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As part of an assessment of research needs in the space

prime-power area, a special conference was convened at the

Omni International Hotel in Norfolk, VA, 22-25 February 1982.

The intent of the Conference was to review the state-of-the-

art of space prime-power technology, including new or

advanced concepts, and to discuss research needed for progress

toward megawatt power levels. The Conference was attended by

over 190 scientists and engineers from universities, govern-

ment, and private organizations. Over eighty papers were

presented, including discussions of chemical, nuclear and

radiant energy techniques, power conversion, heat rejection,

materials, chemical and fluid physics, and also reviews of

_power requirements for future NASA and DoD systems.

The Special Conference on Prime-Power for High-Energy

Space Systems provided a useful opportunity for research

scientists- and technologists to educate each other on

problems and progress in space prime-power. Although the

AFOSR interest is basic research, the Conference also served

as a forum for description of systems, concepts, and programs

with particular mission requirements, and for discussion of

research in support of specific devices or needs. The

proceedings of the Conference, (consisting of over 1700

pages of text and view graph copies), were compiled and

distributed to Conference attendees.
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Preface

By the year 2000, an increasingly large portion of our
national defense will depend on space-based systems. Extra-
polation of present trends indicates that prime-power sources
operating at megawatt levels and beyond will be needed. These
power levels must be achieved at significantly higher values
of specific power (w/kg) and energy (w-hr/kg) than are
presently available in order to satisfy defense needs for
maneuverability and survivability. While steady progress
has been made and new concepts have provided the potential
for further improvements, substantial gains over the next
two decades will probably require investment in basic
research examining fundamental processes and phenomena in
power conversion, material behavior, surface interactions,
etc. As part of a broader set of new research initiatives
in support of space systems, the Air Force Office of Scien-
tific Research will be sponsoring basic research that may be
applicable to the development of megawatt-levol space prime-
power systems. LThe emphasis of this particular new initia-
tive is 2rim-power versus pulsed power including power
conditioning, such as flywhee or inductive storage, for
which there are existing programs.)

As part of an assessment of research needs in the space
prima-power area, a special conference was convened at the
Omni International Hotel in Norfolk, VA, 22-25 February 1982.
The intent of the Conferen u was to review the state-cf-the-
art of space prime-power technology, including new or
advanced concepts, and to discuss research needed for progresa
toward megawatt power levels. The Conference was attended by
over 190 scientists and engineers from universities, govern-
mnt, and private organizations. Over eighty papers were
presented, including discussions of chemical, nuclear and
radiant energy techniques, powr conversion, heat rejection,
materials, chemical and fluid physics, and also reviews of
power requirements for future NASA and DoD systems. The
Conference agenda is displayed in Fig. 1, in tmrin of tech-
nical topics, session chairmen, and first authors.
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From. the session on prime-power needs, distinctions could
be drawn between the continuous power levels required by NASA
and DoD missions involving long-term propulsion and station-
operation, and the intermittant needs of some proposed DoD.
missions for very high power levels (107-108w) for several
seconds or longer. The latter DoD requirement, which does
not have routine parallel requirements in NASA, tends to
broaden consideration of prime-power technology options. For
example, it may be reasonable to expect that continuous
multimegawatt power for orbit changes (including deep space
missions away from the sun) will require space-nuUlear reac-
tor systems. A few second burst of 100 megawatts, however,
might be better provided by a chemically-driven MED system.
In support of possibly broader requirements for high power,
it may be anticipated that AFSR would have broader research
interests in the space prime-power area.

The first two days of the Conference were largely devoted
to a review of technology so that basic research scientists
could learn from technologists about the existence of various
systems and critical problem areas. Chemical sources were
reviewed, including batteries, fuel cells, and combustion-
driven MED. Related power conversion techniquez were also
discussed in the form of turbogenerator developments and
several MD methods connected to chemical sources. (Other
MID systems, not strictly chemically-driven, were also
described on the first day.)

Discussions of nuclear sources included both developments
from earlier NASA/AEC efforts, such as the present SP-100
program, and also advanced concepts in the form of rotating-
fluidized bed systems. Attention was also given to safety
issues for space nuclear power, shielding considerations, and
research needs. The nuclear session was followed by a short
session on power conversion technologies (Brayton, Rankine,
thermoelectric), which are often closely connected to nuclear
sources. The needs for improved data on high temperature
materials and better theoretical understanding, Ce.g., ther-
moelectric properties and scaling) were also discussed.

The session on radiant systems covered a range of tech-
nologies and concepts involving photons in one way or another.
These technologies included photovoltaic concepts (tandem
photocells and thermal-photovoltaic), solar-thermal approaches,
and various possible ways of generating laser light for trans-
mission of power through space (solar-, nuclear-, optically-
pumped lasers). New concepts for converting light to elec-
tricity were also described, such as radiation-driven MED,
plasma-diode conversion of laser light, and a device to con-
vert light to RF (actually demnstrated at the Conference).
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The last full day of the Conference tended to concentrate
on scientific research. issues, hut also included descriptions
of technology and concepts. It was readily anticipated prior
to the Conference that materials research would be a critical
requirement for progress toward high power in space. Indeed,
the session on materials was quite extensive, comprising 15
papers on subjects such as surface modification techniques,
reactor materials, ceramics, materials testing, structural
characterization, and electrical insulation. Closely related
to materials research were topics in chemical physics research
and thin films, discussions of which completed the morning's
activities.

In the afternoon, thinmal energy was consi6dered in various
manifestations: theinionic energy conversion research and
technology, heat rejection techniques, and thermal stress
analysis of large space-structures. The session on thermion-
ics included a review of the DoE program in thermionic
research, in addition to descriptions of systems such as in-
pile thermionic diodes and prospects for performance improve-
meits by understanding and controlling particle collection
geometries. Advanced radiator designs, such as liquid droplet
and liquid metal film concepts, were discussed in the session
on heat and systems. This session also included consideration
of heat pipes, thermal management of power systems, and soft-
ware for analysis and optimization of power systems. Problems
and uncertainties of analysis and prediction of large space-
structures, such as required for support of solar arrays, mir-
rors, radiators, etc., were also discussed.

The last day of the Conference consisted primarily of a
morning session in which the session chairmen summarized
discussions that" took place both within their formal sessions
and also at the discussion symposia that concluded each (very
full) day of the meeting. (In order to complete the eighty
papers of the Conference in a single-session format, ques-
tions during the formal sessions were limited to ones of
clarification. Detailed questions and answers were obtained
in writing and posted at the discussion symposia for inspec-
tion by Conference attendees and for continued discussion by
interested parties.) On the last day, the session chairmen
were also offered the opportunity to present their personalviewpoints an space prime power.

Repeatedly during the Conference, attendees were reminded
that AFOSR is interested in basic research issues applicable
to space prime-power development, rather than specific mission-
oriented devices, schemes, etc. Within the Department of
Defense, funding for research is divided along both discipli-3 nary lines (e.g., physicsI and mission immediacy. Basic
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research is performed under DoD sponsorship at two levels of
immediacy: a) directly in support of a single mission
requirement (designated "6.2" for physics researchl and b)
applicable, but not necessarily applied, to more than one
mission (designated 06.1" for physics). An example of 6.2
research would be understanding pulsed high temperature
plasma radiation sources in regimes of interest for nuclear
weapons simulation. Understanding plasma/surface chemistry
at a level applicable to lasers, switching, and re-entry
vehicles would be 6.1 research. While a variety of specific
prime-power systems of Air Force interest may require
research, the mission of AFOSR is to foster research at the
fundamental (e.g., 6.1) level rather than to fund research
and development of particular, single-mission-related
devices. Other parts of the Air Force have responsibilities
for such development, and also for research needed to accomp-
lish development successfully. (Note that, in the other
extreme, fundamental research not clearly applicable to some
defense mission may not be of sufficiently immediate interest
to qualify even for 6.1-type funding.) To assist qualified
and interested scientists in participating in the AFOSR
initiative for space prime-power research, a document is
being prepared, based in part on the Conference, that will
describe fundamental research areas appropriate for AIOSR
attention. Similar guidance may be available for other AFOSR
space initiatives, such as advanced propulsion for orbit-
raising and maneuvering.

