons of mass destruction, disruptive technologies – this request places greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget."

Secretary of Defense Posture Statement on the FY09 Budget, February 2008

Energy Security Challenge

- **Conventional fossil fuels**
- Synthetic fossil fuels (e.g. coal, shale oil and tar sands derived fuels)
- Alternative fuels (e.g. biodjesel, alchohols, hydrogen, etc.)
- Renewables (e.g. solar, geothermal, wind)
- Novel supply (e.g. fuel cells)
- Exotics (e.g. isomers)

$$CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$$

 $(2n+1)H_2 + nCO \rightarrow C_nH_{2n+2} + nH_2O$

- Fixed base
- Tactical base
- Platforms
- Efficiency
- Life-Cycle Cost

- Direct oil / fossil fuel costs
- Policy, processes and risk assessment
- Refining Capacity
- Doctrine

DoD S&T is a Partnership

Link to the Warfighter

Service Labs

DARPA

High Risk, High Payoff

Expanded Resource Base

Maximum National Security Payoff

New Ideas, Knowledge

Universities

Innovation, Transition

Selected Countries Capacity to *Acquire* the Top 16 Technology Applications*

Scientifically advanced

Scientifically proficient

Scientifically developing

Scientifically lagging

^{*} The Global Technology Revolution 2020, In-Depth Analyses

- Held at Irvine Ca, Nov 2006
- The Most Probable Future Technology Shocks areas are:

Information Biotechnology Nanotechnology Technology

Potential Military Applications:

- High Energy Fuels
- Bio-based Computers

- Advanced Materials
- Energy Storage / Distribution Aided Target Recognition
- Assisted Decision Making

Science and Technology and the Joint Warfighter

MG William J. Troy

Vice Director
Force Structure, Resources, and Assessment
Joint Staff, J8

4/18/2008

Joint Staff Roles in S&T

- The "Voice of the Warfighter"
 - Consolidate needs of the COCOMs (via Integrated Priority Lists IPLs) into JROC validated Capability Gaps
 - JUONs
 - JCTD validation

BOTTOM LINE:

Ensure the Joint Warfighter has the required capabilities to execute the assigned mission in a resource constrained environment...

4/18/2008

JCIDS Update

- Senior Warfighters' Forums (SWarFs)
- Focus on Cross-cutting Issues
- JCA Rebaseline
 - Nine Tier 1 JCAs
 - Approved by DAWG to Tier 3
 - Two new FCBs:
 - Building Partnerships
 - Corporate Management
- Gap Prioritization
 - New Integrated Priority Lists (IPLs) from COCOMs recently submitted, gap analysis/formulation/ prioritization in progress
- FY08 NDAA Provisions

 $^{1/18/2008}$

Warfighter-Influenced Direction for Doll **S&T...**

- What has 5 years of war told us to help shape the direction of DoD S&T?
 - ISR
 - Readily available and tailorable coverage
 - Robotics
 - Same/improved capabilities, keeping Soldiers and Marines out of harm's way
 - Force Protection
 - Armor Protection vs. Armor Defeat where does it end?
 - Managing violence in a dense battlespace
 - Interoperability, C2, Precision Fire

Interoperability and Interdependence on Demand in a Fluid Situation

- Ground Forces
 - Army Tanks and Infantry
 - Marine LAV and AAV
- Rotary Wing Forces
 - Army and Marine Helicopters
- Fixed Wing Forces
 - Navy and Air Force Fighters
- Special Operation Forces
- Coalition Forces
- Fully integrated and task organized

Joint and Coalition combined forces, executing together with Unity of Effort and Unity of Command in a space no larger than <u>Pentagon South Parking</u>

Success ...

• Solutions to warfighter needs with an S&T

solution

Predator (ACTD)

Counter Radio controlled improvised explosive device Electronic V
 (CREW) IED Electronic Jamming (JUONS)

Joint Precision AirDrop System (JPADS) (ACTD)

...and the Future

- Currently SEVEN "Technologically Challenged" JUONS the "hottest" issues from the warfighter on the front lines
 - Six are related to counter IED
 - One is related to renewable energy
- Currently handled by the JRAC through JIEDDO, appropriate FCB, OSD (AS&C), DSTAG currently not involved
- For discussion: Should the DSTAG become involved with these?
 - Meets monthly can react quickly
 - Represents DoD-wide S&T agencies, providing increased visibility
 - May be able to provide solutions for these JUONS, stand up Ad-Hoc Technology Focus Team, leverage other R&D/R&E projects, etc.

¹18/2008

QUESTIONS/COMMENTS

4/18/2008

Defense Policy Implications of Global Technology Trends

28 December 2007

Col W. Eric Herr
ODASD Policy Planning

The 2006 QDR Construct

 The 2006 QDR used the "Quad Chart" to analyze the changing nature of warfare

Four Hard Problems

- 1. Build partnerships to defeat terrorist extremism
- 2. Defend the homeland indepth
- 3. Prevent acquisition or use of WMD by hostile actors.
- 4. Shape choices of countries at strategic crossroads

This construct is the basis for our current defense strategy

Understanding the 21st Century

- The "Quad Chart" was the strategic construct for the 2005 National Defense Strategy and 2006 Quadrennial Defense Review
- A new strategic construct might be more appropriate in preparation for the next set of strategic documents
- This model should account for the increasing complexity of the global environment
 - Many non-military factors disrupt international security we need to better anticipate and respond to these disruptive events

"Black Swan Theory"

Cognitive biases create false expectations of predictability.

Acknowledging uncertainty may allow us to adapt better to unforeseen events.

- "Black Swans": large-impact, impossible to predict, and rare event beyond the realm of normal expectations
 - 9/11, Google, internet bubble
- "Outside context problem": Problem
 outside a given groups experience, with
 an immediate, ubiquitous and lasting
 impact upon it
 - Perry's Black Ships arriving in Japan
- "Accelerating change": increase in rate of technological/ cultural/social progress in history (contrast to linear view)
 - Accumulation of knowledge, access to knowledge and lowering of transactional barriers to knowledge

"But there are also "unknown unknowns" — the ones we don't know we don't know." Former Secretary of Defense Donald Rumsfeld, Feb 12, 2002.

Purpose and Outline

Purpose

 Examine U.S. defense and security implications of future technology trends and potential shocks

Outline

- Summarize five technology areas by outlining:
 - Current assessment
 - Future trends
 - Defense implications
 - Potential shocks
- Technology Meta-Trends
- Way Ahead

Understanding Strategic Shocks

- What is a "strategic shock"?
 - An event that punctuates the evolution of a trend

 (a discontinuity that either rapidly accelerates its pace or significantly changes its trajectory) and, in so doing, undermines the assumptions on which our current assumptions are based.

- Some "strategic shocks" may not surprise us we actively plan for them, both to reduce the risk of their occurrence and to be positioned to act
- Other "strategic shocks" may catch us unaware and unprepared

The Genesis of Trends and Shocks

- With hindsight, it is clear that most shocks are the product of long-term trends
- Furthermore, shocks are less disruptive when we have anticipated and responded to the underlying trends
- The challenge is identifying key trends and pre-adaptation for strategic shocks before they occur
 - Reviewing how effective the United States was in foreseeing major trends in the previous century illustrates this effect

Reviewing Major Trends

Globalization ————————————————————————————————————	Categories	Trend Examples
	Conflict	Increasing lethality and scope of irregular challenges
		Military operations in new domains
		• Rise of China Rise of a Near-Peer Competitor
		• Cyber war <u>Cyber Warfare</u>
		Increasing nuclear proliferation Highly Proliferated World
	Demographics	Youth bulge—87% of 10-19 year-olds live in dev. states Geopolitical Demographics
		 Global aging: The ranks of those over age 60 are growing about 2% each year – 60% faster than the overall population. Primarily affects: Europe, Japan
		 Urbanization — by 2025, nearly 60% of global population will live in cities
	Economy	Growing gap between rich and poor countries
		Increasing regional and global integration of economies
		Increasing Asian influence in international markets
	Environment	Disruptions to resource distribution (e.g., water, energy) Winners and Losers
		Climate change leading to rise in sea level, changing climatic zones, weather patterns
	Governance	State remains dominant unit in international system
		• Strong, but challenged, US leadership in international arenas (e.g., global commons)
		• Increasing influence of the individual, private sector, NGOs on international system
		 Increasing salience of trans/sub-national identities Strong national and sub-national bonds sustained and remforced through web and
		remittances
		Increasing tension between the "individuals rights" versus "groups rights"
	Science & Technology	Technology: Information, Nanotechnology, Bio, Energy, Robotics Five Revolutions
		Increased proliferation of technologies and knowledge

Technology surprise?

Promises raise expectations - delivery tends to lag

- Late delivery desensitizes decision makers to need for change
- True bolts from the blue are possible, but unlikely
- Intersecting revolutions hypothesis

Purpose and Outline

Purpose

 Examine U.S. defense and set technology trends and potent

Outline

- Five technology areas:
 - Current assessment
 - Future trends
 - Defense implications
 - Potential shocks
- Technology Meta-Trends
- Way Ahead

Information Technology (IT)

Description: Computers, comm, sensors, networks, electronic control systems, information storage, manipulation, and display

Current Assessment

- DoD leads in Military C4ISR
- U.S. private sector leads global IT markets (rising competitors)
- DoD is a market follower in enterprise systems
- High investment (and cost) area

DoD Implications

- Continued increasing influence in all mission areas
- Free movement of knowledge (blue and red)
- Increasing exploitation potential (red and blue)

Future Trends (next 15 yrs)

- Moore's law continues / Bandwidth increases (fiber and wireless)
- IT will accelerate change other areas (Bio/Materials)
- Decreasing quality / disposability (in hardware and software)

- Large-scale SCADA (system control & data acquisition) attack
- Accessible quantum encryption
- Quantum computing becomes widely available

Biotechnology / Genetics

Description: Medical technology, pharmacology, molecular biology, biochemistry, bioinformantics, and genetic engineering

Current Assessment

- U.S. private sectors leads in (most areas)
- Free cross-border collaboration and movement of knowledge
- High dual-use potential, light footprint, difficult to assess intent

DoD Implications

- DoD has traditionally focused technology on machines (not men)
- Human performance has a dramatic effect on all operations
- Greatest asymmetric danger
- Ambiguous U.S.G. authorities

Future Trends (next 15 yrs)

- Dramatic cost reductions in gene sequencing equipment
- Expanding / accessible databases
- Social and cultural norms will limits some advances (in U.S.)
- Increasing demands from aging (and wealthy) populations

- Development of performance degradation technology
- Attack with engineered pathogens
- 2-10X Human Performance
 Enhancement: sleep, endurance,
 strength, cognitive ability
- Massive failure in food supply

Robotics / Man-machine Interface

Description: Programmed, remote, and direct human control of machines, human-machine intelligence and hybrid systems

Current Assessment

- Man (or man-machine) interface often limits system performance
- U.S. leads the world in unmanned defense systems
- Growing investment (cost) area
- Rising powers will apply low cost, dual-use technology

DoD Implications

- Unmanned systems have proven (and increasing) value
- Remotely-manned and hybrid systems can be used in increasingly complex missions
- Amputation / neurological casualties from IEDs

Future Trends (next 15 yrs)

- Increased focus on neural function, perception, and cognition
- Expansion of autonomous systems and virtual presence
- Rapidly emerging threats
- New vulnerability sets (links, data, control)

- Fused human-machine intelligence
- Low cost, swarming systems or autonomous precision attack systems

Material and Production Science

Description: Advanced materials, nanotechnology, micro (and nano)

electromechanical devices, prototyping, production

Current Assessment

- Area of U.S. competitive advantage
- DoD is the global leader in existing mission areas (air-sea-land-space)
- DoD will follow in expanding commercial markets
- High dual-use potential

DoD Implications

- Dual-use makes this technology difficult to control
- Proliferation will reduce DoD's technical edge and expand asymmetric attack options
- Increased reliability / reduced cost (must pair with agile acquisition)

Future Trends (next 15 yrs)

- Rapidly expanding nano and MEMS (commoditization)
- Increasing focus on MEMS/NEMS
- Continued convergence of IT, robotics, and bio technology
- Increased emphasis on reducing development to market timelines

- Proliferation of highly energetic materials
- Invasive nano particles/NEMS used as medical or biological agents; delousing
- Sensor dust, ubiquitous sensing
- Broad-band metamaterials

Energy Technology

Description: Alternative sources, portable power systems, energy

efficient designs

Current Assessment

- Developed world vulnerable to energy disruptions
- Major oil companies reluctant to invest heavily in alternatives
- Global climate concerns driving search for hydrocarbon alternatives (low CO₂ options)

DoD Implications

- DoD will continue to have a large energy footprint
- Expanded use of small / remote systems will require more portable power with higher energy density
- DoD will be tasked to set examples in efficiency and innovation

Future Trends (next 15 yrs)

- Investment will continue on multiple fronts (hedging and competing constituencies)
- Scale of demand and infrastructure will limit pace of change
- DoD must will drive battery / portable power technology

- Dramatic increase (or decrease) in oil production (or consumption)
- Radiological attack on petroleum mega-node
- New dominant energy source (energy density better than oil)

An information age Pearl Harbor?

NO....but this guy is far cry from Imperial Japan

George Hotz, 17, of Glen Rock, New Jersey holding the iPhone® that he separated from the AT&T network and used on the T-Mobile Network. Career goal: hack the human brain

- □ Apple and AT&T released the iPhone on 29 June
- □ An exclusive agreement guaranteed the iPhone could only be used on AT&T's mobile network
- ☐ Hotz spent approximately 500 hours working on his "summer project"
- ☐ The hack was announced on 24 August.
 - □AT&T market cap: \$245B
 - annual revenue: \$90B
 - □Apple market cap: \$117B
 - annual revenue: \$23B
 - □Hotz PRICELESS

This is the new asymmetry—victory goes to the agile and innovative

Recent Developments

Hafnium oxide: 45nm transistors

A beam of light travels less than a tenth of an inch during the time it takes a 45nm transistor to switch on and off.

Surprise revival of Moore's law just before anticipated end of silicon chip progress

Supercomputer neuro-map: 10,000 neurons and 30 million connections

Scientists are now planning to model the entire human brain within just 10 years - "fantastic acceleration in brain research"

Metamaterials: 2D microwave "invisibility cloak"

From theory to tech demonstration in 5 months

Nano Antennas: receiving infrared RF signals

Could lead to sensors a million times more sensitive than current technology. First predicted in 1960s

Age of Scientific Innovation

- Paradigm-shifting scientific discoveries have historically occurred at a young age
 - Newton 24; Darwin 22; Einstein 26
- Mid-career scientists are now considered to be most productive--if measured by lists of publications
 - May be due to longer training phases, accumulative advantage, focus on acceptance vs. discovery
- Scientific and technological discovery and innovation are not limited to academic publications and PhD's.
 - Some of the most successful innovators of recent decades have been college drop-outs
 - Bill Gates, Steve Wozniak, Michael Dell
 - Some of the most threatening innovators have been under the age of twenty-five
 - Global Bot "Mastermind" 18 year old alleged by FBI to lead effort of infecting and controlling over a million computers world-wide
 - Godfather of Cyber Terrorism recently arrested 22 year old Al Qaeda internet operative
 - World's Most Famous Hacker Kevin Mitnick, who broke into DEC computers to steal their operating system development software at 16

Technology Meta-Trends (1)

□ Technological change is accelerating

- Accelerating application of knowledge and technology
 - Past Change limited by state-based science, technology, capital
 - ➤ Future Change limited by interest, policy, and law
- Increasing rate of "paradigm shifts"
- Invention/innovation speeds up invention/innovation (feedback loop)

☐U.S.'s technological advantage eroding

- Free-flowing factors of production: S&T, labor, capital
- Nation state risk aversion: bureaucratic, conservative governance
- U.S. economy may fall to world's 3rd largest in latter half of century
- Increasing number of $6\text{-}\Sigma$ individuals migrating into productive sector in China/India

□ Discovery may rely more on global collaboration than years of graduate study

 Innovation as a "young man's game" (Planck) vs. the realm of experienced, qualified experts

Technology Meta-Trends (2)

- "Silicon" computing power on path to exceed "carbon" computing power
 - Implications of machines surpassing computing power of human brain
- Super-empowerment and new global actors
 - Technology investment geared to empower the individual personal transportation, communications, finance, entertainment, health care
 - Proliferation of "new" technologies in the hands of agile adversaries
 - Nation-state's destructive power available to single decision-makers
 - Growing access to converging technologies (speed, cost, scope)
- Unforeseeable technology innovation the third step
 - How will technology used in ways we cannot predict?
 - How will technology change the way we think and organize?
- Perception U.S. less open to foreign students and scholars
 - Enrollment declined in 2003-07 for first time since 1971; however, 2006-07 school year saw increase
 - Post-9/11 restrictions make European institutions seem more attractive

Recommendations – People

- Make government lab resources more widely available to University researchers and develop programs to continue those relationships
 - Expand Summer Faculty Research Program and Sabbatical Leave Program (ASEE); Post-doctoral fellowship (ASEE); Defense Science and Engineering Graduate Fellowships
- Develop and expand existing innovative hiring, employment, and contracting authorities
 - Intergovernmental Personnel Act, Highly Qualified Experts, industry fellowships, SMART program, NSEP
 - Develop attractive rotational career paths and collaborative opportunities
- Partner with research and development competitions
 - Odyssey of the Mind, Exploravision, Science Olympiad, FIRST, Idea to Project

Recommendations – Horizon Scanning

- Enhance organizations with staff and methodology to alert senior leaders to disruptive trends, shocks, and potential mitigation
 - Build technology intelligence program that includes technology scanning and collaboration with partners, private sector – X2 as a model
 - Link tech intelligence to technology red teaming and blue teaming process (DDR&E)
 - Technology war-gaming / Identify indicators and red lines
 - Integrate operational perspectives by recruiting and strategically placing/detailing "technology scouts"
 - Services and Defense Agencies
 - Intern, externs, fellows, and gray beards
 - Develop protocols to raise major issues to senior leadership
 - Share information and increase visibility across government

Recommendations – Leveraged Innovation

- Sponsor technology research and "challenges" that focus on interdisciplinary research and applications
- Examples: DARPA challenges, MURIs, tech venture funds that
 - Open doors for groups pursuing innovative research that would not/could not pursue access to DoD market
 - Award winners, dramatic innovators continue relationship high potential teams
 - Provide seed money to promising teams (tech CERP) for ideas

Example focus areas:

- Energy: portable power; domestically sources compatible with legacy equipment and infrastructure; carbon neutral / carbon sequestration
- TTL: "Naked man" problem; tag at a distance; stand-off detection of fissile material

Questions?