The Special Conference on Prime-Power for High-Energy
Space Systems provided a useful opportunity for research
scientists and technologists to educate each other on
problems and progress in space prime-power. Although the
AFOSR interest is basic research, the Conference also served
as a forum for description of systems, concepts, and programs
with particular mission requirements, and for discussion of
research in support of specific devices or needs. As with
any effort in basic research, the most important results of
the Conference may not be measurable for twenty years. All
that can be said now is that a small step has been made
toward a destination of critical national importance.

Lt. Col. A. K. Hyder and P. J. Turchi
Air Force Office of R & D Associates
Scientific Research Washington Research
Bolling AFS Laboratory
Washington, D. C. Alexandria, VA
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lish development successfully. (Note that, in the othar 
extreme, fundamental research not clearly applicable to scme 
defense mission may not be of sufficiently i.mIDediate interest 
to qualify even for 6.l-type funding.) To assist qualified 
and inter.sted scientists in participating in the AFOSR 
initiative for space prime-power research, a document is 
being prepared, . based in part on the Conference, that will 
describe fundamental research areas appropriate for APOSR 
attention. Similar gu1dance may be available for other AFOSR 
space initiatives, such as advanced propulsion for or.bit
raising and maneuvering. 

The Special Conference on Prime-Power for Hiqh-Energy 
Space Systems provided a useful opportunity for research 
scientists and technologists to educate each other on 
problellUl and progress in space prime-power. Al though the 
AFOSR interest is basic research, the Conference also served 
as a forum for description of systama, concepts, and programs 
with particular mission requirements, and for discussion of 
res.arch in support of specific devices or needs. As with 
any effort in b.sic research, the most important results of 
the Conference may not be measurable for twenty years. All 
that can be said now is that a small step llas been made 
toward a destination of critical national importance. 

Lt. Col. A. X. Hyder 
Air Force Office of 
Scientific Research 
Bolling An 
Washington, o. C. 
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"Space, the Air Force, and AFOSR"
by

Hartke, R. H.

(Paper not available)

Q&A

From; J. S. Zimmerman, General Electric

Please explain division/overlap of missions of AFOSR
and DARPA.

A.
AFOSR is the basic research agency within the Air Force.

Our research strategy will, therefore, emphasize those areas
appropriate for the air force mission areas.

DARPA is a DOD-level basic and exploratory research
agency looking at tri-service mission areas.

There is constant coordination between the two, and in
many cases AFOSR acts as the DARPA contracting agent.

From: W. R. Seng, TECO

What priority is given to system hardness? Is there any
quantified guidance available to describe 1990-2000 (year)
requirements?

A.
Second question first: I can offer nc, quantitative

guidance on hardness requirements 20 years hence.

First question: While system hardness is not an issue of
the workshop, I understand the tendency to refer to it as a
key parameter of concern. At this point, like! compactness,
reliability, efficiency, etc. , it is a consideration more
at the later stages of system design than at these early
stages of basic research. Ultimately, at the later stages,
it will doubtless rank near the top of the priority list.
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MII,ITAKY SPACECRAFT MISSIONS IN THE COMMUNICATION, NAVIGATION AND METEOROLOGICAL 

AKt:AS CURREN'l'tI REQUIRE POWER IN "UE Gl!NERAI. NEIGIIBOIUIOOIl OF _!.~!C.~. TillS IS 

Ii:XI'EC'I'IW TO GIWW MODERA'fEI.Y TO 5-15 KW BY TUE 1990' s DUE TO ON-BOARI> I>ATA 

PIWCESS1NG, ENUANCED COMMUNICATION CROSS-I.INKING, INCREASED ON-STATION 1I0USE

KEIi:PING REQUIREMENTS AND IIIGIiER POWERED »OWNLINK TRANSMITTERS TO SUPPORT TilE 

INCK~ASED USE OF SMALL AND DIVERSIFIEIl GROUND COMMUNICATION FACILITIES. 

A IIISTORICAL AND NEAR-TERM TREND IS SIIOWN IN THE FIGURE FOR SOME OPERATIONAL 

AND EXPERIMENTAL SPACECRAFT MISSIONS OF INTEREST. 
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AS AOVANCED SURVEILLANCE. DEFENSE. SPECIAL COMMUNICATION. ELECTRIC PROPULSION 

AND OTHER CONCEPTS MATURE. POWER REQUIREMENTS ARE ANTICIPATED TO REACH 100-1000 KW 

IN T"E 1990·S AND BEYOND. AS THESE REQUIREMENTS EVOL\~D WE WILL GO FROM THE 

CURRENT SOLAR TECHNOLOGY ARENA TO HIGHER SPECIFIC POWER CONCEPTS SUCH AS NUCLEAR 

REACTORS AND OTHERS. 
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THESE ADVANCED REQUIREHENTS ARE SUMMARIZEh IN THIS eiIART. RADARS. SURVEIL

I.ANCK SYSTEMS, SPECIAL COHMUNICATIONS. ORBITAL TRANSFER VEHICLES USING 

NUCLEAR ELECTRIC PROPULSION. AND SPACE JAMHERS WILL REQUIRE STEADY STATE 

POWER IN THE S TO 400 KWC REGIHE. 