BACKUPS

Decreasing Weight of USG Investment

Source: NSF, Division of Science Resources Statistics. (Data for 2005 and 2006 are preliminary.)

APRIL '07 © 2007 AAAS

Defense R&D

30 Year Trend in U.S. R&D Investments

- DoD R&D effort down from 26% to 16% of U. S. total
- Total Federal effort down from 51% to 28%
- Industry R&D effort up from 45%to 65%
- Non-profits, educational institutions, state, and local up from 4% to 7%

Basic Research (BA 1)

DoD R&D is about half of U.S.G. total

The Importance of Horizon Scanning

- Inductive logic necessary and overwhelmingly attractive
 - The sun will rise tomorrow...
 - 78 percent of Americans support...
 - The top mutual performing fund for the last ten years...
- The law of large numbers
 - Regression analysis, curve fitting, and forecasting
 - Sufficient and random sampling of independent variables
- The farmer and the chicken
 - When do we have enough information?
 - Should we constantly challenge our current ideas and theories?
 - Should we take every day one day at a time?

One Effect of Quantum Computing: Ability to Break RSA Public Key Encryption

The RSA algorithm was invented in 1977; it is a computationally secure based on four parameters: P, Q, E, and D

- −P and Q, two large prime numbers
- -E such that E is greater than 1, E is less than PQ, and E and (P-1)(Q-1) have no prime factors in common
- -D such that (DE 1) is evenly divisible by (P-1)(Q-1)

The encryption function is $C = (T^E) \mod PQ$ (C is the ciphertext)

-The *public key* is the pair (*PQ*, *E*)

The decryption function is $T = (C^D) \mod PQ$ (T is the plaintext)

-The *private key* is the number *D*

One can publish the public key freely

- -There are no practical methods of calculating D, P, or Q given only (PQ, E)
- -If *P* and *Q* are each 1024 bits long, the sun will burn out before the most powerful classical computers can factor PQ into *P* and *Q* (quantum computer could do it in minutes)

Quantum computers undo the computational security of public key encryption

Research & Development Budget Categories

Budget Activity 1: Basic Research

Budget Activity 2: Applied Research

(S&T)

Budget Activity 3: Advanced Technology Development (ATD)

Budget Activity 4: Advanced Component Development and

Prototypes (ACD&P)

Budget Activity 5: System Development and Demonstration (SDD)

Budget Activity 6: RDT&E Management Support

RDT&E

Budget Activity 7: Operational System Development

Budget Activities 1 through 3 are often collectively referred to as Science and Technology (S&T)

Budget Activities 4,5 and 7 are normally associated with acquisition programs

Budget Activity 6 funds RDT&E infrastructure

Research & Development Budget Categories

Budget Activity 1: Basic Research, the systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind (formerly known as 6.1)

Budget Activity 2: Applied Research, the systematic study to understand the means to meet a recognized and specific need (formerly known as 6.2)

Budget Activity 3: Advanced Technology Development (ATD) includes development of subsystems and components and efforts to integrate subsystems and components into system prototypes for field experiments and/or tests in a simulated environment (formerly known as 6.3)

We Don't Know What We Don't Know

"By 2020, organic electronics should provide for increased brightness of widespread lighting systems and displays."

RAND, *The Global Technology Revolution 2020* (Released in 2006)

Super-vivid, super-efficient displays
New OLED displays for mobile gadgets are poised for debut in U.S. and European markets

Technology Review November 06, 2006

Sony: 1,000,000:1 OLED TV on sale in 2007

Engadget Posted 12 April 2007

Performance Remediation

World First Power Ankle

- Developed at biomechatronics group at the MIT Media Lab
- Small battery-powered motor mimics the energy-storage capacity of the human ankle
- Power-assisted spring propel the foot forward as it pushes off the ground
- about 20 percent more efficient than past devices
- Tested in partnership with Military Amputee Research Program

Brain-Machine Interface

- Emotiv Systems electroencephalograph (EEG) cap
- On sale to software developer's
- Used to build games that use the electrical signals from a player's brain to control the on-screen action
- Could be useful in virtualworld games, such as Second Life
- Commercial successful remains uncertain

Current Materials Research

Sheets of Stretchable Silicon Researchers have shown that ultrathin sheets of silicon can stretch in two dimensions-opening up the possibility of electronic eyeballs and smart surgical gloves.

Technology Review May 15, 2007

Nanoparticles with a completely new shape may lead to cheaper catalysts that could make many experimental-energy technologies more practical.

Technology Review May 15, 2007

Public Companies with \$150B* in Revenue

	(why oil matters so much)	Trans of will
\$366.24B	Exxon Mobil Corporation engages in the exploration, production, transportation, and sale of crude oil and natural gas.	Irving, TX
\$355.38B	Wal-Mart Stores, Inc. operates retail stores in various formats worldwide.	Bentonville
\$318.13B	Royal Dutch Shell plc, through its subsidiaries, engages in the exploration, production, and trading of	The Hague

\$263.89B	BP p.l.c. provides fuel for transportation, energy for heat and light, retail services, and petrochemicals	London
	Royal Dutch Shell plc, through its subsidiaries, engages in the exploration, production, and trading of various energy resources worldwide.	The Hague
\$355.36B	vvai-mart Stores, inc. operates retail stores in various formats worldwide.	Bentonville

	2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	
\$263.89B	BP p.l.c. provides fuel for transportation, energy for heat and light, retail services, and petrochemicals products.	London
\$209.84B	Toyota Motor Corporation operates in the automotive industry worldwide.	Toyota City
#004 70 D	DaimlerChrysler AG engages in the development, manufacture, distribution, and sale of automotive	OL Harad

Concret Materia Corporation and its subsidiaries are seein the development, modulation, and	
DaimlerChrysler AG engages in the development, manufacture, distribution, and sale of automotive products, including passenger cars, trucks, vans, and buses worldwide.	Stuttg
Toyota Motor Corporation operates in the automotive industry worldwide.	Toyot

204.78B	DaimlerChrysler AG engages in the development, manufacture, distribution, and sale of automotive products, including passenger cars, trucks, vans, and buses worldwide.	Stuttgar
3191.74B	General Motors Corporation and its subsidiaries engage in the development, production, and marketing of cars, trucks, and parts worldwide.	Detroit
400.000		0 0-

	products, including passenger cars, trucks, varis, and buses worldwide.	
91.74B	General Motors Corporation and its subsidiaries engage in the development, production, and marketing of cars, trucks, and parts worldwide.	Detroit
89.82B	Chevron Corporation operates as an integrated energy company worldwide.	San Ramoi

	2	
\$189.82B	Chevron Corporation operates as an integrated energy company worldwide.	San Ramon
\$176.14B	TOTAL S.A., together with its subsidiaries, operates as an integrated oil and gas company worldwide.	Paris
\$167.21B	General Electric Company (GE) is a diversified industrial corporation.	Fairfield , CT

Ford Motor Company and its subsidiaries design, develop, manufacture, and service cars, trucks, and

AXA, through its subsidiaries, provides global financial protection and asset management services.

China Petroleum & Chemical Corporation, through its subsidiaries, operates as an integrated oil and

ConocoPhillips operates as an integrated energy company worldwide.

gas, and chemical company in the People's Republic of China and Hong Kong.

Dearborn, MI

Houston, TX

87

Paris

Beijing

\$164.72B

\$162.22B

\$152.55B

\$141.44B

parts worldwide.

U.S. Science and Math Literacy

Average ecionee	ecore of eighth	arada etudante	by country: 2003

Country	Score
International average	473
Singapore	578
Chinese Taipei	571
Souh Korea	558
Hong Kong, China	556
Estonia	552
Japan	552
Hungary	543
Netherlands	536
United States	527
Australia	527
Sweden	524
Slovenia	520
New Zealand	520
Lithuania	519
Slovak Republic	517
Belgium	516
Russian Federation	514
Latvia	512
Scotland	512
	510
Malaysia	494
Norway	494
Italy	
Israel	488
Bulgaria	479
Jordan	475
Moldova	472
Romania	470
Serbia	468
Armenia	461
Iran	453
Macedonia	449
Cyprus	441
Bahrain	438
Palestinian National Authority	435
Egypt	421
Indonesia	420
Chile	413
Tunisia	404
Saudi Arabia	398
Morocco	396
Lebanon	393
Philippines	377
Botswana	365
Ghana	255
South Africa	244

Average higher than U.S. average

Average not measurably different from U.S. average

Average lower than U.S. average

SOURCES: P. Gonzales, J.C. Guzman, L. Partelow, E. Pahlke, L. Jocelyn, D. Kastberg, and T. Williams, Highlights From the Trends in International Mathematics and Science Study (TIMSS) 2003, U.S. Department of Education, National Center for Education Statistics, NCES 2005-005, table 9 (2004); and data from International Association for the Evaluation of Educational Achievement, Trends in International Mathematics and Science Study (TIMSS) (2003).

Science and Engineering Indicators 2006

Average mathematics literacy score of 15-year-old students, by country: 2003

ountry	Score
CD countries	500
Finland	544
South Korea	542
Netherlands	538
Japan	534
Canada	532
Belgium	529
Switzerland	527
New Zealand	523
Australia	524
Czech Republic	516
iceland	515
Denmark	514
France	511
Sweden	509
Austria	506
Germany	503
reland	503
Slovak Republic	498
Norway	495
uscembourg	493
Poland	490
lungary	490
Spain	485
United States	483
Portugal	466
Italy	466
Greece	445
Turkey	423
Mexico	385
n-OECD countries	
Hong Kong, China	550
Liechtenstein	536
Macao-China	527
Latvia	483
Russian Federation	468
Serbia and Montenegro	437
Uruguay	422
Thailand	417
Indonesia	360
Tunisia	359
19 19 19 19 19 19 19 19 19 19 19 19 19 1	999

Average higher than U.S. average Average not measurably different from U.S. average

Average lower than U.S. average

OECD = Organisation for Economic Co-operation and Development

SOURICES: M. Lemka, A. Sen, E. Pahlke, L. Partelow, D. Miller, T. Williams, D. Kastberg, and L. Jocelyn, International Outcomes of Learning in Mathematics Literacy and Problem Solving. PISA 2003 Results From the U.S. Perspective: Highlights, U.S. Department of Education, National Center for Education Statistics, NGES 2005-003, table 2 (2004); and data from OECD, Programme for International Student Assessment (PSA) (2003).

Science and Engineering Indicators 2006

Rise of China's R&D Efforts

U.S. Leads World in R&D Spending, China Moves to 3rd Place

The United States continues to lead the world in R&D with 34 percent of world R&D spending in 2005, according to data from the OECD. U.S. industry, government and other sectors spend more on R&D than the entire EU combined. The U.S. share has declined from 40 percent during most of the 1990s. China has increased its R&D performance dramatically in recent years and is just narrowly the 3rd largest performer of R&D (adjusted for purchasing power), and will overtake 2nd place Japan in 2006.

 In scientists and engineers employed in R&D activities, China is already 2nd in the world behind only the United States.

> May 15, 2007 American Association for the Advancement of Science

Super Computers: Number of Top 500

Super Computers: Processing

Selected Sources

Science and Engineering Indicators 2006. Two Volumes

National Science Board National Science Foundation, 2006

21th Century Strategic Technology Vectors

Defense Science Board, 2006

• *Proceedings*, Australia-U.S. Bilateral Emerging Technology Conference

May, 2007

Converging, Combining, Emerging

Dr. George Poste, Presentation, Highland Forum XXXII

 Steering Group Report: Brain Science as a Mutual Opportunity for the Physical and Mathematical Sciences, Computer Science, and Engineering

National Science Foundation

August 2006

Globalization, Biosecurity, And The Future of The Life Sciences

Institute of Medicine and National Research
Council of the National Academies, 2006

Human Performance Modification Collaboration Workshop Report

Dr. Adam Russell and Ms. Bartlett Bulkley Scitor Corporation, 2006

 The Global Technology Revolution 2020, In-Depth Analyses Bio/Nano/Materials/Information Trends, Drivers, Barriers, and Social Implications

Richard Silberglitt, Philip S. Antón, David R. Howell, Anny Wong RAND, 2006

DoD R&E Funding By Budget Activity President's Budget Requests - in FY07 Constant Dollars

Defense R&D Spending

Federal Basic Research Spending

Trends in Basic Research by Agency, FY 1975-2008 *
in billions of constant FY 2007 dollars

DOD S&T Spending

Moore's Law Continues

FUTURE TECH

5-TERABYTE HARD DRIVES

AROUND THE year 2013, the gigabyte will become passé, thanks to a team of researchers at Toshiba and Tohoku University. By then, their recently developed hard-drive technology should lead to 5TB desktop drives and 1TB 2.5-inch notebook drives. Called Nanocontact Magnetic Resistance (NC-MR), the technology greatly boosts a drive head's ability to detect tiny changes in magnetic fields. Down the road, NC-MR should let manufacturers increase storage density from the current 178.8 gigabits per square inch all the way up to 1 terabit per square inch. Heat-Assisted Magnetic Recording (HAMR), being developed by Seagate and others, should eventually push storage density even higher-perhaps to 50 terabits per square inch by 2019.

45nm Size Comparison

- A nail = 20 million nm
- A human hair = 90,000nm
- Ragweed pollen = 20,000nm
- Bacteria = 2,000nm
- Intel 45nm transistor = 45nm
- Rhinovirus = 20nm
- Silicon atom = 0.24nm

WWW.PCWORLD.COM

AUGUST 2007

Federal R&D Spending

Industry R&D Trends

Trends in U.S. Industry R&D, 1991-2006

Expenditures in billions of constant 2006 dollars

Strategic Missile R&D Thrusts

- Science & Technology (BA 6.1-6.3)
- Radiation Hardened Electronics
- Technology for Sustainment of Strategic Systems
- Position, Navigation & Timing
- Thermal Protection Systems Materials & Structures
- Strategic Applications Programs (BA4 Air Force & Navy)
- Guidance
- Re-entry Vehicles
- Propulsion
- Command & Control

Change the Way You Do Business

The Direction of Technical Intelligence

- Other than WMD and terrorism, we see little strategic threat to US from today's forces, but:
 - Are we effectively projecting future foreign technology, capabilities, threats & emerging applications
- Possible threats to continued US military advantage are largely technology based, and rate of change of technology is increasing
- US maintains capability advantage unless:
 - New technology from adversary (e.g. stealth, PGM, NVDs)
 - Disruptive Technologies (radar, satellites, anti-satellite technologies)
- Therefore, must enhance technology intelligence to minimize surprise from
 - New technology from adversary
 - Technology/tactics that can mitigate our capability advantage

Future Tech-Intel Motivation

"Move away from Lists of Lists"

- We need to understand global technology developments, evaluating their potential impact on national security
- Global development is so prolific that is difficult to keep up, much less address impact
- Limited funding, limited analysts, limited time prevent us from looking at everything
- Multiple analyses and lists of emerging tech exist, but most do not address impact to DoD or national security; those that do are typically generated by very small group with focused agendas
- Our concern remains "are we missing something" and "how do we better identify & track trends" because . . .

To avoid technology surprise we are moving to plan for an uncertain future, recognizing the global collaborative landscape by forecast future emerging technology & disruptive applications

Radiation Hardening Applications Program (RHAP)

Objectives

- Develop a tool to model strategic system radiation effects
 - EMP missile plume coupling
 - Electrical parasitics noise coupling
 - Multi-wire cable SGEMP
- Develop a hardened boundary scan technology for mixed-signal integrated circuit application to improve testability

Payoffs

- Improve the understanding of system survivability
- Improve the quality of radiation testing
- Cost savings to the program by reducing time in isolating failures
- Reduce assembly reworks by detecting / isolating analog faults
- Capture unique skills in RAD Hard system design

Air Force Hypersonic X-51 Scramjet Engine Demo (SED)

Description

Flight Demo HyTech HC Scramjet Engine

- Fixed geometry scramjet, 12 min durability
- Waverider airframe w/ ATACMS booster
- Proves scramjet performance in flight

Technologies

- Scramjet operating from Mach 4.5 to 7+
- · Affordable, high lift-to-drag airframe
- Storable endothermic hydrocarbon JP fuel

Benefits to the War Fighter

Near Term: Affordable Fast Reaction Standoff Weapon

- Time sensitive targets: rapid response, long range standoff (600 NM in 10 min)
- Deeply buried targets: terminal velocity 1K-4K fps
- 250-500 lb modular payload (penetrator, explosive, or submunition)
- Reduced vulnerability to enemy air defenses Far Term: Affordable On-demand Access to Space with **Aircraft-like Operations**

Bottom Line: Warfighter Confidence

Right Materiel, Right Place, Right Time, at the Right Cost -All The Time

Planned Tasks Beginning in FY08

- Enhanced Ballistic Reentry Vehicle
 - Future systems may require current ballistic RVs to fly at extended ranges
 - Identify current RV "weak links" for extended range ballistic flight
 - Design improvements for identified "weak links"
 - Current funding does not support flight testing
- Advanced Fuze Alternatives
 - Fielded fuzes utilize 1970's and 80's technology
 - Evaluate technologies for future fuze concepts
 - Reduce costs and increase maintainability while maintaining current capability and nuclear hardness

Shift Happens . . .

We are currently preparing students for jobs and technologies that don't yet exist...in order to solve problems we don't even know are problems yet. More than 70% of U.S. 4-year-olds have used a computer

There are students in China, Australia, Austria, Bangladesh, and the USA who

collaborate

on projects everyday

An Uncertain, Changed World

- Technology Maturation
 Cycle
- Intellectual Capital Center Shifts
- Economic Factors Affecting R&D

Population Trends

Changing Security Environment Four Challenges

<u>Irregular</u>

- Unconventional methods adopted
 by non-state and state actors t
 counter stronger state oppon
- ☐ (e.g., terrorism, insurgency, ci war, and emerging concepts)

Lower

Traditional

- Military capabilities and military forces in long-established, wellknown forms of military competition and conflict.
- ☐ (e.g., conventional air, sea, land forces, and nuclear forces of established nuclear powers)

Higher Catastrophic

- □ Acquisition, possession, and use of WMD or methods producing WMD-like effects against vulnerable, high-profile targets by terrorists and rogue states.
- (e omeland missile attack, interation from a state to a non-state actor, devastating WMD attack on ally)

Higher

- ☐ International competitors developing and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains.
- □ (e.g., sensors, information, bio or cyber war, ultra miniaturization, space, directed-energy, etc)

LIKELIHOOD

Uncertainty is the defining characteristic of today's strategic environment

More on the Trade Gap

Figure O-12 U.S. trade balance for five high-technology industries: 1990–2003

NOTE: Includes aerospace, pharmaceuticals, office and computing equipment, communications equipment, and scientific instruments.

SOURCES: Global Insight, Inc., World Industry Service database (2005), Historical data from United Nations Industrial Development Organization, United Nations System of National Accounts, Organisation for Economic Co-operation and Development; and country sources. See appendix table 6-4.

Science and Engineering Indicators 2006

Figure O-13 U.S. trade balance in high-technology goods: 2000-04 Dollars (billions) 40 Total With EU-15 20 With rest of world -20 With Asia -40-60 2000 2003 2001 2002 2004 EU = European Union SOURCE: U.S. Census Bureau, Foreign Trade Division, special tabulations (March 2005). See appendix table 6-6.

Science and Engineering Indicators 2006

More on Education

Figure O-35 Individuals in U.S. S&E labor force nearing retirement age, by degree level: 2003 Individuals (thousands) 1,000 ■≥55 years = ≥60 years 800 600 400 200 Bachelor's Master's Doctorate NOTE: Preliminary estimates made in 2005 based on 2003 data SOURCE: National Science Foundation, Division of Science Resources Statistics, National Survey of College Graduates, preliminary estimates (2005). Science and Engineering Indicators 2006

Capabilities to Defeat Terrorist Networks

TOP THE PARTY OF T

- Persistent surveillance
- Locate, tag, and track terrorists in denied areas
- Capabilities to fuse intelligence
- Language and cultural awareness
- Non-lethal capabilities
- Joint coordination, processes and systems
- Urban warfare capabilities
- Prompt global strike
- Riverine warfare capabilities

Kinetic Capabilities Non-kinetic capabilities

All These Capabilities are Joint, Coalition Centric

Capabilities to Defend the Homeland In Depth

- Interoperable, joint command and control
- Enhanced air and maritime awareness
- Consequence management
- Broad spectrum medical countermeasures

Non-kinetic capabilities

All These Capabilities are Joint, Coalition Centric

Capabilities to Prevent the use of Weapons of Mass Destruction

- Locate, tag, track, and characterize
- Stand off fissile material detection
- Wide area persistent surveillance
- Capabilities to "render safe" WMD
- Non-lethal weapons

Non-kinetic capabilities

All These Capabilities are Joint, Coalition Centric

Capabilities to Shape the Choices of Countries at Strategic Crossroads

- Improved language and cultural awareness
- Persistent surveillance (penetrate and loiter)
- Cyberspace shaping / defense
- Secure broadband communications
- Integrated defense against all missiles

Non-kinetic capabilites

- Prompt, high-value global strike
- Air dominance
- Undersea stealth

Kinetic

Most of These Capabilities are Joint, Coalition Centric

DoD S&T Requests

- by Percent Budget Activity -

** Note: Advanced Technology Development funding began in FY78

Recipients of DoD S&T Funds

*Includes non-profit institutions, State & local govt., & foreign institutions Source: National Science Foundation Report (FY 2006)

Technology for Sustainment of Strategic Systems (TSSS)

DoD Science and Technology Program Initiated by USD(AT&L) in response to the highest priority needs identified by USSTRATCOM

Missile Propulsion
Post-Boost Control System Propulsion, Valve Technology & Materials
Ageing and Surveillance
Missile Flight Sciences
Missile Electronics
Underwater Launch
Guidance Navigation and Control for Strategic and Precision Strike
Ordnance Initiation Technology for Strategic Missile Systems
Submarine Navigation

TSSS supports the capability to sustain and upgrade existing Inter-Continental Ballistic Missiles (ICBM) and Fleet Ballistic Missiles (FBM) systems and to engineer, design, and develop new ballistic missile systems. Contributing factors include maintaining system safety, reducing operations and maintenance (O&M) costs, increasing service life of existing systems, and reducing reliance on physical testing of existing strategic systems.

TSSS Technology Objectives

Missile Propulsion

Post Boost Control

Ordnance

Missile Electronics

Underwater Launch

Flight Sciences & Analysis

TSSS - Aging and Surveillance

CT Flaw Detection

Automated Flaw Evaluation

Critical Defect
Assessment Program

Automated Fracture Propagation

Automated Flaw Meshing

3D Structural/Ballistic Modeling

Service Life Prediction

Service Life Prediction Technology Program

Chemical/Mechanical Property Assessment

Particle Packing

Polymer Mechanics

Chemical/Mechanical Property Prediction

Strategic Propulsion Applications Program (SPAP)

Objectives

- Demonstrate/validate emerging technologies suitable for ICBM/SLBM
- Maintain critical skills and tools
- Improve predictive aging models/techniques
- Demonstrate Systems Engineering Skills for systems and subsystems integration
- Reduce development/qualification time required to initiate production of alternative components

Payoffs

- Viable alternative technologies in support of D5 Life Extension
- Demonstrations of affordable and high performance technologies for boost motor, PBCS and ordnance
- Maintenance of SLBM-unique development and sustainment skills related to high-energy, high-elongation Class 1.1 Propellant
- Elimination of hazardous materials in Ordnance

Technology Efforts (ICBM

- Technology for the Sustainment of Strategic Systems (TSSS)
 - Propulsion (IHPRPT)
 - Missile Boost Propulsion
 - Post Boost Control System Propulsion
 - Aging and Surveillance Life Prediction, NDE
 - Guidance Navigation and Control
 - Navigation Sonar
 - Ordnance
 - Electronics
 - Systems Engineering Tools

Emphasizes Technology Sustainment (Reduced Cost of Ownership, Increased Performance)

Guidance Applications Program (GAP)

Objectives

- Provide a minimum strategic guidance technology design and development capability
- Transition to a long-term readiness status to support deployed systems
- Focus on modern replacement alternatives to antiquated or obsolete technologies which provide radiation hardened velocity, attitude (gyro) and stellar sensing capabilities with strategic performance

Payoffs

- Preserves critical design and core development capability
- Allows for orderly replacement of unsupportable technologies
- Applications to alternate missions
- Lower life cycle costs

QDR Priority Formulation

- Balanced what the US wants to protect against (Strategic Challenges) and outcomes the US wishes to accomplish (Strategic Outcomes)
 - Strategic Challenges
 - Traditional
 - Irregular Warfare
 - Combating WMD
 - Disruptive
 - Strategic Outcomes
 - Defeat Terrorist Networks
 - Defend the Homeland in-Depth
 - Shape Choices of Countries at Strategic Crossroads
 - Prevent the Use of WMD

QDR In A Banner – A Shift in Emphasis from "Kinetic" to "Non-Kinetic" Systems

Technology and the Modern World

"We can't solve problems by using the same kind of thinking we used when we created them"

Albert Einstein

There is no reason anyone would want a computer in their home Ken Olson, President, DEC, 1977

Everything that can be invented has been invented Charles Duell, Commissioner US Patent Office, 1899

"I think there is a world market for maybe five computers."
Thomas Watson, IBM Chairman, 1943

"640K ought to be enough for anybody."

Bill Gates, CEO of Microsoft, 1981

If you don't know where you are going, you might end up someplace else Yogi Berra

These changes, among others, are ushering us toward a world where knowledge, power and productive capability will be more dispersed than at any time in our history – a world where value creation will be fast, fluid, and persistently disruptive.

Don Tapscott and Anthony Williams, Wikinomics

"The conjunction of 21st century internet speed and 12th century fanaticism has turned our world into a tinderbox" -- Tina Brown ,Washington Post, 19 May 2005

What Can Happen if We Hold onto Mature Technology Too Long

Effort, Time, Dollars

ASSERTION: Without changing the US investment profile, US could spend more yet have capability gap close

Technological "Shock" of Desert Storm

- Based on dominant US capabilities "in the commons"
 - Low observability
 - Spaced-based capabilities
 - Comms
 - GPS
 - Night Vision
 - Info Ops
 - Missile Defense

Mega-Trends Economy

The US Trade Balance

US Advanced Technology Products Trade Balance

Source: The Economist, Jan 24, 2008

•	US Merchandise Trade Balance
	for 12 Months ending December
	2007: 815.6B\$

•	Largest A	Advancing	Techno	logy
	deficits ir	n these are	as (200	7YTD)

_	Information	technology	-7.9B
	IIIIOIIIIauoii	(COIIIIOIOGY	- <i>1</i> .3D

_	Life Sciences	-1.7B
		1.10

Losses Outpaced gains in:

Aerospace	+4.0B
-----------------------------	-------

Electronics +1.9B

Biotechnology +0.3B

Source: The Economist, March. 8, 2008

Disruptive Technologies

Frequently Take a Forcing Function

Technology			mate Date Military Apps	Technology
Radio	1901		1914	Electronics
Airplane	1903	World War I	1916	Internal Comb
Vacuum Tube	1906	vvoria vvar i	1915	Electronics
Mechanized Tank	1916		1916	Engine/Metals
Liquid-Fueled Rockets	1922		1944	Chem/Metals
Radar	1925		1939	Electronics
Gas Turbine	1935		1944	Metals
Digital Computer	1943	World War II	1945	Electronics
Ballistic Missile	1944		1945	Chem/Guide
Nuclear Weapons	1945		1945	Physics
Transistor	1948		1957	Electronics
Inertial Navigation	1950		1955	Electronics
Nuclear Propulsion	1950	0-1-1-14/	1954	Physics
Artificial Earth Satellites	1957	Cold War	1960	Computers
Integrated Circuit	1960		1970	Electronics
Laser	1961		1967	Photonics
Precision Weapons	1965		1967	Electronics

Disruptive Technology A Case Study

- Digital Equipment Corporation:
 - 1957 -- Founded
 - 1960 -- Programmable Data
 Processor 1 (PDP-1) Introduced
 - World's First Minicomputer
 - 10% cost of Mainframe Computers
 - 1965 -- PDP-8 Rolled-out;
 World's #1 Selling Computer
 - 1970's 1990—DEC #2
 International Computer Sales
 - 1990 -- 120,000 Employees;
 Revenues \$14B
 - 1998 Company Bought by Compaq—and Dead

"It was the sudden demise of DEC that first drew my attention. How could a company, once described by Business Week as a freight train that obliterates all competitors, fall so precipitously?" Interview with Clayton Christensen, Harvard Business School on Line, April 1999 (UNCLASSIFIED)

Central Technical Support Facility (CTSF)

U.S. Army Materiel Command

CTSF Mission

The CTSF provides a unique, innovative, and scalable environment, with skilled and dedicated personnel, using qualified synergistic processes in order to support the DoD's net enabled strategic vision by executing configuration management, systems engineering support, and interoperability certification testing for Army and Joint C4I providers.

SOS Focused CTSF Process

Promote a Lean Culture in All We Do.

Governance Structure

CTSF The Stats...

- **≥250,000 sq ft Facility:** 41,305 square feet dedicated to integration, testing and certification
- Fully Wired Infrastructure: with tactically representative routers, switches, hubs, fiber, 10Base2, 10BaseT and video to provide flexibility for test and exercise reconfiguration.
- ►Instrumented Facility for data collection and reduction equipment to support a vehicle platform to Corps level architecture, fully instrumented with SIM/STIM and data collection/reduction capability.
- Configuration Control Capability to support integration and fielding of Software
- ➤ High Speed Communication Links to facilities at Ft. Hood and externally to sister service sites, battle labs and contractor facilities; DREN access.
- Established Processes to support integration, testing, configuration management and training "Go to War" software.

Over 900 government civilians, and contractors form the Team of the CTSF to support, maintain & sustain the Army's digital systems deployed world- wide.

Leveraging The Army "Task Organize for Success"

Partnering is Key

Key to CTSF Success

- Unity of Command no barriers, organizations coming together to get the job done on behalf of the Warfighter, synchronization of efforts
- CTSF missions serve many customers (i.e. G3, G6, ASA(ALT), G8, ATEC, Joint and Coalition Warfighters)
- Synergy → Focused on Warfighter Needs
- In depth technical understanding of systems
- Knowledge of warfighter needs and constraints
- A set of disciplined processes for Testing, CM, and System Engineering
- Formal/Informal Partnerships (PMs, Warfighter, Test Community, Joint Community, PdM Netops)
- Adaptable and Responsive
- Honest Broker
- Well known across Army → DoD

SERVING OUR ARBY AT W Questions? RELEVANT AND RESPONSIVE

Back-Up

CTSF Vision

To become a customer valued organization ensuring the best net-centric C4I capabilities are available to US Army, Joint and Coalition Warfighters.

Bottom Line: CTSF is the Interoperability "Check Ride" for Current & Future Army Programs

CTSF Organizational Evolution

Integration

PEO C3T

CTSF Trail Boss

1 Digital Div **Proof of Principal** SW Functionality

11 Systems

Integration and Certification

10 Digital Divs 40+ BCTs C2 Interoperability

SWB 1 - 75+ Systems

ABCS Integration SoS Interoperability

Future Digital Force **Net Centric** Interoperabili w

Sysi AIC

JOINT

Interpre db. V

nn Month 2007 (UNCLASSIFIED)

FANS Concept of Execution

Federated Army Net-Centric Sites

CTSF TD Floor Layout

Promote a Lean Culture in All We Do.

Perform Special Projects as Tasked

CTSF Campus

FY07 Accomplishments

UNCLASSIFIED

Technology Insertion: Fleet/Operating Forces

Overview

- War Fighter Requirements Articulation
- War Fighter S&T Community Interaction
- Technology Insertion Programs

Simplified S&T Process

Navy Senior Leader S&T Oversight

Technology Oversight Group – Navy Representatives

- Principal Deputy Assistant Secretary of the Navy, Research Development and Acquisition
 - Acquisition/Transition
- Chief of Naval Research
 - Technology Development
- Deputy Chief of Naval Operations, Integration of Capabilities and Resources (CNO N8)
 - Resources and Requirements
- Deputy Commander US Fleet Forces Command
 - Fleet War Fighting Requirements

US Fleet Forces Command Missions Functions and Tasks

OPNAV INSTRUCTION 5440.77

- Section 2c: USFLTFORCOM will integrate and articulate authoritative fleet war fighting, readiness, and personnel capability requirements to the Chief of Naval Operations (CNO)
- Section 5d1: (USFLTFORCOM will) Coordinate integration of US Pacific Fleet (PACFLT), US Naval Forces European Command (NAVEUR), US Naval Forces Central Command (NAVCENT), and US Naval Forces Southern Command (NAVSO) war fighting, readiness, personnel and capability requirements to the CNO

USFF Command Relationships

USFF Annual Plan 2008

Sea Power 21

Force Protection
Surface Warfare
Undersea Warfare
Theater Air & Missile Defense

Sea Trial
Sea Warrior
Sea Enterprise

Common3F/Sea
Operationali&d
Tactical Picture
Communications
& Data Networks

C2F/Sea Base Strike
Naval Fire Support
Strategic Deterrence
Ship to Objective Maneuver

Sponsors

Integrated Joint Logistics
Pre-position Joint Assets Afloat

SURFACE
WARFARE
Capability
Providers
Resource
Sponsors

NAVAL
AVIATION

Resource Capability

Providers

SUBFOR UNDERSEA

RSEA NETWORK
Resource Sponsors roviders Spons

FORCENET
NAVAL
NETWORK
FORCENET
ADMINISTRATION
RESOURCE
Capabillity Resource

Providers

WARFARE ENTERPRISES

S&T Program Selection

Top Down, Requirements Driven

Office of Naval Research Science & Technology

Technology Insertion Programs

- Future Naval Capabilities (FNC)
 - Provides capabilities to close war fighting gaps
 - Up to 5 years
 - Potential for Joint Capability Technology Demonstration (JCTD) program
 - Build upon FNC adding Joint/Coalition/Agency capability
- Rapid Technology Transition
 - Increases rate that new, innovative, and potentially disruptive technologies are inserted into acquisition programs
 - Technology Readiness Level 6 or higher, 2 yr, \$2M program

Technology Insertion Programs (cont.)