ELECTRIC LASERS. PARTICLE BEAMS. AND OTHER FUTURE APPLICATION~ COULD PUSH 

US TO THE 100's OF MW. AS BEST WE CAN TELL THESE WILL BE PULSED 

APPLICATIONS. 
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DoD POTENTIAL HIGH POWER REQUIREMENTS 

APPLICATION POWE~lEVEl 

SPACE-BASED RADARS 5 - 400 KW 

SURVEillANCE 30 - 100 KW 
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I COMMUNICATIONS 100 KW 
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JAMMERS 70 - 200 KW 

~~~ ........... -~--~--~...,--- ... -~~~-
lASERS 

PARTI ClE BEAM 

ADVANCED CONCEPTS 
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Advanced Spaca Systefns 
CAN WE HAVE WHAT WE NEED WHEN WE NEED IT? 

3 yrs 

3-5 yrs -t SPACE 
.. f' •••••• .+ QUALIF I ED 

SUBSYSTEM r- 2-4 yrs -L. 3-~ yrs -,. . 7-10 yrs -11 
...............•••••••••• - -'- - --Ii Ya 

LORATIONI DEFINITION DEV & ACQ IOC OPERATIONS .! 
7-14 yrs .1 

I. 5-9 yrs I 

I. 12-19 yrs -I 

• SPACE SYSTEMS HAVE LONG LEAD TIMES. LONG LIFE TIMES 

• PACING TECtWOLOGIES INADEQUATELY FUNDED 



=~ ~ 
~ 

I 
.

i
ca~ ~ 

~ 
C

a4P
0E

 
a

cd 
c 

z
 

12 
o

-
E

 
.

e 
-c

1- 
~c 

1- 
*-4 

-

E
20 

cd 
V2 

0 
20

0 
w
 

E
- 

0 

E
-. 

96 
"
 

..4 
-4 

I-
w
 

f= 
a- 

x.C

cn 
IL

. 
1-d 

E
-Z

 
0 

0
E

0 0 
0ao 

0 
4

=
O
 

0 
E

- 
0
 

C
L

. 
0

L
Z

 
0 

1 
0.

C
 

O
 

0=04 
1-4 

E
-

*- 
w

 
rzadE

- 
g

6
c
n

3
0
 

0
 

c0 
00

0
w
 

C
 
a
 

-
0

0
E

.. 
pa 

0
. 

0.

1- 
I-4 

pa
001 

-1 
01 

22 
0 

m
gm

 
2 

w
 

0 
pa 

a 
E

1

w
 

-w 
02 

26 
=

1- 
1 

0 
E

- 
I 

z-

c
.
 

.Y
 

U
- 

E
. 

0 
-4 

0

w
2 

ca 
u 

0 
4

c.4 
0 

9 
od 

-C
 

0.w
to' 

2m
 

w
-

-W
. 

C
D

 
"0 

34 
E

cy0~0 
1-4 

u
 

0 
.4

U
2 

0 
-

22 
u 

ca 
0
.-4

w
~
 
a
-
 

0 
P

. 
1

W
. 

E
- 

E
-0 

~ 
2

0n 
00 

a 
-4 

r&
 

;4 
.

1-00 
~ 

C
O

-3004

\ 
I 
I 
i 
I 

~ 
I 

w 
I 
I-' .. 

- .---,---~" a ... .4. 

A SUHHARY OF ANTICIPATED GOALS FOR SPACECRAFT AND POWER SYSTEHS IS PRESENTED. 

FUTURE SYSTEH~ WILL BE REQUIRED TO PERFORH AUTONOMOUSLY, BEING BOTH SELF

HONITORING AND SE~F-CORRECTING. ADDITIONALLY, IT IS ANTICIPATED THAT SYSTEHS 

WILl. ~E REQUIRED TO SURVIVE SPECIFIED NUCLEAR AND OTHER PROJECTED THREATS. 

DUE TO THE GREATER COSTS OF THE SYSTEM AND HIGHER POWER REQUIREMEl.~S. SPECIFIED 

LIFETIHES will increase to 7-10 YEARS AND SPECIFIC POWER (WATTS/LB AND WATTS/$) 

HUST INCREASE. 

HIGIIER VOLTAGE (AC AND DC) AND PULSED POWER TECHNIQUES MUST BE CONSIDERED TO 

ALLOW REDUCTIONS OF WEIGHT IN THE DISTRIBUTION AND POWER CONVERSION SYSTEM. 

SERVICEABILITY MAY 8E AN ISSUE DEPENDING UPON THE SPECIFIC APPLICATION AND 

SAFETY IS A KEY REQUIREMENT IF WE ARE TO USE NUCLEAR SYSTEMS. 
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INCREASING SOLAR CELL EFFICIENCY RESULTS IN DECREASED SOLAR PANEL SURFACE AREA 

AND WEIGHT FOR THE SAME POWER OUTPUT. PRESENT SILICON CELLS HAVE EFFICIENCIES 

OF 14%. BY FY 83, THE!!.!!! "ULTRAPTURE" SILICON CELLS SHOULD APPROACH ill. 

GaAa CELLS ARE PREDICTED TO DEMONSTRATE 18% by FY 82-84 AS A RESULT OF T'HE HESP-l I 

AND GaAS MAN-TECH PROGRAMS, ULTIMATELY REACHING 20% BY FY 87-89. 

PRESENT MULTI BANDGAP (~) CASCADE (DUAL BANDG~P) HAVE A 1!! EFFICIENCY POTENTIAL 

WHICH IS EXPECTED TO INCREASE TO 25% in FY 87 WITH IMPROVED DIFFUSION TECHNIQUES. 

BEYOND THIS PERIOD, TRIPLE JUNCTION CELLS SHOULD ULTIMATELY APPROACH 40%. 

ONE FIGURE INDICATES ARRAY SPECIFIC POWER LEVEL PER (FOOT)2 

WITH PRESENT AND PREDICTED EFFICIENCIES WHILE THE LEFT-HAND FIGURE INDICATES THE 

POWER PER POUND WITH THOSE EFFICIENCIES. 

TO DATE 22 WILB HAVE BEEN DEMONSTRATED WITH FLEXIBLE ARRAYS OF SILICON CELLS. 

GaAs IS PREDICTED TO OBTAIN 27 WILB (RIGID) 'AND 120 WILB (FLEXIBLE) BY FY 87. MBG 

(TWO-CELL JUNCTIONS) ARE PREDICTED TO OBTAIN ~ WiLl (RIGID) AND 250 W/tB 

(FLEXIBLE) BY FY 88 INCREASING TO 62 W/La (RIG~D) BY FY 2000 USING THE THREE

CELL JUNCTION. 
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NICKEL-CADHIUM (NiCd) BATTERIES, CURRENTLY USE" IN THE MAJORITY OF SPACECRAFT, 

UAVK OBTAINKD SPECIFIC ENERGIES Of 4 W-UR/LB LEO AND 7 W-HRILB GEO IN 1981. 

APL HAS UEVKLO~HENT GOALS FOR NICKEI.-UYDROGEN (NtH 2) OF 12 W-UR/LD_IN 1982, 

!2 __ ~-::-IIR/LB (N 1984, and 20 W-IIR/LB BY 1986 FOR GEO, DUE TO IHPtWVEHENTS IN 

ELECTRODES, SEPARATORS, AND DEVELOPHENT OF A COMMON PRESSURE VESSEL. 

GOALS FOR TUE HIGII-ENERGY DENSITY RECHARGEABLE BATTERIES (HEDRB) ARE 20 W-HR/LB 

.!'L!985, ll-Jt:-IIRILB BY 1987, AND ;0 '(:HR/I.B BY 1990. 
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f.!!RK~!!,!, NASA/nOE REAC,!,OR DESIGN STUDIES USE 'fUERMOELECTRIC POWER CONVERSION A'f 

9% En'lCIENCY WlllCH OBTAINS 2S WILB AT TUE 100 KWe POWER LEVEL. TillS SOURCE ----
COULD bE AVAILABLE IN VY 90 TO 92 (DEPENDING ON LEVEL AND TIMING OF DEVELOPMENT 

~'UNU ING ) . 

A !:!I!W rROGRAM START IS REQUIRED TO DEVELOl) A TliERMONIC POWER CONVERSION A'r 

~~!2% En~ICIENCY TO OBTAIN 50 WILB AT TUE 1000 KWe LEVEL. l'r IS PREDICTED 

'fUIS SOURCE COULD BE AVAILABLE IN THE MIO-1990'S (DEPENDING UPON START-UP AND 

PROGKAM FUNDIN~). 

$ 

THE ROTATING BED REACTOR {RBR) CONCEPT IS IMPORTANT TO THE AIR FORCE BECAUSE IT 

MAY BE CAPABLE OF PRODUCING HIGH POWER LEVELS (100'S MWe) FOR LONG-DURATION 

PULSES. THE RBR CONCEPT IS A SECOND-GENERATION DERIVATIVE OF THE NERVA NUCLEAR 

ROCKET. THE CONFIGURATION REPLACES TUE ROCKET NOZZLE WITH A GENERATOR OR TURBO

ALTERNATOR TO PRODUCE THE POWER, PREDICTED TO BE AT THE 300 MWe LEVEL. TUE DESIGN 

(S S'flJ.L VERY CONCEPTUAL, BUT FUTURE WORK WILL ASSESS THE RBR AS A DIRECT TliRUSTER 

VOR I.EO TO GEO TRANSFER AND AS A POWER SOURCE FOR ELECTRIC THRUSTERS AND DIRECTED

ENERGY WEAPONS. 

OTHER DERIVATIVES OR DIRECT APPLICATIONS OF PREVIOUSLY DEVELOPED NERVA TECHNOLOGIES 
MAY GET US TO 'fHE 1-10MW REGIME. 

---- ),------ _.---:r,_~"..-J~_!" ~ -----
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LISTED HERE ARE SEVERAL KEY ISSUES WHICH ONE SHOULD CONSIDER FOR FUTURE 

POWER SYSTEMS. IT IS FELT THAT ALTERNATIVES MUST BE FOUND TO THE SOLAR 

CELL/HATTERY SYSTEM TO OBTAIN THE HIGH LEVELS OF POWER PREDICTED FOR THE 

2000-YEAR ERA, AND THAT FUNDING AND RESEARCH MUST CONTINUE OR BE STARTED 

WITHIN THE NEAR FUTURE TO GUARANTEE ORDERLY DEVELOPMENT AND ATTAINMENT 

OF THOSE GOALS. 

WITH TilE SIGNIFICANT PREDICTED INCREASES IN POWER, METHODS MUST BE INVESTI

GATED TO REDUCE THE COST ($/W) SO THAT SYSTEMS WILL STILL BE AFFORDABLE, AS 

WELL AS INCREASING THE SPECIFIC POWER (W/LB & W/FT 2 , ETC.) SO THAT SYSTEMS 

CAN STILL BE REASONABLY INTEGRATED. IT IS FELT THAT HIGH VOLTAGE SYSTEMS 

COULD OFFER SIGNIFICANT WEIGHT SAVINGS IN THE CONVERSION AND DISTRIBUTION 

SYSTEMS. 
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KEY TEC~~OL06Y ISSUES 

• DEVELOP ALTERNATIVES TO SOLAR CELLS/BATTERIES CAPABLE OF 

100-1000 kW (SUCH AS NUCLEAP.) IN 2000-2010. 

• REDIRECT EFFORTS TO HIGH VOLTAGE BUSSES 100-S00V (AC OR DC) 

TO R£DUCE HARNESS, DISTRIBUTION SYSTEM AND CONVERSION 

ELECTRONICS WEIGHT. 

• DEVELOP AUTONOMOUS SYSTEMS CAPABLE OF SELF-MONITORING AND 

SELF-CORRECTION. 

• REDUCE COST ($/W) AND IMPROVE SPECIFIC POWER (W/LD AND W/FT) 

TO PRODUCE AFFORDABLE AND PRACTICAL HIGH POWER SYSTEMS. 
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AS AN EXAMPLE OF THE IMPACT OF COST 

TilE PRESENT SPACE DIVISION POWER LAUNCH RATE IS ESTIMATED AT 5a KW/YR. A LAUNCH 

kATE OF 100' tu 200 KW/YR IS ANTICIPATED BY 1985. 

A SAVINGS OF 100 TO 200 MILLION DOLLA"S PER YEAR IS THEN FEASIBLE IF TOTAL POWER 

SYSTEM COST DECREASES FROM $2000/W TO $IUOO/W. 

REDUCTIONS IN COST CAN BE OBTAINED BY; 

(1) 

(2) 

(3) 

DECREASING COSTS or GaAs FRO" $2000 TO $400/W AS A RESULT 

OF IMPROVED PRODUCTION METHODS - HIGHER EFFICIENCIES AND 

DEVELOPMENT OF THIN CELLS. 

DECREASING BATTERY COSTS FOR $600 10 $4001 BY USE OF NIH2 

BATTERIES INSTEAD OF HiCd. 

DECREASE IN POWER PROCESSING AND CONVERSION COSTS FROM 

$400 TO $200/W BY USING AC AND HIGHER VOLTAGE POWER BUSSES. 
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THE IMPACT OF THE SPECIFIC POWER IS SHOWN GRAPHICALLY ON THIS CHART. WE 

TRADED-OFF SOLAR POWER SYSTEMS WEIGHT VS. ONE VERSION OF A NUCLEAR REACTOR 

SYSTEM WEIGHT. NOTE, THAT GIVEN JUS CONSTRAINTS, THE POWER SYSTEM DOMINATES 

THE PAYLOAD TO ORBIT. 