- Rapid Development and Deployment Program
 - Rapid development and fielding of prototype solutions to meet urgent needs in the Global War on Terrorism
 - Validated Naval urgent need that requires rapid (270 days) development of material solutions not readily available off-the shelf
 - Naval Innovation Laboratory
- Sea Trial
 - Speed development of new concepts and technologies to the war fighter
 - Wargaming, experimentation, and exercises
 - Candidates with the greatest potential to provide dramatic increases in war fighting capability

Summary

- USFF is responsible for integrating and articulating authoritative fleet war fighting requirements to the CNO
- Navy S&T requirements are a part of the overall Navy requirements generation process
 - Senior leadership oversight
- Representatives from requirements, resources, development and acquisition work together from the beginning to support technology transfer in the Navy
- Multiple venues are available for technology transfer

Sea Power 21

Anti-Submarine Warfare

Defensive Surface Warfare

Theater Air & Missile Defense

Force Protection, Mine Warfare

Sea Trial
Sea Warrior
Sea Enterprise

Common
Operational &
Tactical Picture
Communications
& Data Networks

C3F/Sea Shield

Naval Fire Suppor Strategic Deterrenc Offensive Surface Warfar Ship to Objective Maneuve

Integrated Joint Logistic
Pre-position Joint Assets Aflo

AIRFOR

NAVAL

AVIATION

Providers

Resource

Sponsors Providers

SUBFOR

NNWC NAVAL NETWORK FORCENET NECC NAVAL EXPEDITIONAR

Capability Resource
Providers Sponso

WARFARE ENTERPRISES

Resource

Sponsors

Honeywell Aerospace MRA's for Systems & Product Families

NDIA Science, Engineering, & Technology Conference Manufacturing Technology Industry Panel

Dr. Al Sanders

Advanced Manufacturing Engineering

Honeywell Aerospace

April 17, 2008

Honeywell MRL History

- MRL used on key NPD programs since fall 2005
 - Criteria based on May 2005 DoD TRA Deskbook definitions
 - Maturity model developed to baseline key NPD programs
 - Assessments driven by newly formed AME organization
 - Over 300 assessments (including updates) conducted to date
- Enabling DFM analysis tools developed to assist evaluations
 - Quantitative first order analyses to identify design shortfalls
 - Enable "what if" analyses to quantify impact of design changes
 - Score card metrics developed to report and track improvements
- Recent MRL applications on key programs and pursuits
 - DARPA Micro Air Vehicle (MAV) lab to production transition
 - Army HTS900 Milestone C review leading to an LRIP decision
 - Airbus A350 XWB Avionics and Mechanical Systems pursuits

MRL Assessments Integral to AME Operating System

Honeywell MRL Maturity Assessment

Honeywell

- Manufacturing Readiness Levels
 - Based on DoD Definitions & Exit Criteria
 - Scoring criteria include product focus
 - Allow product or technology baselines
- Honeywell MRL maturity assessment
 - Five rating categories (threads)
 - Standardized exit criteria for each level
 - Maps to TRL & IPDS Process

Original DoD Criteria used as Basis for Internal MRL Model

- Early decisions responsible for many production ramp issues
 - Actual costs exceed estimates
 - Quality levels below expectations
 - Low yield and delivery problems
 - Service related reliability issues
 - Supply chain inefficiencies
- MRL's drive proactive planning
 - Sets agenda for risk mitigation
 - Mfg requirements defined early
 - Optimal supply chain strategies
 - Synchronizes SBU/ISC/E&T
 - Applies to both technology <u>AND</u> system development programs

Source: DARPA Rapid Design Exploration & Optimization Project

What does MRL 6 Mean?

Manufacturing Risks Identified & Planned For

- Design Cost & Producibility Drivers
- Potential Availability & Yield Issues
- Baseline Architecture DFM Shortfalls
- Industrial Base Capability Gaps
- Capital Investment Needs & Rationale
- Alignment of Supply Chain Strategies

Critical to Identify and Plan for Shortfalls in Early Phases

- Technology Development (Low TRL, Low MRL)
 - Many technology demonstrators push manufacturing limits
 - MRL maturation being driven lock-step with TRL maturation
- New Product Development (High TRL, Low MRL)
 - Mature "similar to" baselines often have producibility issues
 - Key is pinpointing shortfalls early during concept definition
- Supplier Transition/Reposition Risk Mitigation
 - Global supply base continues to be an ever changing entity
 - Knowing gaps early accelerates supplier development
- "Red" Program Deep Dives and Recovery Plans
 - Pinpoints root cause of problem areas needing attention
 - Focuses program recovery on next steps to address gaps

MRL has Applications throughout Product Life Cycle

Assessments for sub-systems (e.g. avionics box)

- Assessment triggers to identify high risk sub-systems & components
- •Manufacturing Readiness Level (MRL) maturity model
 - -Macro view of systemic supply chain top level risk areas
 - -Enables proactive risk identification and mitigation plans

Assessments for components (e.g. circuit card assembly)

- Complexity analyses to quantify manufacturing difficulty
 - -Captures first order design attributes driving complexity
 - -Enables "what if" design simplification trade studies
- •Yield analyses for up-front prediction of quality targets
 - -Correlates defect opportunities with process capability
 - -Establishes "upper bound" on anticipated first pass yield
- •DFM score card analyses to quantify impact of DFM violations
 - -Quantifies impact of first order DFM drivers on producibility
 - -Enables designs to be "graded" based on ease of producibility

AME Enabling Tools Developed to Assist Assessments

Scorecard "Bundles" Component Level Assessments

Summary and Conclusions

- Streamlined product MRL assessment developed for internal use
 - Leverages industry standard criteria in a repackaged format
 - MRL assessments called out as part of internal IPDS process
 - Proprietary enabling DFM tools developed to assist with ratings
 - Over 300 assessments (including updates) conducted to date
 - Process used during key pursuits to understand risks/opportunities
- Investigation of MRL for "aircraft system" concept evaluations
 - DoD criteria applicable to component technology development
 - Honeywell version adapted criteria to reflect a sub-system focus
 - System level application requires "system engineering" philosophy
 - Tier 1 MRL (new) would focus on overall supply chain architecture
 - Tier 2 MRL (current) would focus on component level manufacturing

Early Industrial Base Design around Product is Key

Questions?

Contact Information
Dr. Al Sanders
602-231-1886
Al.Sanders@Honeywell.com

Contents

- History of Technology & Manufacturing Readiness Assessment (T&MRA) Activities at RMS
- T&MRA Project
- Lessons Learned

Raytheon

History of T&MRA Activities at Raytheon Missile Systems (RMS) – 2005 & 2006

2005

- RMS leader attended Defense Acquisition University course...first delivery of Manufacturing Readiness Level (MRL) materials
- ManTech white papers, quad charts & proposals require MRLs & notional MRL Maturity Plans (MMP)

2006

- RMS employees attended MRA training course established by Air Force Research Lab (AFRL)
- 2-Part Pilot MRAs conducted by AFRL on AMRAAM Program
- RMS Kicked-off T&MRA Project with Raytheon Six Sigma Team
- Full Time MRA Manager assigned to Air-to-Air Product Line
- Joint Service ManTech Program Awarded, required MMP
- Conducted first independent T&MRA on Radome portfolio
- T&MRA @ RMS website goes live

It Simply Makes Good Business Sense!

- Establishing TRLs, MRLs and maturity plans in accordance with the DoD's TRA & MRA requirements is not only necessary to support customer led assessments, but also:
 - T&MRA processes can change the culture by driving a collaborative partnership between programs, design and manufacturing engineering earlier in the product development life cycle where maturity efforts can have greatest impact on improving program affordability and predictability
 - Lower risk designs lead to shorter development cycles with fewer design restarts, more accurate delivery dates, and lower overall development costs
 - Can mitigate 20% post CDR cost growth trend noted in GAO reports
 - Cost reductions of 30% or more can be achieved

T&MRA @ RMS Project Vision

Technology & Manufacturing Readiness is integrated and measured in RMS business practices and culture.

Established TRA Process:
Technology Readiness Assessment

New MRA Process: Manufacturing Readiness Assessment

T&MRA @ RMS Project Focus Areas

Awareness & Training

- T&MRA socialization across RMS & Raytheon
- T&MRA preparation and facilitation training

T&MRA Knowledge Management

- Environmental scanning, knowledge capture, information warehousing & easy access (e.g. website, docushare and eRooms)
- Capture lessons learned from internal & external cycles of learning
- Assist DoD in the shaping MRA regulations, policies, and processes

Standardization of T&MRA @ RMS Processes

- 10-Step process created (includes capture of lessons learned)
- Aligned with DoD MRA process, combined with DoD's TRA

Directive System Support

 Modify Directives, Proposals, Contracting, Practices, Instructions, etc. to support consistent and compulsory deployments

T&MRA Website for Knowledge Capture & Reuse

Technology & Manufacturing Readiness @ RMS

Links

- Defense Acquisition University
- Defense Acquisition Guidebook
- Acquisition Community Connection
- DAU Manufacturing Readiness Assessments
- DoD ManTech
- MRL Assist

T&MRA Tool Box

- MRL Matrix & Definitions+
- T&MRA Baseline & Planning Workbook
- TRL HW & SW Definitions (DAG October 2004)
- T&MRA Summary Report Template

Reference Materials

- 2007 Defense Manufacturing Conference
- 2007 Technology Maturity Conference
- AFRL MRA Workshop 2006 DMC
- DoD Integrated Management Framework Back
- DoD Integrated Management Framework Front
- GAO-07-706SP Assessments of Selected Weapon Programs, March 2007
- Manager's Guide to Technology Transition in an Evolutionary Acquisition Environment, Version 2.0, June 2005
- Misc. T&MR Presentations
- Senate Report 109-254, National Defense Authorization Act for Fiscal Year 2007, May 9, 2006
- T&MRA Process Training
- T&MRA Overview
- Technology Readiness Assessment (TRA) Deskbook, May 2005

History of T&MRA Activities at RMS - 2007

- T&MRA 10-Step Process developed aligned with MRA
- T&MRA awareness seminars conducted across RMS
- Project Lead attended 2-week DAU course with DoD PMs;
 teams conducted notional MRAs from GAO facts & data
- MRAs considered good Management practice not plus-ups
- T&MRL baselines in 3 major proposals (lessons learned)
- T&MRA added to RMS Manufacturing Excellence Model
- Early T&MRL requirements for Architectural Review Boards
- Participated in JDMTP's MRA Working Group with Industry
- "T&MRA @ RMS" presented at Raytheon Symposiums and Defense Manufacturing Conference
- MRL maturity included in Operations Strategy and Reviews

Combined "Technology & Manufacturing Readiness Assessment" Model

Raytheon

History and Plans for T&MRA Activities at RMS - 2008

- T&MRA detailed 10-step process training developed
- T&MRA tools refined and added to assess current state, develop maturity plans, report progress and document T&MRA
- Corporate IPDS Change Review Board scheduled to review T&MRA for potential incorporation into IPDS to ensure consistent and compulsory deployment in 2008
- T&MRA project lead scheduled to present "T&MRA @ RMS" at this year's:
 - National Defense Industry Association (NDIA) Science & Engineering Technology Conference in April
 - Enterprise Process Group Workshop in July

Tool to Capture, Plan and Status T&MRLs and Maturity Plans

- Tool created to demo important T&MRA planning & reporting characteristics
 - Facilitates and documents the Baseline & Current State T&MRLs by MRL Matrix Thread
 - Potential to roll-up 10 separate technology assessments to an assembly level TRL & MRL
 - Transition Risk Color Coding based on DoD Best Practices for each phase of PDLC

Program: example: HyperSonic Missile Program **Product Description:** example: Guidance & Navigation Unit (GNU) **Product Development Phase:**

Technology Development

Transition Readiness Goals:

T&MRL Valuation Method:

Lowest T&MRL Values

Most Recent Assessment Date: None

Roll-Up T&MRLs										
All Baseline Values				All Current Values						
Low TRL	4.0	Low MRL	3.0	Low TRL	6.0	Low MRL	3.0			
High	8.0	High	5.0	High	6.0	High	3.0			
Avg	5.8	Avg	4.0	Avg	6.0	Avg	3.0			

			T&MRL Assessments (Max. 10 Technologies per Roll-Up)								
# MRL Matrix Evaluation Threads		# MRL Matrix Sub-Thread		Acronym 1		Acronym 2		Acronym 3			ı
				Current	Baseline	Current	Baseline	Current	Baseline	Current	ĺ
1 Technology & Industrial Base	1	Technology Readiness Level (TRL)	5	6	4		6		8		i
	2	Technology Transition to Production	4	5	4		6		7		ĺ
	3	Manufacturing Technology Development	4	5	4		6		7		
2 Design	4	Producibility Program	5	6	4		6		7		ı
	5	Design Maturity	5	5	3		6		5		11
3 Materials	6	Maturity	3	5	3		6		5		il i
	7	Availability	5	5	4		6		6		
	8	Supply Chain Management	5	5	5		6		6		Н
		Special Handling	7	7	7		5		6		Н
Cost & Funding	10	Production Cost Knowledge (Cost Modeling)	4	5	4		5		6		iL
	11	Unit Production Costs	4	4	4		6		6		П
	12	Manufacturing Investment Budget	3	4	3		6		7		П
Process Capability & Control	13	Modeling & Simulation (Product & Process)	3	3	3		6		7		н
	14	Manufacturing Process Maturity	5	5	4		6		7		1
	15	Manufacturing Technology Initiatives					8		7		ıL
	16	Process Yields & Rates	5	5	4		5		5		
Quality Management	17	Quality Management Including Supplier Quality	5	6	4		6		6		1
Manufacturing Personnel	18	Manufacturing Personnel	6	6	5		6		6		
Facilities	19	Facilities	7	7	6		8		7		П
Manufacturing Management	20	Manufacturing Planning & Scheduling	5	5	4		7		7		т
	21	Materials Planning	6	6	6		7		7		ı
	22	Tooling & Special Test Equipment	5	6	5		6		7		ı
		Baseline MRL (excludes TRL):	3.0		3.0		5.0		5.0		ĺ
		Current MRL (excludes TRL):		3.0				-		-	i
		High MRL (excludes TRL):	7.0	7.0	7.0	0.0	8.0	0.0	7.0	0.0	ĺ
		Low MRL (excludes TRL):		3.0	3.0	0.0	5.0	0.0	5.0	0.0	ĺ
		Average MRL (excludes TRL):		5.3	4.3	#DIV/0!	6.1	#DIV/0!	6.4	#DIV/0!	ĺ

Transition Readiness Risk Guide by PLC Phase									
CR	TD	SDD	LRIP						
4	6	8	9						
1	1	1	1						
2	2	High Ris	k 2						
3	3	J	3						
4	4	4	4						
5	5	5	5						
6	6	6	6						
7	7	7	7						
LowR	isk 8	8	8						
9	9	9	9						
10	10	10	10						

T&MRL Maturity Planning for Each Technology Assessed

- Plan vs Actual TRL and MRL with transition readiness risk color codes
- Detailed tasks, POC, rationale, dates, funding, and sources of funding
- "What-if?" analysis capability

Program: Hypersonic Missile Program Guidance & Navigation Unit **Product Description: Product Development Phase: Technology Development**

Transition Readiness Goals:

T&MRL Valuation Method: Lowest T&MRL Values

> **Key Technology Assessed:** Acronym: Acronym 1

ltem #	Task Description	Rationale/Evidence/Risks to Completion	Responsible POC	Plan Due Date	Complete Date	MRL Increase	Funding Req'mts	Funding Type	Funded (Y/N)	MRL Base Plan	MRL Act'l
1.00	Baseline MRL	Rationale/Evidence/Risks to Completion	Name		10/07					3	3
1.01	Maturity Advancement Action 1	Rationale/Evidence/Risks to Completion	Name	12/07	11/07		\$100 K	IRAD	Υ	3	3
1.02	Maturity Advancement Action 2	Rationale/Evidence/Risks to Completion	Name	01/08	12/08		\$20 K	IRAD	Υ	4	3
1.03	Maturity Advancement Action 3	Rationale/Evidence/Risks to Completion	Name	01/08	01/08		\$45 K	Contract	Υ	4	3
1.04	Maturity Advancement Action 4	Rationale/Evidence/Risks to Completion	Name	02/08	01/08	1	\$30 K	Contract	Υ	5	4
1.05	Maturity Advancement Action 5	Rationale/Evidence/Risks to Completion	Name	02/08	02/08	1	\$10 K	Contract	Υ	5	5
1.06	Maturity Advancement Action 6	Rationale/Evidence/Risks to Completion	Name	03/08	02/08		\$25 K	Contract	Υ	6	5
1.07	Maturity Advancement Action 7	Rationale/Evidence/Risks to Completion	Name	03/08			\$25 K	Contract	Υ	6	0
1.08	Maturity Advancement Action 8	Rationale/Evidence/Risks to Completion	Name	05/08			\$1,200 K	Capital	N	7	0
1.09	Maturity Advancement Action 9	Rationale/Evidence/Risks to Completion	Name	07/08			\$260 K	Contract	Υ	7	0
1.10	Maturity Advancement Action 10	Rationale/Evidence/Risks to Completion	Name	08/08			\$50 K	Contract	N	8	0
1.11											0
1.12											0
1.13											0
1.14											0
1.15											0
1.16											0
1.17											0
1.18											0
1.19											0
1.20											0

Key Lessons Learned

- Cultural change...T&MRA is a means to facilitate earlier collaborations between design engineering, manufacturing and supply chain during any phase of PDLC
- Leadership & Assessment Team alignment required before T&MRA deployments
- TRLs & MRLs should be established at the critical technology levels (best practice)
- Wherever possible, the T&MRA should be completed prior to developing a proposal to ensure technology, design & manufacturability risks are accounted for:
 - Assess program feasibility and technology transition readiness (risks)
 - Program cost and schedules should include maturity plans and goals
 - Identify key manufacturing processes that need to be matured for program success

Key Lessons Learned

- Command media revisions required for consistent & compulsory use
- Tailoring of assessment based on fidelity level desired
- MRA and Production Readiness are not the same
- Systems Engineering organization to own the T&MRA process
- Need further development and integration of tools and management systems to capture, plan and report T&MRL progress
- MRL Matrix can be enhanced further to focus on Manufacturing Process Maturity
- Low MRLs are not necessarily an issue...not having a maturity plan is!