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SUMMARY 

• FUTURE SPACE SYSTEMS WILL REQUIRE HIGH POWER SYSTEMS 

• ADVANCED POWER TECHNOLOGY IS REQUIRED TO ENABLE SUCH SYSTEMS 

• THE PAYOFFS ARE: 

. 
-... , I 

INCREASED PERFORMANCE 

INCREASED EFFICIENCY 

LONGER LIFE 

LOWER COSTS 

~ ... 

~ 
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Q & A - M. Coheni
From: Roy Pettis -

You have emphasized nuclear reactors for future very high
power systems. For the pulsed applications--EDLs and Particle
Beams--do you believe that open-cycle, combustion-driven sources
can fulfill the missions, because of the limited run-times
required (100s of seconds)?

A.
We have not ruled out any source for the high power

applications. A potential problem with open cycle , combustion
sources is that a system may have to be turned on and off a
number of times as that resupply. This would be an option to
be considered as part of a trade study.

From: Bob Davidson, R & D Associates

Please provide a bibliography of your future requirements
studies.

A.
There is no specific bibliography. A starting point is

the Military Space Systems Technology Model AF Report
SD-TR-82-01 (secret). It is available thru the DTIC.
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Q & A - M. Cohen 

From: Roy Pettis -

You have emphasized nuclear reactors for future very high 
power systems. For the pulsed applications--EDLs and Particle 
Beams--do you believe that open-cycle, combustion-driven sources 
can fulfill the missions, because of the limited run-times 
required (lOOs of seconds)? 

A. 
We have not ruled out any source for the high power 

applications. A potential problem with open cycle , combustion 
sources is that a system may have to be turned on and off a 
number of times as that resupply. This would be an option to 
be considered as part of a trade study. 

From: Bob Davidson, R&D Associates 

Please provide a bibliography of your future requirements 
studies. 

A. 
There is no specific bibliography. A starting point is 

the Military Space Systems Technology Model AF Report 
SO-TR-82-0l (secret). It is available thru the OTIC. 
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ABSTRACT

POWER REQUIR04ES FOR MANNED SPACE STATIONS

by

Gordon R. Woodcock and Sidney Silverman

Manned space stations now in preliminary design will exhibit power needs from

25 to 150 kW. Studies have examined solar cell/battery, solar cell/regen-

erative fuel cell, and nuclear systems. This paper will sumimarize the power

requirements, the tradeoff between batteries and regenerative fuel cells,

including how the electric power system can be integrated with other

functions, and nuclear concepts. The influence of mission applications on
selection of the power system will be discussed, including low Earth orbit and

high Earth orbit civil missions and potential military missions.
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ABSTRACT 

P<M:R REQUIREMENTS FOR MANNED SPJlCE STATIOOS 

by 

Gordon R. Woodcock aoo Sidney Silverman 

Manned space stations now in preliminary design will exhibit p>wer needs fran 

25 to 150 kW. StUdies have excnined solar cell/battery, solar cell/regen

erative fuel cell, and nuclear systems. '!his paper will sllnltlarize the power 

requirements, the tradeoff between batteries and regenerative fuel cells, 

including how the electric power system can be integrated -wi th other 

functions, and nuclear concepts. '!be influence of mission applications on 

selection of the power system will be discussed, inclooin:J low Earth orbit and 

high Earth orbit civil missions ana p>tential military missions. 
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SPACE STATICI~ £U.t4ER RE()JIR~ENl'S 

A space station represents the next step ~ in space power requirements, with 
loads estimated in the range from 25 kW to 60 kW or more. The load, of 
course, deperds on the nl.Utlber of people supportEd ard on the mi ssion. 

The nature of expected missions is such that significant load fluctuations are 
expectErl to occur. Lightirg for EVA work at night, ard mater ials processing 
experiments, are example requirements for multi-kW levels of intermittent 
power. 

A space station in low Earth orbit will be designed for at least a ten-year 
life. This means it will experience about 60,000 l1ght-dark cycles, a 
difficult design requirement for energy storage • 

Being compatible with manned operations implies both problems and 
opportunities. There will be frequent proximity operations with the shuttle. 
Design for safety am rescue requires that a total failure of the electrical 
power system oot be a conceivable failure. 01 the other hand, the presence of 
the crew will facilitate maintenance, repair, am workarourd actions oot 
conceivable in an autanated system. 

The space station p:>ses several configuration constraints that are different 
fran typical autanatErl spacecraft. An eXiIIlple is that one wishes to make the 
pressurized JOOdules that house the crew as roomy as possible, leaving as 
little roan as practicable for packagirg external ~quipnent. Also, since the 
pressurized lOOdule itself tends to be lIliform in its mass distribution, one 
neErls to strategically locate internal am external equipnent to maximize 
compatibility with shuttle center-of-gravity limits. 
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Space Station Power Requirements 

1OC-1833 

• LOAD RANGE 26 KW TO 80 KW ' 

• SIGNifiCANT LOAD fLUCTUATION 

• LONG LIFE - 10 YEARS • 80,000 LIGHT-DARK CYCLES 

• COMPATIBILITY WITH MANNED OPERATIONS 

• SHUTTLE DOCKING. PLUME IMPINGEMENT 

• MAINTAINABILITY IN SPACE 

• SAFETY. RESCUE 

• CONfiGURA liON CONSTRAINTS 

• SHADOWING 

• PACKAGING 

• C.G. LIMITATION 

• THERMAL INTEGRATION 
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SPACE SfATIOO OOtlER ISSUES 

The issues liste:J on the facin;) page are sane of the most importii"lt ones 
identified in current space station studies. 

As space p:>wer systans becane larger, benefits of AC distribution will 
eventually outweigh the diSadvantages. Benefits include low losses through 
use of high voltage without the risks of high voltage DC, and the possibliity 
of rotary transformers for crossir¥) rotatilYj joints. Drawbacks include 
additional conversion equipnent and losses, and the possibility of DU. At 
the So-kW load level anticipated for early space stations, the benefits of 1C 
distribution appear far fram oampellilYj. 

For the SOC, a OC distribution voltage of 200 has been selected. 'Ibis is low 
erough to avoid high-tension issues. Conductor losses and weights are 
acceptable at this voltage. 

A manned system brilYjs forth several issues associated with manned operations, 
as well as the opportunity to use the crew to resolve issues that lI«)uld 
otherwise require more expensive solutions. 

Programnatic issues include cost deferral and risk. The ability to add to the 
electr ic p:>wer system as the load grows is a major conrtr ibutor to cost 
deferral. Risk can be managed by selecting systems that will anploy 
technology now in developnent. Adequate performance is available without new 
technology. 
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Space Station Power Issues 

IOC-.... 

ISSUE -
• At; VS DC DISTRIBUTION 

• DISTRIBUTION VOLTAGE. INTER
At;TION WITH ENVIRONMENT 

• COMPONENT DEGRADATION • 
MAINTAINABILITY 

• LOAD GROWTH 

• SAfETY 

• AUTOMATION 

• COST DEfERRAL 

• AVAILABILITY 

ANTICIPATEP RESOLUTION 

DC 

200 VOLTS-NO SIGNifiCANT 
INTERACTION 

DESIGN FOR LRU CHANGEOUT 
IN SPACE 

DESIGN MARGINS. ADD-ON 
CAPABILITY 

(-J DEGRADED-MODE AND REPAIR 
CAPABILITIES 

(b' EMERGENCY SUPPLIES 

MICROPROCESSOR CONTROL WITH 
CREW INTERACTION AND OVERRIDE 

INHERENT IN ADD-ON CAPABILITY 

SELECT HARDWARE IN TECHNOLOGY 
DEVELOPMENT 

= 



..2 -44 
r- 

3

0 
.

~1 
m

0 
0 

;~

0i 
I 

-f40> 
-

r-- 
I'3 

4
ji 

0,~
c 

0 
Aj(

tst 
2 

J F 
.21 

4

fo 
j;4 

-5 
-,r4 

-

W
 

230 
-

f

r-4 
8
1
IQ

-U

~ .• ....J."""_' 

H 

• ~ 
• CJ\ 

- - • • .1 e 51 

soc ELECTRIC IQim 

'ftle electrical p>wer system for the Space Operations Center was sizEd tD serve 
the reference smlit aid occulted requirements shown at the far right. '!be 
principal load is environmental control aid life support. Tracking and 
carlDmications, aM a variety of oousekeeping loads such as lighting, cooking, 
am operation of mission equipnent, are the neet large increments. 

'lbe service iOOdule will i!"itially o~rate in an automated lOOde during SOC 
builch~. At that p>int, it requires relatively little power. The solar array 
may be only partially extended to redooe drag during this period. Considerable 
freedan exists in selectirg a flight attitude for the initial service module 
inasmuch as the solar array need oot be accurately orier:-ted toward the SlIl. 

A single service module ard habitat module can be operatEd ,:IS a four-man 
station. In this mode, the required p>wer is somNlat less than half the p>wer 
needed by the reference configuration. If the single solar array is fully 
extended, off-nominal flight attitudes could minimize attitude control problems, 
while still suWlyirg adequate JX>wer ~ 

'lbe next two bars show the operation of an entire SOC in an emergency mode. In 
this mode, the envirormental control an:J life support system is operatEd in an 
open (~-regenerative) fashion. O1ly critical \/Oice caMlunications are active. 
Housekeepill} loeds are minimized by cutthg off non-critical lighting and 
terminating oormal operations of construction aro flight support equipnent. 'lbe 
SOC battery capacity, even at full discharge, is less than 100 kilowatt-hours. 
Even though the emergency power requirenent is l.Ilder ten kilowatts, it is clear 
that same solar array power is necessary to maintain emergency operation for the 
required 21 days. 

In the event of a ptrtial disabling of the power system, the Space ~rations 
Center can be operatEd in a degraded mode. The loed is reduced by eliminating 
convenience fWlctions, while the vehicle is operated with regenerative 
emironoental control am with most of the flight operations locds. 
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FUEL CEUS WITH Ni -"2 BA'M'ERIES 

'Ibe use of fuel cells with electrolysis units to regenerate stored reactants 
in place of batteries is an option with interestil'¥] system integration 
aspects. It is the integration aspects of this trade that are expected to 
determine its outcome. Principal factors are SlI1IIIarized on the facil'¥] page. 
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Comparison of Regenerative H2/02 
Fuel Cells With N i H2 Batteries 

IOC-IUI 

FEATURE 

FUEL CELLS. ELECTROLYZERI, 
AND GAS STORAGE TANKa 
FOR ENERGY STORAGE 

ADVANTAGESlDISADVANTAOES 

(A) LESS VOLUME. MASS THAN 
NiH2 BATTERIES 

(D) LESS EFFICIENT THAN BATTERIES 

STORED REACTANT GAS USED I (A, HIGHER SPECIFIC IMPULSE 
FOR ORBIT MAKEUP, WITH 
o,-H2 THRUSTERS. PROPELLANT (AJ ELIMINATES HYDRAZINE 
RESUPPLIED AS WATER FROM soc SYSTEM 

BENEFITIIDRAWBACKS 

(1) (B) SIMPLER PACKAGING 

(2)(B) GREATER MARGIN IN LAUNCH MAlI 

(D) REQUIRES GREATER SOLAR ARRAYI 
AREA

t
' HIGHER COST FOR ARRAY: 

GREA ER DRAG 
(B, REDUCES RESUPPLY MASS 

(1)(B, AVOIDS TOXIC. CORROSIVE. 
REACTIVE FLUID HANDLING 

(2)(B, ELIMINATES HYDRAZINE SYSTEM 
COST 

(3)(B) ELIMINATES HYDRAZINE 
THERMAL CONTROL PROBLEMS 

(4)(B, RESERVE REQUIREMENTS FOR 
EMERGENCY WATER AND 
PROPELLANT ARE SHARED 

(6UD) REQUIRES DEVELOPMENT OF 
0rH2 THRUSTER 

(8)(0' REQUIRES ADDITION Of' SHUTTLE 
02 CRYOT ANK TO RESUPPLY 
MODULE FOR ATMOSPHERE N2 
MAKEUP 

(7)(B) ELIMINATES DEVELOPMENT OF 
ELECTROCHEMICAL HYDRAZINE 
DECOMPOSITION UNIT 
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POWER SYSTEMS APPLICATION CHART 

THIS IS THE FA:40US "DUDDLfI' CHART SHOWING THE APPLICATION OF ENERGY 

SOURCES AND CONVERSION METHODS FOR VARIOUS LENGTH MISSIONS. 

FOR SPACE PLATFORMS THE DURATION IS LONG SO THAT MANY OF THE SOURCES 

AND CONVERSIONS BECOME COMPETITIVE AS SHOWN ON THE NEXT CHARTS. 

WITH THE ADDITION OF RECHARGING TO BATTERIES AND REGENERATION TO FUEL 

CELLS, THEY ALSO BECOME COMPETITIVE FOR LONG TERM APPLICATIONS • 
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POWER SYSTEM OPTIONS 

VARIOUS COMBINATIONS OF ENERGY SOURCE AND CONVERSION METHODS ARE SHOWN WITH 
RELATIVE RATINGS FOR THE SIGNIFICANT PARAMETERS. 

SINCE SOME TECHNOLOGIES HAVE BEEN INACTIVE 1 THEY HAVE BEEN THUS IDENTIFIED. 
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ELECTRICAL POWER SYSTEM SCHEMATIC 

THE GENERIC POWER SYSTEM SCHEMATIC IS SHOWN WITH THE TRADE-OFF PARAMETERS TO BE 
CONSIDERED. SELECTIONS FOR THE SOC ARE SHOWN IN YELLOW. 

FOR THE SOC A FUNCTIONAL DIAGRAM OF THE SELECTED SYSTEM IS SHOWN IN ONE LEVEL 
LOWER IN DETAIL. 
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TECHNOLOGY READINESS LEVELS 

THIS LIST SHOWS LEVELS FOR RATING TECHNOLOGY LEVELS AND IS USED WITH THE 

CHART ON THE FOLLOWING PAGE "TECHNOLOGY READINESS LEVELS AND EVOLUTION FOR 

LARGE POWER SYSTEMS". 
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(For proceedings of Conference on Prime Power for High-Energy Space Systems
held at Norfolk, VA on 22-25 February 1982)

POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

Leonard H Caveny
Aerospace Sciences Directorate

Air Force Office of Scientific Research
Boiling AFB

Washington, DC

INTRODUCTION

Future Air Force space missions require substantial increases in propulsion
efficiency. Advances are required in both orbit raising and maneuvering
propulsion. Several of the more attractive propulsion concepts require
continuous electric power at the megawatt level. Propulsion considerations can
not be separated from those of power, since advances in space propulsion and
power share a number of important technological barriers. Thus Space Propulsion
and Power is being pursued by AFOSR as a unified FY83 multidisciplinary research
initiative. The emphasis is on establishing long-term basic research which
anticipates and supports technology and development programs for the 1995 to
2000 time frame.

In the last decade, many novel propulsion concepts were investigated [Mead, 1972
and Papdiliou, 1975 + . Prior to the present considerations, the concepts could
have been placed in such categories as:

- Sufficient onboard power did not exist.
- Air Force requirements did not justify additional research.
- Solutions to fatal flaws could not be foreseen.
- An important technology was lacking.
- Knowledge of the concept was narrowly held, thus it escaped attention.
- System performance penalties were too great.

But probably the dominant consideration in previous years was that the Air Force
could perform the required missions with conventional chemical propulsion.
Consequently, major initiatives to provide technology and to overcome barriers
were not warranted.

Advanced concepts for space propulsion periodically receive attention in
advanced mission studies but only moderate support for sustained basic research.
However, the projections for the end of this century offer the promise of
sustained interest and activity. The space shuttle capability plus the
inevitability of the expanding Air Force role in space are forcing definitions
of major new propulsion requirements. The transfer of large payloads from low
Earth orbits to higher orbits coupled with requirements for maneuvering Justify
the investment required to achieve major advances in propulsion.

+Indicates citations in the bibliography which provide background information.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION 

Leonard H Caveny 
Aerospace Sciences Directorate 

Air Force Office of Scientific Research 
Bolling AFB 

Washington, DC 

INTRODUCTION 

Future Air Force space missions require substantial increases in propulsion 
efficiency. Advances are required in both orbit raising and maneuvering 
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

PROPULSION

Propulsion systems are being considered in two categories: conventional
(chemical) and nonconventional (e g, beamed energy and electric). If the
investments are made, the Air Force can be assured of having significantly
improved chemical propulsion systems available by the end of the century;
however the projected specific impulse gains are on the order of 10%. The
nonconventional systems offer specific impulse gains of hunbreds of percent but
involve larger risks and, possibly, higher costs and longer lead times.
Development programs will improve the efficiencies, versatility, and payload