In Summary...

- TRLs are part of our culture at Raytheon...more discipline required
- MRLs are relatively new...Industry is still in early stages of adoption
 - Sense of urgency within the DoD TRA & MRA processes are being taught to and deployed by our customers...and for very compelling reasons
 - Acquisition Policy, Guidance and Legislation associated with TRA & MRA are in place and/or currently under revision & development for 2008 release
- The use of T&MRA processes will not guarantee program success
- T&MRA processes and tools will:
 - Change culture bridge the divide between engineering & manufacturing
 - Provide insight into current state technology & manufacturing maturity and capability
 - Identify contributing factors & issues driving the "Gaps" in T&MRL maturity
 - Identify the type and significance of risks to program cost, schedule and performance
 - Lead to more accurate, time phased, and priced maturity plans
 - Improve program affordability <u>and</u> predictability

T&MRA @ RMS

If you have any questions, feel free to contact me at:

Dale Iverson

Raytheon Missile Systems

520-241-9275 (cell)

520-794-2947 (office)

ddiverson@raytheon.com

Army Science and Technology

NDIA

9th Annual Science & Engineering Technology Conference

15 Apr 2008

Dr. Thomas H. Killion

Deputy Assistant Secretary for Research and Technology/ Chief Scientist

Outline

- Army Science and Technology (S&T) Strategy and Funding
- Future Force Technologies
- Future Combat Systems
 - -Spinouts to the Current Force
- S&T Insertions to Current Operations
- Basic Research Thrusts

Science & Technology for a Campaign Quality Army with Joint & Expeditionary Capabilities

Enabling the Future Force

Science and Technology—
develop and mature
technology to enable
transformational capabilities
for the Future Force
while seeking opportunities
to accelerate technology
directly into the
Current Force

Enhancing the Current Force

Elements of Army S&T Strategy

- Ensure investments are aligned with Army missions and capability needs
- Maintain balanced & responsive portfolio across
 - Elements of investment (6.1/6.2/6.3)
 - Disciplines and technology areas
 - Performers (intramural/extramural)
 - Capability pull and technology push
- Sustain critical infrastructure—people and physical—responsive to Army needs
- Communicate S&T vision and approach to senior decision makers, key stakeholders, partners and customers
- Establish and refine processes and metrics to promote innovation, efficiency & effectiveness, and facilitate transition

FY09 Funding—Research to Systems 3 Different Types of S&T Investments

S&T

Development (RDT&E)

Acquisition (Procurement)
\$24.6B

.7B

\$1.8B

6.1: Basic Research \$379M (21% of S&T)

Nanoscience

- Understanding to solve Army-unique problems
- Knowledge for an uncertain future

6.2: Applied Research \$724M (39% of S&T)

- Applications research for specific military problems
- Components, subsystems, models, new concepts

6.3: Advanced Technology

Development

\$739M (40% of \$&T)

- Demonstrate technical feasibility at system and subsystem level
- Assess military utility
- Path for technology spirals to acquisition—rapid insertion of new technology

67% Universities/Industry

35% Industry

60% Industry

Far Term Mid Term Near Term

Technology Area Investments to Satisfy Gaps—New Capabilities

FY09 \$1.8B

Force Protection \$370M

ISR \$149M

C4 \$144M

Lethality \$161M

Medical \$140M

Soldier \$135M

Logistics \$92M

Rotorcraft \$72M Classified \$62M

Unmanned Vehicle \$54M Mil Eng & Environment \$47M Advanced Simulation \$37M

Basic Research \$379M

Enhancing the Current Force

Current Force Capability Gaps Areas

6th Gap Analysis

- 1. Protect Force in Counterinsurgency Operations
- 2. Networked Enabled Battle Command
- Logistics and Medical in Counterinsurgency Operations (COIN) and non-contiguous battlespace
- 4. Soldier Protection in Counterinsurgency Environment
- 5. Tactical Communications
- 6. Joint Interoperability, Coalition, and Interagency Operations
- 7. Train the Force How and As it Fights
- 8. Timeliness of Analysis and Information Dissemination
- 9. Ability to Conduct Joint Urban Operations
- 10. Information Operations

Future Force Capability Gap Areas

CNA FY 10-15

- 1. Modular, Scalable and Tailorable Battle Command and Control
- Strategic Force Projection / Intra-theater Operational Maneuver and Sustainment
- 3. Dynamic, Uninterrupted Communications Network
- 4. Capability for Lethal / Non-Lethal Overmatch
- Modular, Tailorable Forces
- 6. Enhanced Collection, Exploitation and Dissemination
- Enhanced Soldier Protection
- Sustainment of Modular Forces
- 9. Enhanced Platform / Group Protection
- 10. Ability to Train the Force How and As it Fights

Future Force Technologies

Unmanned Systems

Unmanned System/Human Interface Technology

Unmanned Ground Vehicle Technologies

Future Force Technologies

Lethality

EM Gun

Non Line of Sight - Launch System (NLOS-LS)

Warhead Small Arms Technology

Scalable Effects

Inert Frags

Smaller, Lighter, Cheaper Munitions

Soldier Systems

Combat

Soldier Mobility and Advanced Load Carriage

Current New LiCFx Half-Size BA-5590 Battery

Armor Coverage

Power & Energy

Fuel Cell Development

Logistics

Hybrid Electric Drive

Sustainment

Advanced Hybrid Engines

Precision Air Drop 30k lbs

High Technology Army

Future Combat Systems— Spinouts to the Current Force

Technology Insertions for Current Operations

Benefiting from Past Investments

Interceptor Body Armor

Adapting/ Accelerating On-going S&T Programs

Mobile Remote
Access &
Information
Diagnostics

Every Soldier A Sensor Simulation

USMC Dragon Fire II with Lightweight Counter Mortar Radar (LCMR)

Mine Detecting Ground Penetration Radar (GPR)

Leveraging Scientist & Engineer Expertise

Enhanced Rocket, Mortar & Sniper Detection

RG-31 Engineer Vehicle Add-on Armor Kit

Hellfire Launch
On Predator

HMMWV Expedient Armor

Accomplishments—2007

Future Force Warrior (FFW)

Mounted Combat
Systems & Abrams
Ammunition
System
Technologies

C4ISR—On The Move Experiment

MRAP

Battlemind Training

(

Basic Research Thrusts

Revolutionize military training and mission rehearsal through the development of technology and art for simulation experiences and the development of virtual human technology

Discover, develop and exploit robotic devices and systems with highly sophisticated sense, response and processing systems approaching that of biological systems to dramatically enhance Soldier survivability

> Discover and create new materials with properties that will revolutionize military technology and make Soldiers less vulnerable to the enemy and environmental threats

Research in human-engineered and biologically-evolved networks to improve performance, increase reliability and enhance network-centric mission effectiveness

> Research to understand biological construction of novel materials, structures and processes to develop biologically-derived materials, sensing systems, information processing and power and energy

> > Research in understanding the functional brain to improve training techniques, human-machine interface design, the nature of traumatic brain injuries, and to more fully understand the decision-making process

Generate advances in quantum sciences that will enable revolutionary approaches to information processing, cryptography, information assurance, and communication

neuroscience

Predicting the Future

It's tough to make predictions, especially about the future. Some famous technology predictions include:

- "Heavier-than-air flying machines are impossible."
 - Lord Kelvin, 1895
- "Airplanes are ...of no military value."
 - Marshal Ferdinand Foch, 1911
- "Who ... wants to hear actors talk ?"
 - H. M. Warner, 1927
- "... (T)here is world market for maybe five computers."
 - T. Watson, IBM Chairman, 1943
- "640k (RAM) ought to be enough for anybody."
 - Bill Gates, 1981

Army S&T...

Engine of Transformation

CERDEC Contributions to Army Battle Command Networking Efforts

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Mr. David Jimenez

Director, Space & Terrestrial Communications Directorate

Evolution of Army Networking

Civil War

World War I

U.S. Army Signal Corps (1860)

Telegraph

Clark Portable Army Radio Set (1906)

Vietnam

PRT-4 & PRR-9

WWII Radios

World War II

PRC-6

1980s-2006+

SÄTCOM

SINCGARS

2014 BCT Architecture

Major Communications Thrusts

Connectivity

Capacity Security

Mobile Networking

Antennas

Information Assurance

Comparison of Commercial & Military Communications Architecture

Commercial

- Mobile Subscriber, Fixed Infrastructure
- Pre-configured Networks
- Tall, Fixed Antenna Towers
- Fiberoptic Internodal Connections
- Spectrum Availability
- Fixed Frequency Assignments
- Protection: None
 Privacy (single level)
- Interference Rejection is Somewhat Important
- Low probability of Detection (LPD) is not an issue

COMMERCIAL

High Bandwidth

Small Bandwidth

TACTICAL

Primarily Robust Static Infrastructure

Radio-Based Highly Mobile Comms

Highly Skilled Large Teams

MOS w/Multi-duties

Military

- Mobile Subscriber Mobile Infrastructure
- Ad Hoc, Self Organizing Networks
- Small, Easily Erectable Masts; Low Profile OTM Antennas
- Mobile, Wireless, Internodal Connections
- Restricted Frequency
 Assignments; Geographically Impacted
- Protection: None

 Top Secret/ SI (Multiple, Simultaneous Levels)
- Interference Rejection and Antijam are Critical
- Low Probability of Detection (LPD) is Critical

Strategy =

Adopt

Adapt Modify Develop and/ or Influence

Systems Engineering (SE) Approach

Technology Development and Maturation

PM C4ISR On-The-Move

- R&D venue offering the Tech Base and Programs of Record a
 continuous and enduring evaluation capability for Network Centric Warfare
 (NCW) concepts
- Conducts Live, Virtual, and Constructive technology demonstrations currently supporting scales on the order of 100 live and 3,000 virtual/constructive entities
- Provides a relevant environment to assess emerging technologies in a C4ISR System-of-Systems (SoS)
- Mitigate risk for FCS Concepts, Future Force technologies
- Opportunities for acceleration of technology insertion into the Current Force
- Venue for validation of Technology/Software/ Integration Readiness Levels
- Includes a state-of-the-art instrumentation, data collection & reduction (IDC&R) tool suite that supports the quantification of NCW activities
- Employs system of systems engineering methods that promote rapid SoS reconfiguration and enable repeatable assessments
- Has a diverse set of experience over the past seven years in working with dozens of government and industry partners to integrate and execute large-scale, distributed Live/Virtual/Constructive events

Seasoned team of subject matter experts & analysts

Warfighters and scientists working side by side

Seven years of field experimentation experience

SoS engineering processes & procedures – rapid prototyping frameworks

Linking Battle Command Metrics Across Multiple Domains

Technical Metrics

C4ISR System Performance

- Network Connectivity
- Message Completion Rate
- Probability of Detection
- Probability of Identification
- Detection Accuracy
- Power Usage
- Visualization Resolution

System Knowledge

Quality of Information

- Accuracy, Completeness
 & Timeliness of
 Information about Threat
- Level of Situational Awareness Achieved
- Number and Types of Decisions Made

Operational Metrics

Soldier Unit Performance

- Time to Execute Mission
- Blue Losses
- Red Losses
- Degree of Surprise
- Ability to Maneuver Undetected
- Number of PIR Satisfied

Quantifying How Technical Performance Impacts Operational Effectiveness

Support to PM Programs and Tech Base Efforts

PM WIN-T 2007 Increment 2 **Engineering Field Test**

- Critical Technology Elements
- **Network Scalability**

JTRS SLICE SRW 2006/7 **Technical Field Tests**

Waveform maturation

PM FCS 2007 Technical Field Tests

- **SUGV** Teleoperation
- T-UGS / U-UGS
- **NEBC Technology Transition**

Natick Soldier Center 2006/7 Future Force Warrior

- · Exit Criteria Testing
- Transition to PEO Soldier

Networking Technology Transitions

- •Body Wearable Antenna Technologies for SRW
- •2 Port Low Profile Antenna for Wideband Networking Waveform (WNW)/ Soldier Radio Waveform (SRW) bands
- •Antenna optimization Modeling and Simulation for Command & Control Vehicle (C2V) and Reconnaissance & Survivability Vehicle (R&SV)

- Tactical Wireless Network Assurance
 - Black Side Intrusion Detection system
- Soldier Radio Waveform
 - Mobile AdHoc networking for Soldiers, sensors, munitions
- Command and Control of Robotic Entities (C2ORE)
 - UAV mission planning and execution software autonomously controls multiple UAVs
 - Enhances planning and management of unmanned sensor assets (UGS, UAV, UGV, etc)

Soldier Radio Waveform (SRW) Communications ★□E Within the Emerging C4ISR Architecture

Ground Soldier System

Unmanned Ground Vehicles

Unmanned Aerial Vehicles

Intelligent Munitions Systems

Unattended Ground Sensors

Non-Line of Sight-Launch Systems

The Soldier Radio Waveform is a mobile, ad-hoc, networking waveform developed and transitioned to provide improved voice and data communications, for platforms with Size, Weight, and Power constraints. Hosted on Joint Tactical Radio Systems (JTRS) Handheld Manpack Small Form Factor (HMS) and Ground Mobile Radio (GMR)

Antenna M&S Performance on Vehicles Process

Vehicle Model with Validated Antennas

Finite Difference Time Domain (FDTD) Simulation

Hybrid M&S Results

Geometrical Theory of Diffraction

(GTD) Simulation

Example: MRAP Antenna Placement Optimization

D.C4.2006.04 / Tactical Network and **Communications Antennas (TNCA)**

Blue Force Comms Systems No

oper In Direct Line Of Sight

Greater Link Connectivity for WNW

Increased Link Connectivity

2-PORT SURVIVABLE LOW PROFILE

Reduced Pletform Visibility

Assured Communications

Reduced Logistics

Increased AJ

Purpose:

- Develop Affordable, Low Profile Solutions For OTM SATCOM
- Develop Affordable Directional Antennas for Terrestrial **Directional Networking**
- Develop Omni-directional Antennas With Higher Gains, Lower Profiles with Ballistic Radomes, and Multiple Ports to Reduce the Number of Platform Antennas
- Develop Integrated Antennas for Dismounted Soldier
- Develop Distributed Antennas to Improve Omnidirectional Antenna Performance and Reduce Cosite Interference

Products:

- Low Cost Ku/Ka Band OTM SATCOM Antenna Systems
- Low Cost X-band Point Of Presence
- Efficient Ku and Ka Band Power Amplifiers
- Low Profile Single Beam Ku/Ka SATCOM Ant System
- Low Profile Multibeam Ku/Ka/Q SATCOM Ant Analysis
- Affordable Terrestrial Directional Antennas
- · WNW High Gain Omni Antennas
- 2-Port Low Profile Omni Antennas with Ballistic Radome supporting multiple waveforms (Ground/RW)
- 3-Port Tri-band Omni Antennas
- Integrated Body Wearable Antennas
- Distributed Antenna Array

Payoffs:

- Affordable OTM SATCOM and Terrestrial Directional Ants.
- Reduced Visual Signatures & Antenna Counts
- Improved Link Connectivity and Ballistic Protection
- Reduced Platform Power Consumption

D.C4.2009.01 / Affordable Low Profile Satellite (ALPS) Comms On-the-Move

Purpose:

 Develop, mature, and demonstrate low profile antennas for directional and satellite communications (SATCOM) on-the-move (OTM)

Products:

- Low-profile, single-beam (Ku/Ka) antenna
- Low-profile, multi-beam (Ka/Q) antenna
- Single-beam high capacity communications capability (HC3) (Ka/Q) antenna
- Small aperture blue force tracking (BFT) antenna
- C/Ku Affordable Directional Antenna
- Integrated Ka/Q-band Power Amplifier

Payoff:

- Increased Communications Capabilities at all echelons through greater use of SATCOM OTM
- Reduced platform burden through reductions in antenna size, weight, and power(SWaP)
- Increased survivability through reduced visual signature
- Affordable SATCOM OTM for the warfighter through antenna cost reductions

D.C4.2003.01. / Tactical Wireless *CER **Network Assurance (TWNA)**

Purpose:

To develop and transition wireless network protection solutions for a tactical Mobile Ad-hoc Networking (MANET) environment that is typical of WIN-T and the Future Force.

Product:

- Tactical security administration tool for mobile wireless environment.
- Intrusion Detection Algorithms for MANET routing protocols
- Tactical Public Key Infrastructure (TPKI)
 - Architecture
 - Certificate Issuance
 - Field Replacements
 - Revocation

Payoff:

- Prevent threat Information Warfare attacks from damaging mobile networks.
- Maintain Warfighter trust/confidence in battlefield information.
- Reduce system and network vulnerabilities.

D.C4.2006.01 / Network Enabled Command and Control (NEC2)

Purpose:

Develop and transition software and algorithms that tailor and manage the flow of Battle Command (BC) information and C2 services between current and future systems throughout all phases of operations and environments

Products:

- Battle Command Planning/execution/re-planning products for:
 - Dismounted applications in Complex and Urban Terrain
 - Current Force Tactical C2 Systems
 - Unmanned systems and sensors
 - Decision support tools that account for political, religious, cultural and other factors
- Managed Connectors that govern the flow of information between disparate architectures while globally managing resources

Payoff:

- Increased speed/quality of BC planning and execution adjustments
- Improved commanders' understanding of Battlespace and related factors
- Faster decision-making

D.C4.2006.03 / Tactical Mobile Networks (TMN)

Purpose:

- Develop Soldier Radio Waveform (SRW) for Dismounted Soldier and manned & unmanned systems.
- Develop communications and networking technologies that address Future Force constraints for bandwidth and connectivity while on the move.

Product:

- JTRS Software Communications Architecture (SCA) v2.2 compliant, energy-efficient Soldier Radio Waveform (SRW)
- PILSNER Proactive Diverse Link Selection (PAD-LS) algorithms to enhance OTM connectivity and capacity
- Faster than real time dynamic link estimation for connectivity and capacity for Network Management and man in the loop experimentation

Payoff:

- Energy efficient voice & data tactical communications for Ground Soldier Systems/Future Force Warrior and sensor-to-shooter linkages
- Increased OTM connectivity and usable bandwidth
- Enable commanders to plan communication coverage for OTM Coarse Of Action (COA)
- Addresses PM FCS (BCT) Critical Technology #7B (SRW), Risk #93 mitigation (SRW Availability) to support "Network Ready"

D.C4.2008.02 / Tactical Information Technologies for Assured Network Operations (TITAN)

Purpose:

- Develop, mature, and demonstrate modular tools and technologies that significantly improve the network planning and management of the tactical network
- Develop, mature, and demonstrate security tools to protect mobile networks from attacks and allow information to be shared across security domains
- Develop, mature, and demonstrate agent enhanced Battle Command (BC) tools to enable real time situational awareness and relevant strategic and tactical battlefield information sharing

Products:

- Automated Network Management (NM) Tools
- Information Assurance (IA) Tools
- Space/Strategic and Tactical Information Dissemination and Management (ID&M) Applications and COA development

Payoff:

- Reduce manpower and network management configuration time
- Share information across security domains while ensuring trust/confidence in information being sent to the Warfighter
- Improve information sharing by providing relevant information from strategic to a tactical operational unit

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Future Networking Technologies

Affordable Satellite Antennas for Transformation Comm Systems

- -On The Move Multi band, single/multi beam
- -Affordable phased array antennas

Advanced Wireless Security Services

- -Integrated Information Assurance (IA) Correlation and Response
- -Software Cross Domain Security Services

Cognitive Networking

- –Multi-Function RF systems (Radio / EW)
- Dynamic Spectrum Access Capabilities
- Adaptive middleware for applications to adjust to network conditions.

Process for Cognitive Network Project Development

ISR - Ideal Software Radio

USR - Ultimate Software Radio

Cognitive Network & Radio Study

Description: A cognitive network consists of technologies that can perceive current network conditions, and then sense, plan, decide and act on those conditions. The network can learn from these adaptations and use them to make future decisions, all while taking into account end-to-end performance goals and user needs

Benefits: A cognitive radio has awareness of changes in its environment and adapts its operating characteristics to improve its performance or to minimize a loss in performance

Approved for public release; distribution is unlimited.

Cognitive Network High-Level Roadmap

Example: Cognitive Radio Benefits

Cognitive

Radio R&D

Current Radio Architectures

- Extensive planning before deployment
- Detailed organization structure required accounting for every radio
- Detailed definition of Comm. Circuits and static routing procedures
- Intensive training for network development
- Static Network Configuration
- Limited network adjustment
- Individual nodes unaware of conditions experienced by other nodes
- Unaware of context of operation

Legacy Example: EPLRS

Approved for public release; distribution is unlimited.

Future Cognitive Radio Architectures

- Automated Policy Planning
- Policy Adjustment Based on Needs
- Less "Knobs" for the Warfighter
- Lessens training required for operators
- Decisions made to meet requirements of user with minimal interaction
- Variable network configurations in real-time
- Automated response fostering optimum network performance
- Learning from user experiences in entire network to adjust goals
- Automatic adaptation based on changing context

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Questions?

Model Based Manufacturing – Predicting Future Performance

Jim Lorenz Manager, Advanced Industrial Engineering April 17, 2008

Agenda

- MBE Overview
- MBm Projects
- MBm/MRL Relationship
- Summary

What is the Model Based Enterprise?

Product modeling System sering interning TEPPER PRESIDENT MOSE RESES Made applied to the property of the property o THE CYCLE OF vailability of managed information at the right place and those temperature different place. functional desision making AND THE STEPHEN STIPLES AND extended antéreriseon making tools and processes

Process Modeling:

Improve process efficiency

MODEL BASED MANUFACTURING

Enhances performance through integrated simulation and visualization environments.

Product Modeling

- > Optimize design implementation
- > Reduce prototype investment
- > Improve manufacturing yield

Information Modeling

- > Interoperability of like domain tools
- Interoperability of cross domain tools
- Reduce life cycle costs

Process Modeling

- > Improve process efficiency
- > Reduce manufacturing variation
- > Enhance inventory management

Net Centric Manufacturing

- > Improve supply chain management
- Increase effectiveness of manufacturing execution within the enterprise
- > Enhance customer communication

MBE Active Industry Projects and Opportunities

MBe - Model Based Engineering

MBm - Model Based Manufacturing

MBs – Model Based Sustainment

Systems Engineering (AP233)

Engineering Analysis -STEP Composites and CAE Visualization in Adobe Acrobat

EM Pilot – Warpage Simulation

Potential MBe Project:

ECAD/MCAD Integration

MBE-IF Testing

System Life Cycle Support

Potential MBs Project:

Long Term Data Retention

Value Stream Mapping

Flow Equivalent Servers

Potential MBm Projects:

Next Generation Supply Chain Modeling
Integrated Flow Modeling and Physical Layout
Design For Ergonomics
Cognitive Virtual Environment

© Copyright 2007 Rockwell Collins, Inc. All rights reserved.

Process Modeling: VSM to Simulation (Current State)

Lead System Integrator (LSI) Creates overall Value Stream Maps (VSM)

Suppliers create VSMs and Process Maps for their Location

Suppliers create discrete event simulation model

Issues with Current State:

- Discrete event simulations are time consuming to create and duplicate much of the effort to generate the VSM
- Suppliers are hesitant to share simulation data because it can include intellectual property
- Inconsistencies in how simulations are done make it difficult to gather information from a large supply chain

Process Modeling: VSM to Simulation (Future State)

Benefits of Future State:

- DESs are easier to generate and more standard
- Enhanced communication between customer and LSI
- Predictive supply chain modeling
- Reduced intellectual property concerns

Complex Network

Process Modeling within the MRL Structure

MRL 3 4 5 6 7

Summary

- Manufacturing Readiness Levels assesses whether or not a design will be successful in production
- Model Based Manufacturing provides the ability to predict the performance of products and processes
- Information flow across boundaries requires standard data definition

Contact Information

Jim Lorenz
Manager, Advanced Industrial Engineering
Rockwell Collins
319-295-8536
jllorenz@rockwellcollins.com

Science & Technology Program 16 April 2008

Dr. James Sheehy
Chief Scientist / Technology Officer
Human Systems, AIR-4.6T)

E-mail: james.sheehy@navy.mil Phone: (301) 342-8480

TRAINING SYSTEMS DIVISION, ORLANDO, FL

Center for research, development, test and evaluation, acquisition and product support of training systems for the world.

AIRCRAFT DIVISION, LAKEHURST, NJ

Provides aircraft launch and recovery expertise to the fleet.

AIRCRAFT DIVISION, PATUXENT RIVER, MD

Provides acquisition management, research and development capabilities, air and ground test and evaluation, aircraft logistics and maintenance management for Naval aviation.

WEAPONS DIVISION, CHINA LAKE & PT MUGU, CA

Provides our forces with effective and affordable integrated warfare systems and life cycle support to ensure battlespace dominance.

NAVAIR DEPOT, NORTH ISLAND, CA

Provides comprehensive quality aviation support to the nation's warfighters.

Aircraft: F/A-18 Hornet; E-2C Hawkeye; C-2 Greyhound; S-3 Viking; H-60 Seahawk

NAVAIR DEPOT, CHERRY POINT, NC

Delivers on time quality products and services for Naval aviation as service to the fleet.

Aircraft: AV-8B, Harrier; H-53, Sea Stallion; C-130, Hercules; H-46, Sea Knight; V-22, Osprey; VH-3, Presidential Helicopter

NAVAIR DEPOT, JACKSONVILLE, FL

Delivers high quality maintenance, engineering, logistics and support services to the fleet.

Aircraft: P-3 Orion; EA-6B Prowler, F-14 Tomcat, F/A-18 Hornet; S-3 Viking; SH-60 Seahawk

Science & Technology Organization

The S&T Program is managed by an Integrated Program Team of Product Line Managers and NAVAIR Technologists (T-codes)

Chief Technology Officer (CTO)

CTO engages internally and externally to develop an S&T Program that responds to capability needs with innovative technology solutions

External Focus

- Maintain knowledge of Naval Aviation needs through strong ties to the warfighting community
- Continually seek innovative solutions for warfighter needs. Champion for innovative ideas that do not address a specific need
- Foster relationships with potential technology providers (DoD, Industry, Academia, etc.)
- Support ASN(RDA), Chief of Naval Research and other Enterprise CTOs in planning and executing an effective Navy S&T Program

Internal Focus

- Primary advisor to AIR-00, Naval Aviation Enterprise (NAE) Board of Directors and Program Executive Officers for technology issues & investments
- Advisor to AIR-00 & AIR-4.0 for issues related to S&T workforce & infrastructure, including workforce revitalization efforts
- Monitors health of S&T portfolio and progress toward delivery of capability through the use of approved metrics & processes

NAE S&T Objectives

♦ 32 NAE S&T Objectives

- Represents the goals of the NAE S&T program. Used as the baseline for identifying, prioritizing, aligning, and synchronizing S&T efforts throughout the enterprise.
- Derived from 340+ capability needs provided by warfighters
- Developed by a Working Group comprised of warfighters
- Coordinated throughout the enterprise
- Aligned with ONR Focus Areas, Joint Capability Areas, and Sea Power 21 Pillars
- Support scenarios contained in Naval Aviation Capability Needs 2030-2050
- NAE STOs will be presented at 18 April NAE BOD meeting for approval/signature
 - NAVAIR and CNAF already briefed, ready to approve STO Document

Naval Aviation Enterprise Science and Technology Objectives

Commander Naval Air Forces

Commander Naval Air Systems Command

Director, Air Warfare Division

30 April 2008

VADM Thomas J. Kilcline, Jr. Commander, Naval Air Forces

VADM David J. Venlet Commander, Naval Air Systems Command

RADM Allen G. Myers Director, Air Warfare Division

STO Distribution (by Capability Gap Area)

■ Force Protection (FP) (3)

32 Total STOs

- Surface Warfare (SUW) (1)
- Under Sea Warfare (USW) (3)
- Theater Air and Missile Defense (TAMD) (2)
- Strike Operations (STK) (7)
- Deploy and Employ Forces (DEF) (3)
- Integrated Logistics Support (ILS) (1)
- Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) (6)
- Enterprise and Platform Enablers (EPE) (1)
- System Safety, Availability and Affordability (SSAA) (2)
- Naval Warrior Performance (NWP) (3)

Summary

- ◆ NAE is improving the way it plans and manages the S&T program
 - CTO organization
 - Processes
 - Metrics
- Developed 32 S&T Objectives (STOs)
 - Developed by warfighters, technologists and intelligence community
- Work closely with ONR to ensure that NAE objectives are communicated and advocated
- ◆ CTO office supports OPNAV efforts in science and technology
 - Identifying capability needs
 - Identifying appropriate funding venue
 - Update on programs/projects

Dr. John Fischer

Director, Systems Engineering (AIR-4.1)

Chief Technology Officer (AIR-4.0T)

E-mail: john.fischer@navy.mil

Phone: (301) 757-2328

INNOVATIVE TECHNOLOGY INSERTION – NAVSEA'S PERSPECTIVE

GREATER NAVSEA/PEO ORGANIZATION

OUR CHALLENGE

Delivering A Diverse Portfolio of Products to War Fighter That Meet All of Their Expectations!

Your Challenge: Who To Contact???

- Mr. Michael Bosworth
 Deputy Chief Technology Officer
 (202) 781-3072
 <u>Michael Bosworth@navy.mil</u>
- Ms. Lisa King NAVSEA CTO Office (202) 781-1582 <u>Lisa.M.King.Ctr@navy.mil</u>
- Mr. Dean Putnam
 NAVSEA SBIR Program Manager
 (202) 781-3261
 Dean.R.Putnam@navy.mil
- Dr. Delbert (Ace) I NAVSEA Warfare Center Science & Technology Executive (850) 234-4202
 Delbert.Summey@navy.mil

Integrating Innovative Battle Command Capabilities

15 April 2008

BG Nick Justice
Program Executive Officer,
PEO Command, Control, Communications Tactical

Agenda

 Understanding the Battle Command (BC) SoS Environment

 Translating S&T Understanding into BC SoS Solutions

- Integrating and Validating New BC Capabilities
- Emerging Innovative Battle Command Technology Examples

Understanding the Battle Command SoS Environment

Driving Factors

- Uncertain strategic environment demands agile/adaptive responses
- Information as competitive source of *power*
- Demand for enterprise and extended enterprise-wide solutions

Solution Characteristics

- Richly interconnected; increasingly interdependent
- Cross traditional boundaries... functional, organizational, programmatic
- Increasing scale/scope
- Increasing complexity

Army Service-Based Approach for Tactical BC Capabilities

- Establish warfighter operational needs
 - Currently reworking with "Good Enough Take 2"

- Translate a BC technical vision for Service implementation to operational capabilities
 - Converging current and future force service strategies

- Execute technical vision through a System of Systems engineering and integration approach
 - Extending to an ASAALT-led cross Army approach

Instituting Cross-Army SoS Engineering

Managing depth and breadth of SoS Engineering issues vertically (within) and horizontally (between) C4ISR capability portfolios

An S&T Innovator's Response

Adapting to the BC SoS Challenge

S&T Transition Challenge

Establish a Shared Vision

 Demonstrate operational understanding of the Warfighting domain

Create Product Partnerships

Partner with high impact programs to fill critical technical/operational gaps

Align Execution Processes

 Link S&T solution rollout with aggressive Modular Force capability block development and fielding

Evolution v. Revolution in fiscally constrained environment

Prioritizing Tactical C3 S&T Execution

PEO C3T Top 20 S&T Priorities

https://t2matrix.kc.us.army.mil

Institute an open process to align limited S&T resources with prioritized operational needs and increase transition successes

Transitioning S&T Solutions to PORs Challenges

- -"Operationalizing"
 - Delivering Warfighter-Focused v. **Technology Policy-Driven Solutions**

-Execution Ownership

 Strategizing with PMs early (and often) on S&T transition

Time

Source: ASB

Advancing C4ISR SoS M&S Capabilities

- Integrated C4ISR Live/Virtual/Constructive Demonstrations and Analyses
 - Enables C4ISR System of Systems Engineering analyses of greater scale and accuracy
 - Relevant across the spectrum of program life cycle
 - More quickly, more efficiently, resulting in significant cost savings/avoidance

Analysis of operational data collected in-theater and used in M&S enabled bandwidth assessments

Insertion of realistic C4ISR effects into live experimentation environments

High-Performance-Computing Army Laboratory for Live/Virtual/Constructive Experimentation (H.A.L.L.E.)