capabilities of liquid propulsion systems (e g, the advanced RLIO system using
liquid H2 and 02) and solid rocket systems (e g, the IUS system of motors).
These advances are extremely important since each percentage point increase in
propulsion system efficiency can yield significantly larger increases in payload
weight in geosynchronous orbit (GEO). In particular, typical low Earth orbit
(LEO) payloads for subsequent trips to GEO are 50 to 80% propulsion and fuel.
Further improvements in chemical systems (e g, replacing 0 with F , using metal
hydrides) should be achievable in the next decade. In addition, aovances in
refrigeration to permit long term (or even indefinite) storage of H2 will
provide additional options for both propulsion and power. Solid propulsion
systems are expected to take advantage of new energetic ingredients (e g, more
energetic binders, burning rate control). Thus the Air Force is continuing basic
research on specific aspects of chemical propulsion. However, with respect to
propulsion the primery emphasis of the FY83 initiative will be on
nonconventional propulsion. Consistent with the theme of the meeting, the
discussions that follow tend to emphasize those propulsion concepts requiring
megawatts of electric power.
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PROPULSION 

Propulsion systems are being considered in two categories: conventional 
(chemical) and nonconventional (e g. beamed energy and electric). If the 
investments are made. the Air Force can be assured of having significantly 
improved chemical propulsion systems available by the end of the century; 
however the projected specific impulse gains are on the order of 'OJ. The 
nonconventional systems offer specific impulse gains of hunareds of percent but 
involve larger risks and. possibly. higher costs and longer lead times. 
Development programs will improve the efficiencies, versatility. and payload 
capabilities of liquid propulsion systems (e g. the advanced RL10 system using 
liquid H2 and 02) and solid rocket systems (e g, the IUS system of motors). 
These advances are extremely important since each percentage point increase in 
propulsion system efficiency can yield significantly larger increases in payload 
weight in geosynchronous orbit (GEO). In particular, typical low Earth orbit 
(LEO) payloads for subsequent trips to GEO are 50 to 80S propulsion and fuel. 
Further improvements in chemical systems (e g. replacing 02 with F2. using metal 
hydrides) should be achievable in the next decade. In addition. aavances in 
refrigeration to permit long term (or even indefinite) storage of H2 will 
provide additional options for both propulsion and power. Solid propulsion 
systems are expected to take advantage of new energetic ingredients (e g, more 
energetic binders, burning rate control). Thus the Air Force is continuing basic 
research on specific aspects of chemical propulsion. However. with respect to 
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POWER REQUIRFMENTS FOR ORBIT RAISING PROPULSION

TYPES OF PROPULSION SYSTEMS

As a means of classification, several types of propulsion concepts are compared-
on a propulsive efficiency (exhaust velocity) and thrust density plot. In terms
of the SI units, exhaust velocity (meters/second) is the appropriate measure of
specific impulse for space propulsion systems. (The more traditional measure of
velocity in meters/second.) At the lower range of thrust density are the highly

efficient ion engines [Finke,1981J which have have reached a developed status
through sustained NASA sponsorship. The present embodiments of the ion engines
are attractive for NASA planetary missions but do not provide for sufficiently
rapid orbit raising for many of the projected Air Force missions. (However,
advances in power conditioning systems and operation at higher power levels are
expected to lead to more favorable conditions for ion thrusters.) Higher thrust
densities are provided by the lower efficiency chemical rockets which are
presently being used for orbit raising. As previously discussed, the chemical
systems are reasonably well developed and have a limited upside potential. As
part of the FY83 initiative AFOSR is concentrating on the large increases in
performance that are available in the intermediate thrust-density range. Thus
attention is being given to approaches such as solar- and laser-beamed energy
[Weiss, Pirri and Kemp, 1979], magnetoplasmadynamics (MPD) [Finke, 1981],
nuclear [Layton and Grey, 1976], deflagration driver (Cheng, 1971] and
intermittent combustion [Mead, 1972). The chart does not include some of the
approaches which are presently the subjects of adequate programs or which do not
fit the time frame of the FY83 initiative. For example, propulsion concepts
using atomic hydrogen is the subject of a research effort being coordinated by
NASA-Lewis. Furthermore the resources of the FY83 initiative will be
concentrated on the basic research which supports two, possibly three, of the
most promising propulsion approaches.
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As a means of classification, several types of propulsion concepts are compared
on a propulsive efficiency (exhaust velocity) and thrust density plot. In terms 
of the SI units, exhaust velocity (meters/second) is the appropriate measure of 
specific impulse for space propulsion systems. (The more traditional measure of 
rocket specific impulse in lbf/lbm-sec is approximately one-tenth the exhaust 
velocity in meters/second.) At the lower range of thrust density are the highly 
efficient ion engines [Finke,1981J which have have reached a developed status 
through sustained NASA sponsorship. The present embodiments of the ion engines 
are attractive for NASA planetary missions but do not provide for sufficiently 
rapid orbit raising for many of the projected Air Force missions. (However, 
advances in power conditioning systems and operation at higher power levels are 
expected to lead to more favorable conditions for ion thrusters.) Higher thrust 
densities are provided by the lower efficiency chemical rockets which are 
presently being used for orbit raising. As previously discussed, the chemical 
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part of the FY83 initiative AFOSR is concentrating on the large increases in 
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fit the time frame of the FY83 initiative. For example, propulsion concepts 
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

MAGNETOPLASMADYNAMIC THRUSTER

The magnetoplasmadynamic thruster is an example of a concept which offers large
increases in performance. Thrust densities up to 104newtons/meter2 appear to be
achievable. Research on this concept at Princeton University under NASA/JPL and
AFRPL sponsorship continues to produce encouraging trends. In particular,
recent results (Jahn, Clark, Burton, and King, 1981] indicate that electrode
configuration and flow field improvements can lead to major improvements in
onboard-power-to-thrust-power efficiencies. Efficiencies as high as 60% are
being projected. However, major questions relating to items such as electrode
life,,maximum continuous power, and scaling of laboratory results require
continuing research.

I
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

BEAMED ENERGY PROPULSION

The promise of very high energy laser and beamed energy systems, either Earth or

orbit based, may lead to very large gains in specific impulse. Since energy is

applied from external sources, propellants can be selected withouit the need for

oxidizers to produce combustion. The chart shows two of the many concepts which

have been considered [Weiss, Pirri, and Kemp, 1979 and Jones 1981]. The sketch
on the left illustrates a pulsed energy thruster. A lower energy pulse is used
to gasify a condensed fuel; the resulting region of gaseous fuel is then
accelerated by a higher energy pulse to impart impulse to the system. The
sketch on the right illustrates a thruster which operates in the continuous

mode. Energy beamed through a window heats a continuously flowing working
fluid (e g, H seeded to absorb radiation). Beamed energy can produce

temperatures ?i e, 10,000 to 20,000 K) considerably above those produced by
adiabatic combustion. Beamed energy propulsion concepts have been the subject