Instituting Operational Design Reviews

TOCFEST

Team C4ISR engineering field study to validate the current
 Command Post SoS from 11 Mar to 13 Apr 2008 at Fort Indiantown
 Gap, PA (FTIG)

Standardizing Command Post baseline architecture – physical and logical Evaluating technical and operational effects of configuration changes Setting conditions for ongoing C4ISR SoS operational design reviews

Selected BC Enabling Technologies

- neXt Generation Communications (XG) Dynamic Spectrum Access Technology
 - Maximize access to and use of required tactical spectrum

- Disruption Tolerant Networking (DTN)
 - Assure tactical C2 info delivery when no network path exists

- Chip Scale Atomic Clock
 - Deliver precise timing and positioning for the "last tactical mile"

Serious Gaming

 Enhance C4ISR training environments, linking Command Post capability usage with realistic tactical scenarios

COMMAND OVERVIEW

San Diego/ IT Research Hub

- Qualcomm, Inc
- •SAIC
- •Nokia Mobile Phones
- ViaSat
- Leap Wireless
- Kyocera America
- •Titan Wireless
- Applied Micro Circuits Corp.
- Wireless Facilities
- •Siemens...

UCSD'

"Best place in country for business and careers"

- Forbes magazine

San Diego is the hot spot for careers in nformation technology"

-Kaplan Newsweek Careers

TEAM SPAWAR

Co-Located with the Fleet, Industry and Academia

SPAWAR Systems Center San Diego TEAM SPAWAR Chief Technology Officer "Leadership and Innovation"

SPAWAR S&T OPPORTUNITIES

17 Apr 2008 Mr. Gary Wang Code 73 (619) 553-2010 gary.wang@navy.mil

S & T OPPORTUNITIES

- Industry and Government Teaming
 - CCAT (Center for Commercialization of Advanced Technologies)
 Commercialization of emerging technologies (private and government) /
 Stephen Lieberman, stephen.lieberman (553-2778);
 http://www.ccatsandiego.org/
 - CRADAS (Cooperative Research & Development Agreement)
 Means to perform research with industry Stephen Lieberman,
 stephen.lieberman (553-2778); Roger Boss, roger.boss (553-1606)
 - Commercial Sales Agreement (U.S. Code 2539B) and Work for Private Parties (U.S. Code 2563)
 Laws & policies to increase private sector access to defense-unique capabilities Raj Samuel, raj.samuel (767-4156)
 - SBIR (Small Business Innovation Research) Contracts awarded to small businesses for innovative research through congressionally mandated federal program. Steve Stewart, steve.stewart (553-2546)
 - MP (Mentor Protégé) Small business partnering with large companies in developing innovative technologies Cliff Hudson, cliff.hudson (553-7442)

S & T OPPORTUNITIES (cont)

- CTO Services for Transition, Technology Strategies, and Forecasting
 - ILIR (In-House Laboratory Independent Research) Internal discretionary 6.1 funds from ONR emphasizing basic research / Roger Boss, roger.boss (x31606) https://donst.nrl.navy.mil/cgi-bin/login-form.cgi
 - IAR (Independent Applied Research) Internal discretionary 6.2 funds from ONR emphasizing revitalization and transition / Roger Boss, (x31606) https://donst.nrl.navy.mil/cgi-bin/login-form.cgi
 - S&T Capabilities Initiative Internal G&A funding emphasizing 6.2-6.3 transitions / Roger Boss, roger.boss (x31606)
 - S&T Challenges Internal funding used to support for about 5 yrs a team of researchers building a 6.1-6.3 S&T capability vital to the Center's mission / Eric Hendricks, eric.hendricks (x31624) / Roger Boss, roger.boss (x31606)

Outline

- What is T2
- Why do we do T2
- How do we do T2
- What's in it for you? for the Navy?

What is T2

Adapted from Ricardo dos Santos, Sr. Director of New Business Development, Qualcomm, Inc.

Lab to Market Example: QwikLite Technology

Background Top 100 USPTO Patent Recipients

Navy averaged 59th out of top 100 Patent Recipients for years 2001-2006

Company

#Chart shows data for 2003

Background

SSC San Diego vs. San Diego Based **Companies**SSC San Diego ranked 5th compared to

San Diego based corporate patent recipients in 2006

Rank/Company	Number of Patents
1. Qualcomm	200
2. Kyocera Wireless	32
3. Applied Micro Circuits Corp.	30
4. Science Applications Int.	24
5. SSC San Diego	21
6. Agouron Pharmaceuticals	19
7. Cymer	18
8. Genral Atomics	14
9. Gen-Probe	14
10. Diversa	11
11. Amylin Pharmaceuticals	9

Data from San Diego Union, 25 Jan 2006 -- SSC SD data added. (Does not include data from local Universities)

Why do T2

- Facilitate the transfer of SSC San Diego innovations for the benefit of public and warfighter
- Enhance the research experience of SSC San Diego scientists and engineers through technology transfer
- Promote economic development by leveraging SSC San Diego innovations
- Provide financial incentives to SSC San Diego scientists and engineers to stimulate technological innovations

How: T2 Vehicles

- Patent License Agreements (PLAs)
- Cooperative Research and Development Agreements (CRADAs)

Licensing Guiding Principles

- Benefit the public and the warfighter.
- Licensee should be capable of bringing the invention to the marketplace.
- Timely development, marketing, and deployment of the invention.
- Fair consideration in exchange for the grant of commercial licensing rights.

Technology Transfer: How

Technology Transfer: How Marketing Cont.

Subject: SSC San Diego Technology Transfer Email Alerts

Technology Transfer: How Marketing Cont.

 Partner with Navy, DoD, Federal T2 organizations, Entrepreneurial groups, industry trade organizations, State, Local Economic Development Groups

A Defense and Space Technology Consortium

Number of Patents Licensed/Year

SSC San Diego Licensee Distribution

Benefit to Small Business

- Gov't. developed technologies can:
 - Provide technology for new start-up companies
 - Provide enhancement to existing product lines
- Industry can partner with the govt. to gain access to facilities, equipment, and personnel in specific technical areas consistent with laboratory mission

Benefit to the Navy

- Provides ROI to Navy's for investment in patent process
- Important path to move Navy innovations from lab to product
- Promotes economic development
 - » Make US more competitive in global marketplace

Cooperative Research and Development Agreements (CRADA)

- What is a CRADA
 - Legal agreement between a government R&D laboratory and interested partners
 - Allows partners to collaborate in mutually beneficial R&D in specific technical areas consistent with laboratory mission
 - Pre-determines all intellectual property rights

CRADA cont.

Ground Rules

- Partners can provide facilities, equipment, and personnel in support of CRADA
- Government labs can enter into CRADAs with private sector, universities, and state and local governments
- The non-government partner can provide funds to the government laboratory to perform tasks under the CRADA
- The Government laboratory CANNOT provide funds to their partners

Recent CRADA Activity

Number of CRADAs per Fiscal Year

SSC San Diego Technologies in the News

San Diego Union-Tribune Page 1: Business Section

Brad Chisum, CEO Lumedyne technologies (formerly Omega Sensors Inc.) rings the opening bell on NASDAQ, August 2007

Contact Info

Stephen H. Lieberman, Ph.D. 619-553-2778

Email: T2@spawar.navy.mil

SSC San Diego - Teaming with Industry

Raj Samuel

Science & Technology

raj.samuel@navy.mil

SECOND PRIORITY: Add value to SSC San Diego.

Teaming with Industry

- Objective
 - Efficient transition of the DoD technologies to the warfighter
- Supported by
 - Congress, the Secretary of Defense, and the Secretary of the Navy
- Vehicles
 - Laws & policies to increase private sector access to defense-unique capabilities
 - 10 U.S.C. §2539B ... Sale of testing services outside the DoD
 - 10 U.S.C. §2563 ... Sale of Articles & services outside the DoD

Advantages to the Industry Partner

Best Practices of Public Private Partnering

Developing a win-win strategy for working with depots

A White Paper Authored By: Kate Vitasek, Jerry Cothran, Steve Rutner

Spring 2007

- Leverage Center's capabilities
- Access to knowledgeable workforce
- Use of existing facilities & equipment
- Minimize process flows
- Avoid investment in duplicate capabilities
- Compliance with Government regulations
- Increase profits
- Reputation associated with partnerships

Working Capital Fund

Works like private industry

- We team to do the work
- We charge our salaries & expenses to the project
- We generate overhead to pay operating expenses

But we cannot make a profit

10 U.S.C. §2539B

Authorizes the Secretary of Defense to allow the military departments to

- (1) sell, rent, lend, or give samples, drawings, and manufacturing or other information to any person or entity;
- (2) sell, rent, or lend government equipment or materials to any person or entity
- (3) make available to any person or entity, at an appropriate fee, the services of any government laboratory, center, range, or other testing facility for the testing of materials, equipment, models, computer software, and other items.

10 U.S.C. 2539B

74 executed FY03 thru FY07

Total value \$4.1M

Code 230 ■ Code 250 □ Code 260 □ Code 270 ■ Code 280

10 U.S.C. 2539B

Deep Silence Engineering Lab & Test Facilities
Medium Weight Shock Test (MWST)
Acoustic Testing and Evaluation
Acoustic Evaluation of Hydrophones
TRANSDEC - Acoustic Evaluation of Hydrophones
Antenna and Radome Testing
Acoustic Evaluation of Hydrophones
TRANSDEC - Acoustic Evaluation of Hydrophones
Joint Tactical Radio System Test & Evaluation Lab
High Assurance Internet Protocol Encryptor (HAIPE)
HAIPE - Falcon III Manpack Radio (RF-300M-MP)
Deepwater National Security Cutter Antenna Test

10 U.S.C. §2563

Authorizes the Secretary of Defense to sell articles and services that are manufactured or performed by any DoD working capital funded facility of the armed forces (e.g. SSC San Diego) to parties outside of the DOD (Industry).

10 U.S.C. §2563 Statute Criteria

Funds from Industry

10 U.S.C. §2563 Elements

- Non Availability Letter
 - Indicating that required articles or services are unavailable from a U.S. commercial source
- Sale of Articles or Services Agreement
- Statement of Work
 - Defining tasking, costs, period of performance, deliverables & reporting requirements

10 U.S.C. § 2563

Code 211 ■ Code 230 □ Code 240 □ Code 270 ■ Code 280

24 executed FY03 through FY07

Total \$25.5M

10 U.S.C. § 2563

AS-4614 / URD Antennas

CLS for Minuteman Program

Data Link Gateway System

VLF / LF High Voltage Testing

AS-4614 & AS-4623 Antennas

Sample of Partners

Agreements have involved both major corporations as well as small businesses.

Conclusion

2539B and 2563 are excellent vehicles for Industry to acquire DoD technology / assets for transition

The agreements are easily adaptable

SSC San Diego

- is the pre-eminent provider of C4ISR solutions
- has a successful track record with 2539B and 2563 agreements
- is actively engaged in Best In Class processes & Continuous Improvement

SSC San Diego - Teaming with Academia

Raj Samuel

Science & Technology

raj.samuel@navy.mil

Shift in Comms Research.... % of IEEE papers published

Source: Bob Lucky, Telcordia / SAIC

Cal ISI ..

California Institutes for Science & Innovation

- Launched in 2000 to support multi disciplinary research in biomedicine, bioengineering, nano systems, telecommunications and information technology
- \$400M funded by state of California ... 2X matching funds by Institutes
- The 4 research centers operate as a partnership among the University, state government, and industry,
 - Calit2 (California Institute for Telecommunications and Information Technology)
 - » UC San Diego & UC Irvine
 - QB3 (California Institute for Quantitative Biomedical Research)
 - » UC San Francisco, UC Berkeley & UC Santa Cruz;
 - CNSI (California Nanosystems Institute)
 - » UCLA & UC Santa Barbara
 - CITRIS (the Center for Information Technology Research in the Interest of Society)
 - » UC Berkeley, UC Davis, UC Merced, &UC Santa Cruz.

Jacobs School of Engineering

Youngest & fastest rising engineering school

2 in total research \$ per faculty 925K per faculty

#5 in the nation for federal R&D

\$ 110M by Irwin Jacobs

SSC – Calit2 Strategic Partnership

- Calit2 "Lives in the Future" by:
 - Building Systems of Emerging Disruptive Technologies
 - Integration of Technology Consumers and Producers

 To be the Nation's pre-eminent provider of integrated C4ISR solutions for warfighter decision superiority

Provide collaborative and better solutions to the Fleet & Joint Warfighter

SSC SD _ Calit2 Strategic Partnership

Strategic	DoD, DTRA etc Strategic Groups					
	Net-Centric Technology Objectives					
	DTRA Transformational Countermeasures Technology Initiative					
	JTRS JPEO					
	Seminars					
	Collaborative Proposals & Projects					
Tactical	Cooperative Agreement					

Collaborative work

- Co-operative Agreement
 - the Federal Grant and Cooperative Agreement Act of 1977
 - assistance agreements in which substantial involvement between the DoD and the recipient is anticipated
 - awards to universities to support research studies in subject areas consistent with the awarding agency's mission

Agreement thru September 2009

- Graduate Seminar
 - CSE 290: Service Composition in Ultra-Large Scale Systems
 - Speakers (via VTC) from MIT, NCSU, NPS, SRI, SSC SD & Charleston, Vanderbilt & UCSD
- JTRS Project .. FY08
 - Increment 3 networks and radios
- DARPA .. BAA .. LANdroids Proposal ..Aug '07
- ONR .. BEAMS Network Comms Gathering .. May '07
- DARPA .. RFI .. Feb 07
 - Assurable Global Networking

Conclusion

SSC & Calit2 are developing key strategic partnership to

- provide the best solutions to the warfighter
- grow workforce competencies
- develop a highly credentialed workforce

Plan is to continue to nurture this partnership and collaborate with additional partners

Agenda

- ATEC Mission
- OSD & Army Acquisition Initiatives
- Benefits of DT/OT Integration
- DT/OT Integration in the Army and Technologies that May Help

ATEC Mission

- Plan, conduct, and report the results of tests, simulations, experiments, and evaluations to Acquisition decision makers in order to ensure our Army's Warfighters have the right capabilities for success across the entire spectrum of operations.
- Conduct rapid testing in direct support of the GWOT warfighter in order to provide capabilities and limitations of weapon systems issued directly to Soldiers conducting combat operations (Iraq/Afghanistan).