of several recent programs. For example, Rocketdyne is conducting a program
under AFRPL sponsorship to assess the potential of using solar concentrators to

heat the working fluid. The extent beamed energy propulsion systems will
require space power will depend on the.location of the beamed energy source.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

THERMAL MANAGEMENT

All continuously operating propulsion and power systems must deal with the
realities of having to reject large amounts of waste heat. Indeed the rejection
of waste heat can be the performance limiting factor. In particular, space
propulsion devices require cooling of components such as nozzles, chamber, and

electrodes. The liquid-droplet radiator [Mattick and Hertzberg, 1981] is a
potential breakthrough which may enable the promise of several of the higher
performance systems to be realized. The projected weight reductions and
reliability increases of the liquid-droplet radiator designs are leading to
re-evaluations of the system options. The liquid-droplet radiator is the
subject of separate presentation in these proceedings.

1
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Thermal Management 
• Liquid/Radiator Offers 80 % Reduction in Radiator Weight 
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

POWER FOR ELECTRIC THRUSTERS

Most of the electric thrusters of interest can operate if power of 100 kW and
above is available. However, higher efficiencies at more useful thrust ranges
will occur at the multi-megawatt level. By way of illustration, an example is
given of pulse and continuous thruster operation from a continuous megawatt
power source. If the thruster requires pulse power (e g, the deflagration
driver), a properly matched power conditioning system is desirable both to make
efficient use of the power source and to achieve improved efficiency from the
thruster. Other propulsion concepts are expected to achieve maximum performance
when operated in the continuous mode (e g, the magnetoplasmadynamic thruster).
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

CONCLUSION

As part of the planning for the appropriate research, an assessment of space
propulsion barriers and research is being conducted and documented. This is

being accomplished, in part, by a coordinated group of position papers which are
being prepared by investigators who have broad experience in the disciplines
impacting space propulsion. The papers are addressing the topics in terms of
the broader generic classifications of the concepts. The papers are to provide

broad coverage of the underlying technologies leading to descriptions of the
technical and research issues. The position papers are not intended to provide
solutions to complex issues, rather they are to provide an introduction and
prospective on the challenges. The Air Force report containing the position
papers will be available after February 1983.

During the next year, AFOSR will continue to establish a research program which
addresses the basic research issues. As this is accomplished, we will keep in
mind the synergisms among space power and space propulsion.
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"Chemical Sources: Overview"
by

Clark, J.

(Paper not available)

Q & A - J. Clark

From: Robert Taussig, Math Sciences NW

How do you resolve the question of launch weight for
your low power, high voltage (IMW) refer to paper by Manny
Cohen for powers greater than 50 kW]if you rely on solar
photovoltaic cells for these missions? This approach would
seem to be too heavy for single shuttle launch.

A.
It depends on operating time. A Ag-Zn battery system

would be about 13 watt-hrs/lb. 13 watt hrs/lb "' 1.5 MW -

minutes/2000 lbs.
So the batteries are no problem. Lithium primary cells

would be less than half the weight of the Ag-Zn battery
system.

Recharging --granted, the largest reasonable array may
still require considerable time to recharge the batteries.
The key is that we are probably talking about short discharge
times; seconds to a few minutes.
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CHEMICAL SOURCES - BATTERY

Robert A. Brown Eagle-Picher Industries, Inc.
Electronics Division
Couples Department

Joplin, Missouri
64802

The particular aspects of space power requirements that are

critical to batteries are discussed. Power density and energy density

values for various electrochemical systems and battery configurations

are shown as a function of the time duration of the power pulse.

Characteristics of the possible battery systems are listed in order

to match specific battery systems to individual power requirements.

A general discussion is presented regarding the advantages batteries

offer over other types of power sources.
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NARRATIVE DESCRIPTION OF VIEWGRAPHS

CRITICAL SPECIFICATION ITEMS

This table presents the particular operational requirements that have

the most control over the design of high power batteries. Since the rate at

which a battery must convert its chemical energy to electrical energy is

extremely critical, the design of high power and high energy batteries are

c~npletely different. Other characteristics, such as wet life, cycle life,

temperature limits, mechanical features influence the electrochemical system

selection and can be traded off against each other and against power and

energy density in the design of a specific battery.

DESIGN CONSIDERATIONS

This table presents the choices that are available to the battery

designer that are not necessarily dictated by the operational requirements.

These factors can influence the over-all battery weight and volume by as much

as 50% and have an impact on the battery complexity, reliability, safety,

cost, and mechanical interface with other equipment.

BATTERY SYSTEM CHARACTERISTICS

A comparison is shown between four prominent electrochemical systems

suitable for military and aerospace applications. The silver-zinc, nickel-

zinc, and nickel-cadmium systems have been available for some time; while

the lithium-thionyl chloride is relatively new.
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SYSTEM POWER DENSITY

This chart shows the power density available from various electrochemical

systems and battery configurations as a function of the duration of the

power pulse. The lithium-thionyl chloride system is generally thought of

as a low power battery, however for fairly long duration pulses this system

can offer a higher power density than other systems. This results from

the high cell potential and the low weight electrode materials.

SYSTEM ENERGY DENSITY

This chart shows the energy density available from various electrochemical

systems and battery configurations as a function of the duration of the

power pulse. This data is calculated from the previous chart assuming one

pulse of the iadicated duration. Shorter duration pulses can be repeated

if the battery is allowed to reach equilibrium between pulses, so that the

higher energy densities are theoretical possible even at the short duration/

high power pulses.

BATTERY ADVANTAGES

This table su=arizes the areas where batteries can offer an advantage

Jover other power sources for high power space systems.

!
I
I
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This chart shows the power density available from various electrochemical 
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higher energy densities are theoretical possible even at the short duration/ 

high power pulses. 

BATTERY ADVANTAGES 

This table summarizes the areas where batteries can offer an advantage 

over other power sources for high power space systems. 
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CRITICAL SPECIFICATION ITEMS

ELECTRICAL REQUIREMENTS .1

- HIGH POWER vs. HIGH ENERGY

- PULSE DURATION & FREQUENCY FOR HIGH

POWER BATTERIES

" OPERATIONAL LIFE

" CHARGE RETENTION REQUIREMENTS

" CYCLE LIFE

" TEMPERATURES

- HIGH TEMP DEGRADES LIFE

- LOW TEMP DEGRADES PERFORMANCE

o VENTING RESTRICTIONS

11-2-4
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CRITICAL SPECIFICATION ITEMS 

• ELECTR I CAL REQU I REr1ENTS 
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POWER BATTERIES 