OSD T&E Initiatives

- Focus on measuring improvements to capability and operational support
- Experiment to learn strengths & weaknesses impact on capabilities
- Integrate Developmental Testing & Operational Testing
- Start early, be operationally realistic, continue throughout the life cycle
- Evaluate in mission context at time of fielding
- Compare to current mission capabilities
- Use all available information
- Exploit benefits of Modeling & Simulation

Army Acquisition Initiative

Reliability Improvements

 Significant number of U.S. Army systems are failing to demonstrate established reliability requirements during operational testing

Effective Immediately:

- ➤ A System Development and Demonstration (SDD) reliability test threshold will be established
- Applies to programs in pre-MS B phase
- Applies to Information Technology systems that include hardware development
- Threshold to be established before entrance into MS B
- Must detect and report threshold breaches
- Must implement Reliability Best Practices

Army T&E

Developmental Testing

- to find faults, implement corrective actions, and mature the design
- to confirm technical capabilities/functionality and manufacturability

Operational Testing

- to provide information on integration of the Soldier, the support system, training & doctrine, and materiel in an operational environment
- to confirm/demonstrate operational suitability requirements

Benefits of DT/OT Integration

Reduced Risk

- Ensure capabilities are tied to mission
- Systems deficiencies identified
- Test data is shared

Reduced Cost

- Sharing resources
- Eliminate duplicative testing
- Early deficiency identification and correction

Reduced Acquisition Timeline

- Combined vs. sequential testing
- Sharing of high-demand testing assets

Strategic Organizational Construct

FROM: TO:

DT/OT Integration in the Army

Ballistic Missile Defense

- DT/OT Integration is widely used, but not in "traditional" definition
- DT is all planned, executed, and reports written by the PM (not ATEC/DTC); has significant system contractor influence/input
- No planned IOT, BMDS OTA arranges for Warfighter participation during DT events, using operationally realistic scenarios and DIA threat representation in HWIL and digital M&S
- Warfighter participation in flight and ground test events
- Proposed end-of-block OT will likely include contractor involvement

1	2	3	4	5	6	7
MORE	MORE DT / OT Integration Meter					

Technology That May Improve DT/OT Integration

Ballistic Missile Defense

- Screen capture / frame-grabbing devices
- Automated data capture and transfer; data reduction
- Shared analysis tools

DT/OT Integration in the Army

Medical / Business Information Technology (IT) Systems

- A "hybrid DT/OT" usually, depends on product size, system complexity, software maturity
- Developer Integration Testing in laboratory test bed using production-representative hardware
- Not "ad hoc" firm processes and procedures
- More Commercial Off The Shelf (COTS) based products in use
- DOT&E process for determining level of OT ranges from ATEC looking over shoulder of DT tester to a full operational test

1	2	3	4	5	6	7
MORE		LESS				

Technology That May Improve DT/OT Integration

Medical / Business Information Technology (IT) Systems

- Improve Modeling of networks (currently using none)
- Better Data Management and sharing

DT/OT Integration in the Army

Chemical / Biological Defense

- All live BWA & actual CWA testing is done in chamber in DT
- For Oversight systems Chem/Bio Policy defines this as DT-OT
- Many OTs are conducted in partnership with DT Community on outdoor ranges (mostly DPG) that operates and manages instrumentation to determine simulant concentration
- Key effectiveness evaluation hinges on integrating results from chamber testing with actual agent and operational testing

Technology That May Improve DT/OT Integration

Chemical / Biological Defense

- Increase use of HWIL to stimulate detector sensors
- Real need for more accurate simulants of live agents;
 ALO (Agent-Like Organism)
- Better Data Management and sharing

Aviation

- DT/OT widely used for subsystem evaluation (i.e. CMWS)
- Hardware-in-the-Loop Simulations
- Soldiers used in DT, especially moving from component level to subsystem level tests
- Combined test teams Air Worthiness Release restricts introducing operational pilots early on.
- Operational Testing conducted at DT ranges

Aviation

- Improved models and simulations; cockpit simulators
- Automated instrumentation for Real Time Casualty Assessments
- GPS- (or other geometric pairing) based RTCA systems
- Collaborative tools / personal communicators

Infantry Weapons and Soldier Systems

- Non-oversight ACAT III systems: usually integrated DT/OT in a single location
- DT done first for safety/performance check; OT phase with Soldiers follows
- Rapid Acquisition systems: usually just DT, then theater
- Some OT at technical test sites (hot/cold regions,etc)
- OT = Soldiers in lanes

Infantry Weapons and Soldier Systems

- Improved commonality of instrumentation
- Common data reduction protocols at all test sites

Unmanned Aerial Vehicles (UAV)

- DT always for component-level building and assessment and Air Worthiness Release
- Soldiers used in DT, especially moving to subsystem level tests to obtain early user feedback
- DOTE requires greater operational realism in OT tactical personnel using approved doctrine

Unmanned Aerial Vehicles (UAV)

- Improved availability of models
- Improved Operator simulators
- Improved communication equipment to keep Combined Test
 Team in the loop
- Develop common instrumentation and data reduction protocols at all sites

Missiles (Direct / Indirect Fire)

- Extensive firings early without operators
- Extensive Developmental Testing
- Extensive HWIL
- Extensive M & S
- Formal OT's

Missiles (Direct / Indirect Fire)

- Continued heavy emphasis on M&S and HWIL
- Improved data collection, data reduction to speed up test reports to the evaluator
- Better threat replication (consistency between DT & OT) and usage in virtual environment

C4 Systems

- Limited Gov't DT shock, vibration testing, interoperability; message completion rates
- Communications systems performance centers on stress testing and operational environment
- Field testing is most useful integrated event soldiers and developers working together to establish system configuration and achieve optimization
- Field tests are cost prohibitive need for architecture for system to create the environment

C4 Systems

- Improve available models and simulations
- Invest in jammers / Electro-Magnetic Environment generators
- Improved data management (storage, retrieval, sharing)

Counter IED

- non-typical development process
- from Laboratory to DT Ranges to Theater fielding decisions based on DT results and production timelines
- for Jammers DTs are technical tests on instrumented ranges; PM data considered when available
- DOT&E has not been involved in this commodity area

Counter IED

- Increase investment in S&T / R&D before T&E
- Invest in in-line jammers / Electro-Magnetic Environment generators
- Better threat replication (consistency between DT & OT)
- Commonality of instrumentation
- Instrumentation sharing between DT & OT organizations

Tracked & Wheeled Vehicles

- Usually Separate DTs and OTs; higher risk more oversight
- OMS/MP miles driven by contract, over known, precise courses
- Extensive data collection in DT
- DOT&E wants "free play" in OT; freedom of maneuver,
 much of which can be done at Soldiers' home station

Tracked & Wheeled Vehicles

- Increase number of instrumented test articles
- Embedded instrumentation
- Common instrumentation and data reduction protocols at all sites
- Technology for tracking in GPS-denied environments

Integration Roll-Up

Ballistic Missile Defense

Medical/Business IT Systems

Chemical/Biological Defense

Aviation

Infantry Weapons/Soldier Systems

Missiles (Dir/Indirect Fire)

Unmanned Aerial Vehicles

C4 Systems

Counter IED

Tracked/Wheeled Vehicles

Summary

To further improve DT & OT integration, T&E technology needs include:

- Data management (repository, reference models)
- M&S advances (physical system models, simulations, networks)
- Network Models
- Distributed operations & systems
- Embedded / common instrumentation

MARINE GORPS SYSTEMS COMMAND

EQUIPPING THE WARFIGHTER TO WIN

Marine Corps Systems Command

Brief to NDIA

April 16, 2008

Dave Ungar

Director Program Engineering & Technology

MARINE GORPS SYSTEMS COMMAND

Organization Chart

EQUIPPING THE WARFIGHTER TO WIN

COMMANDER

PEO Land Systems

PM Expeditionary Fighting Vehicle PM JPMO, Lightweight 155 PM Light Armored Vehicle MPC PM LVSR, PM JLTV PM MTVR, PM GATOR, PM CAC2S PM CAC2S

EXECUTIVE DIRECTOR *

Sergeant Major

Chief of Staff

CIO
Facilities & Services
Operations Cell
Reserve Affairs
Security

Special Staff

International Programs
Counter-Improvised Explosive
Devices
Corporate Communications
Counsel
OSBP
Strategic Change Management
Center

Deputy Commander Resource Management */

Resource Mgmt Competency Domain/ Competency Leaders

> Director, Financial Management

Director, Workforce Management and Development Deputy Commander SIAT *^

Systems Engineering Competency Domain/Competency Leaders

Director, M&JI

Director, IA & JC

Commanding Officer
MCTSSA
Camp Pendleton, CA

Director, PE&T

Product Group 09 Director, Operational Forces Systems

Product Group 10 Director, Information Systems & Infrastructure

Product Group 11 Director, MAGTF C2, Weapons & Sensors Development & Integration

Product Group 12 Director,
Communications, Intelligence,
& Networking Systems

Product Group 13 Director, Infantry Weapons Systems

Product Group 14 Director, Armor &Fire Support Systems

Product Group 15 Director, Ground Transportation & Engineer Systems

Product Group 16 Director, Combat Equipment and Support Systems Program Manager, Ammunition

Program Manager, Global Combat Support System-Marine Corps

Program Manager, Training Systems Orlando, FL

Program Manager, Robotic Systems Huntsville, AL

Program Manager, Mine Resistant Ambush Protected

Program Manager, Light Armored Vehicle Warren, MI

Deputy JPEO,
Chemical & Biological
Defense
Arlington, VA

Assistant Commander Contracts ^

Contracts
Competency Domain/
Competency Leaders

Assistant Commander Life Cycle Logistics ^

Life Cycle Logistics Competency Domain/ Competency Leaders

Assistant Commander Programs^

Program Mgmt Competency Domain/ Competency Leaders

^ = Competency Director

⁼ SES Position

EQUIPPING THE WARFIGHTER TO WIN

Industry Forums

- Briefs to Industry (Open) 13-14 May 2008
- Modern Day Marine Sept
- Force Protection Equipment Demonstration
- POC Gloria Prior (703) 432-3930
- **Technology Transitions**
- Hundreds of Programs
- Established Technology Leads
- POC Jim Johnson (703) 432-3327

Assault Breaching System Technologies

Presented to 9th Annual Science & Engineering Technology Conference / DoD Tech Exposition 15-17 April 2008

Mr. Brian Almquist
Ocean Engineering & Marine Systems
Office of Naval Research
(703) 696-3351 almquib@onr.navy.mil

LtCol Tim McLaughlin

APM for ABS

PMS 495 Mine Warfare Program Office

(202) 781-4457 tim.j.mclaughlin@navy.mil

Mine Warfare Research Area Strategic Vision

Provide rapid, standoff mine countermeasures capability to support the unencumbered maneuver of combatants throughout the littoral penetration area (sea shield), to enable sea strike operations in the littorals from the sea (i.e. STOM), and to assure access to the sea base, intermediate staging bases, and Sea Ports of Debarkation (SPOD) to ensure strategic mobility and sustainment.

Mine Countermeasures Research Area

Investments Address Critical Capability Gaps

- Supports Development of an Organic Capability
- Supports Sea Shield Undersea Warfare (MIW) Gap Analysis

Goal is to Decrease the MCM Timeline & Eliminate the Requirement for Manned Ops in Minefields

- Highly Cluttered, Littoral Environment Provides Challenge
- Sensors, Automated Processing, Unmanned Systems Focus
- Air Deployable Mine and Obstacle Breaching System
 - Unique effort in support of amphibious assault

Organic Mine Counter Measures FNC Program

POM 06 / PR07 / POM08 Capability Gaps

 Gap 1: Capacity to clear large areas of mines without cued ISR

 Gap 2: Destruction of mines in areas through which Marine Corps and Joint Forces must maneuver, ranging from deep water through the surf and beach exit zone.

Ship To Objective Maneuver

Capabilities:

- Wide area surveillance to enable maneuver
- Clandestine reconnaissance to prepare the battlespace
- Rapid overt mine and obstacle reconnaissance
- Data Fusion to accelerate the planning process
- Timely MCM Common Tactical Picture to enable maneuver
- Stand-off neutralization of individual mines in VSW
- Stand-off breaching of mines and obstacles
- Autonomous, high speed compact influence sweep
- Precision localization and navigation from VSW to BEZ
- Rapid Follow On Clearance

Spiral Development of COBRA

Block I (FY09) limited:

- Daytime operations
- Surface mines & obstacles
- Detection in BZ

Block II (FY13)

- Night operations
- Full detection in surf zone

Block III (FY16)

- Buried mine line detection
- Near real-time processing

Rapid, Overt, Airborne, Reconnaissance (ROAR)

General

- Day / Night Operation
- Altitude: 3,000 feet
- Speed: 75 knots
- Swath: 200 meters

Surf Zone (SZ)

- 44 Range Gates
- Multiple Looks
- Track-and-Revisit Mode

Beach Zone (BZ)

- 3-Color Active MSI
- 70% Spectral Overlap

ROAR Technology Advances

- Integrated camera, scanner, receiver, and laser system in compact design for UAV
- True 3-D LIDAR system
- Multi-look scan pattern
- Active multi-spectral provides day / night capability
- Optimized for Surf Zone

Tactical UAV Sensor for Detection of Minefields (Buried) in the BZ / SZ

Description

- Detection of buried minefields
- Technical Approaches
 - Active and passive imagers
 - Synthetic Aperture GPR
 - Laser Interferometric Sensor
 - High Resolution 3-D Imaging
 - Resonant Radio Freq Location

Demos / Transitions

PMS 495 COBRA BLOCK III

Warfighting Payoff

- Rapid recon, day and night
- Supports targeting for ABS

Demos - Transitions -

Mine & Obstacle Breaching S&T Strategy

Develop a Precision Breaching Capability

- Enabled by ISR and Weapon Precision Guidance
- Delivery by Naval TACAIR, USAF Bombers

Spiral Development Approach

- JDAM Assault Breaching System (JABS): Exploit existing precision guided bombs for surface laid BZ/SZ mines and obstacles; VSW Mines
- Advanced Warhead Development: Countermine darts with greater kill radius & effectiveness vs. buried BZ / SZ mines in water and on land

JDAM Assault Breaching System (JABS)

MK-84

JDAM

Tail Kit

GBU-31(V)2/B

Precision Guidance

- Requirements
 - OPNAV Letter
 - Threshold and Objective
- System Level Demos
 - Beach Zone
 - Beach Zone / Surf Zone
- Mission Planner
- Transitioned to PMS-495

Mine and Obstacle Defeat System (MODS)

Dispenser

CM Darts

LIVE DEMO

Requirements

- MCIA Mine Threat Letter
- ABS IPT Mine Matrix
- Mine "Kill" Criteria

Component Tests

- Chemical and HE Darts
- Sled Tests
- System Level Demos
 - Flight Tests with Darts
- Transitioned to PMS-495

Standoff Assault Breaching Weapon Fuze Improvement

Description

- Demo JABS vs. VSW mines
- Program will address:
 - Weapon Trajectory in VSW
 - Time of weapon detonation
 - Lethality against VSW mines
 - Fuze options

Demos / Transitions

• ABS Program / PMS-495

Payoff

Standoff clearance of VSW mines

Recolutionary Rosearch . . . Rolecant Results

Precision Assault Navigation in Mined Environments and Assault Lane Marking

Description

- Ensure Location Accuracy
 - GPS Augmentation
 - Zero Age of Data (ZOAD)
- Virtual Marking of Lanes
 - ARVCOP
 - Situational awareness
 - Virtual representation

Demos / Transitions

• ABS Program / PMS-495

Warfighting Payoff

- Location accuracy for assets
- Improve TLE

	FY06	FY07	FY08	FY09	FY10
Domos			\rightarrow	\rightarrow	lack
Demos - Transitions -					

Mine and Obstacle Breaching Concept, Development, Transition

Assault Breaching Systems (ABS) Program

Assault Breaching Systems Mission Statement

Mission Need

"We can ill afford to move 3,000 miles to theater and be stymied by mines and obstacles in the last 3,000 yards."

General John Rhodes,
 Marine Corps Combat
 Development Command

ABS System-of-Systems

COBRA Sensor Counter Mine/ Counter on Fire Scout Obstacle (CMCO)

ISR&T Capabilities

JABS

Precision Navigation /
Lane Marking

MODS

COBRA Block I

Processing and Data Storage

Step Stare Gimbal with MSI Camera

Access Panels to Remove Mission Data²²

COBRA System Description Block I, Spiral B

Ground Control Station

Airborne Control Processor (ACP)

Payload Housing Group (PHG)

COBRA PMA Station

Airborne Sensor Group (ASG)

Eglin Sound Area A15 Target Fields

JDAM Assault Breaching System (JABS)

JABS Capabilities

- JABS leverages fielded JDAM weapon:
 - Effective vs. unburied mines / obstacles in the SZ & BZ
 - Limited lethality against buried mines
 - Day/Night Capability
 - Man out of the minefield
- MOA between USN-USAF
- JABS capability fielded through DOTMLPF Change Recommendation (DCR), approved by JROC May 06
- With accurate targeting information, JABS is the surf zone/beach zone breaching capability of today

Aim Points Sent to Air Force

Countermine System (CMS)

Countermine System (CMS)

Description

The CMS consists of a precision guided weapon and mission planning software. The weapon will be delivered by USAF bombers and Navy TACAIR. The CMS will be effective against surface laid and buried mines in the surf zone (SZ) and beach zone (BZ).

Status

- Request for Proposals: 30 April 2007
- Proposals Received: 14 June 2007
- Contract Award Pending: May/June 2008

Precision Navigation and Marking

Precision Navigation and Marking System

Improve survivability and reduce the required lane size by visually / electronically marking lanes and providing electronic aids to facilitate maneuver.

ABS Schedule

	FY 07			FY 08			FY 09				FY 10				FY 11				FY 12				FY 13					
	- [П	Ш	IV	-	П	\blacksquare	IV	- [Ш	Ш	IV	- [П	Ш	IV		П	Ш	IV		П	Ξ	IV		П	Ш	IV
REQ DEV.		CD	D																									
CM/CO (JABS)	Tes	sting				С	ontra	act A	war	d																N	1S C	
CM/CO (CMS)	MS B System Development/Demonstration														on							V						
ISRT (COBRA)							M	s C		LF	RIP	Con	ract	Awa	ard													
Block I				SD	&D					LRIP														MS	С			
Block II										MS B							SD&D									Production		
Block III																										M	SB	V
PN&MS																												
LCAC Autopilot		EP / erati		ft																								
LCU Upgrade	Procurement / Craft Alteration																											
AAV Upgrade								Pro	curement/Craft Alteration																			

Summary

Transitions Have Contributed to Closing Gap

Minefield Breaching Weapons JABS & MODS

Current Technology Transition Agreements

- UAV-Based Mine Sensors
- GPS Augmentation & Augmented Reality

Keys to Successful Transitions

- Close Coordination between OPNAV / ONR / PMS-495,
 Industry, Laboratory, and Academia
- Clearly defined exit criteria
- System-level demonstrations

Assault Breaching System Technologies

Presented to 9th Annual Science & Engineering Technology Conference / DoD Tech Exposition 15-17 April 2008

Mr. Brian Almquist
Ocean Engineering & Marine Systems
Office of Naval Research
(703) 696-3351 almquib@onr.navy.mil

LtCol Tim McLaughlin

APM for ABS

PMS 495 Mine Warfare Program Office

(202) 781-4457 tim.j.mclaughlin@navy.mil

JABS Flight Test

JABS Surf and Beach Flight Test

MODS Live Demo

Sled Test