• OPERATIONAL LIFE 

• CHARGE RETENTION REQUIREMENTS 

• CYCLE LIFE 

• TH1PERATURES 
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DESIGN CONSIDERATIONS

a ELECTROCHEMICAL SELECTION

o CONFIGURATION - CONVENTIONAL vs. PILE

e MODULE/SUBMODULE SIZE

* SAFETY

o RELIABILITY

11-2-5

DESIGN CONSIDEPATIONS 

• ELECTROCHEMICAL SELECTION 

• CONFIGURATION - CONVENTIONAL vs. PILE 

• MODULEISUBMODULE SIZE 

• SAFETY 
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BATTERY SYSTEM CHARACTERISTICS

SILVER-ZINC NICKEL-ZINC

OPERATIONAL LIFE 6 MONTHS 3 YEARS
LIMIT:

CHARGE RETENTION: MINIMUM LOSSES 20% Loss-30 DAYS-
250C
50% Loss-4 DAYS-
710C

CYCLE LIFE: 10-100 10-250

COST: $iJ/KWH $300/KWH

SAFETY: MINIMUM RISKS MINIMUM RISKS

DEVELOPMENT STATUS: PRESENTLY AVAILABLE - PRESENTLY AVAILABLE

IMPROVEMENTS POSSIBLE IMPROVEMENTS POSSIBL -

11-2-6

BATTERY SYSTE}1 CHARACTERISTICS 

OPERATIONAL LIFE 
LIMIT: 

CHARGE RETENTION: 

CYCLE LIFE: 

COST: 

SAFETY: 

DeVELOPMENT STATUS: 

SILVER-ZINC 

6 MoNTHS 

MINIMUM LOSSES 

10-100 

MINIMUM RISKS 

PRESENTLY AVAILABLE -
IMPROVEMENTS POSSIBLE 

11-2-6 

NICKEL -ZINC 

3 YEARS 

20% Loss-30 DAYS-
250e 

50% Loss-4 DAYS-
lioe 

10-250 

$3001 KWH 

MINIMUM RISKS 
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BATTERY SYSTEMS CHARACTERISTICS

NICKEL - CADMIUM LITHIUM-THIONYL
CHLORIDE

OPERATIONAL LIFE 5-10 YEARS 5-10 YEARS
LIMIT:

CHARGE RETENTION: 20% LOSS - 30 DAYS - 250C EXPECTED TO BE

50% LOSS - 4 DAYS - 710C MINIMAL

CYCLE LIFE: 20 -250 1

Co ST $450/KWi $200/KWH

SAFETY: MINIMUM RISKS DEVELOPMENT

NEEDED

DEVELOPMENT STATUS: PRESENTLY AVAILABLE UNDER DEVELOPMENT

IMPROVEMENTS POSSIBLE

IT.-2-7

BATTERY SYSTEMS CHARACTERISTICS 

OPERATIONAL LIFE 
LIMIT : 

CHARGE RETENTION: 

CYCLE LIFE: 

COST 

SAFETY: 

DEVELOPMENT STATUS: 

NICKEL - CADMIUM 

5-10 YEARS 

20% LOSS - 30 DAYS - 250C 
50% LOSS - 4 DAYS - 710C 

20 - 250 

$450/KWH 

MINIMUM RISKS 

PRESENTLY AVAILABLE 

IMPROVEMENTS POSSIBLE 
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LITHIUM-THIONYL 
CHLORIDE 

5-10 YEARS 

EXPECTED TO BE 
~lIN IMAL 

1 

$2001 KWH 

DEVELOPMENT 
NEEDED 

UNDER DEVELOPMENT 
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BATTERY ADVANTAGES

* POWER AVAILABLE INSTANTANEOUSLY - NO START-UP REQUIRED

o CAN START & STOP POWER DRAIN AS OFTEN AS DESIRED -

WIDE RANGE OF POWER LEVELS AVAILABLE

o SIMPLE CONSTRUCTION - RELIABILITY

* QUALIFIED FOR RUGGED DYNAMIC ENVIRONMENTS

* NO MOVING MECHANICAL PARTS

" MINIMAL POWER CONDITIONING

" COMPLETELY SELF CONTAINED - NO FUEL OR AUXILIARY EQUIPMENT

REQUIRED

" BATTERIES AVAILABLE TODAY - BETTER SYSTEMS UNDER DEVELOPMENT

" MODULAR CONSTRUCTION - BUILD UP TO ANY DESIRED POWER LEVEL

" INEXPENSIVE

" RAPID TURN-AROUND WITH SECONDARY SYSTEMS

11-2-10

BATTERY ADVANTAGES 

• POWER AVAILABLE INSTANTANEOUSLY - NO START-UP REQUIRED 

• CAN START & STOP POWER DRAIN AS OFTEN AS DESIRED -
WIDE RANGE OF POWER LEVELS AVAILABLE 

• SIMPLE CONSTRUCTION -~. RELIABILITY 

• QUALIFIED FOR RUGGED DYNA~lIC ENVIRONMENTS 

• NO MOVING MECHANICAL PARTS 

• MINIMAL POWER CONDITIONING 

• COMPLETELY SELF CONTAINED - NO FUEL OR AUXILIARY EQUIPMENT 
REQUIRED 

• BATTERIES AVAILABLE TODAY - BETTER SYSTE}'S UNDER DEVELOPMENT 

• NODULAR CONSTRUCTION - BUILD UP TO ANY DESIRED POWER LEVEL 
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• RAPID TURN-AROUND WITH SECONDARY SYSTEMS 

11-2-10 

---- .------

----~----------~~~--~-------------------~-- ,--~~-

1 

i 
I 



Q & A - R. A. Brown

From: B. R. Junker, Office of Naval Research

What are the limiting factors determining the 10-100
cycle lifetime on AgZn batteries?

Answer:

From: Roy Pettis

In proposed weapon applications, many very-high-power
pulses will be required; a reasonable example might be
20-100 pulses of 2-10 second long at 1. 30 MWe. Batteries
are appealing because their high energy density is compat-
ible with the total energies above. How much will the
battery energy density decrease at such high power levels
(30 MWe)? Will the battery system risk damage in fast
discharge/rest/discharge cycles? What battery would be the
best choice for such a mission, requiring a combination of
high energy density and high power density?

Answer:

From: Frank Rose, Naval Scientific Weapons Center

Most of the material discussed by you came from Air
Force studies/expeximents in the early 70's. Are there new
battery concepts in R & D stages? If so, what energy
densities appear feasible? What R & D problems remain to
be solved?

Answer:

From: P. J. Turchi, R & D Associates

What are the failure modes limiting discharge time vs
power density? What measurements need to be made to
determine reasons for failure mode development?

Answer:.

11-2-11

Q , A - R. A. Brown 

From: B. R. Junker, Office of Naval Research 

What are the limiting factors determining the 10-100 
cycle lifetine on AgZn batteries? 

Answer: 

From: Roy Pettis 

In proposed weapon applications, many very-high-power 
pulses will be required: a reasonable example might be 
20-100 pulses of 2-10 second long at ~ 30 MWe. Batteries 
are appealing because their high energy density is compat
ible with the total energies above. How much will the 
battery energy density decrease at such high power levels 
(30 MWe)? Will the battery system risk damage in fast 
discharge/rest/discharge cycles? What battery would be the 
best choice for such a mission, requiring a combination of 
high energy density and high power density? . 

Answer: 

From: Frank Rose, Naval Scientific Weapons Center 

Most of the material discussed by you came from Air 
Force studies/expe.riments in the e~rly 70 t s. .Are there new 
battery concepts in R&D stages? If so, what energy 
densities appear feasible? What R&D problems remain to 
be solved? 

Answer: 

From: P. J. Turchi, R , 0 Associates 

What are the failure modes limiting discharge time vs 
power density? What measurements need to be made to 
determine reasons for failure mode development? 
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Q & A - R. A. Brown 'Cont)

From: Capt. Steven Wax, Air Force Office of Scientific
Research

What is fundamental limitation (kinetic,etc. diffusion)
for the rate of power removal? What research might improve
the efficient removal of chemical energy at higher rates?

Answer:

1
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Q & A - R. A. Brown (Cent) 

From: Capt. Steven Wax, Air Force Office of Scientific 
Research 

What is fundamental limitation Ocinetic,etc. diffusion) for the rate of power removal? What. research might improve the efficient removal of chemical energy at higher rates? 

Answer: 
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Alkaline Fuel Cells for Prime Power and Energy Storage

J. K. Stedman
Presented to the

Space Prime Power Conference
Norfolk, VA

February 22, 1982

ABSTRACT

Alkaline fuel cell technology and its application to
future space missions requiring high power and energy storage
are discussed. Energy densities exceeding 100 watthours per
pound and power densities approaching 0.5 pounds per kilowatt
are calculated for advanced systems. Materials research to
allow reversible operation of cells for energy storage and
higher temperature operation for peaking power is warranted.

!
i II-3-1
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Alkaline Fuel Cells for Prime Power and Energy Storage 
J. K. Stedman 

Presented to the 
Space Prime Power Conference 

Norfolk, VA 
February 22, 1982 

ABSTRACT 

Alkaline fuel cell technology and its application to 
future space missions requiring high power and energy storage 
are discussed. Energy densities exceeding 100 watthours per 
pound and power densities approaching 0.5 pounds per kilowatt 
are calculated for advanced systems. Materials research to 
allow reversible operation of calls for energy storage and 
higher temperature operation for peaking power is warranted. 
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FC-4S00 Of the four types of fuel cells under development today, 

Le., alkaline acid molten carbona.te and solid oxide, 

the alkaline cell offers the highest performance 

potential. Both electrodes are catalyzed with precious 

metals. The matrix contains electrolyte and physically 

separates the two electrodes. Electrolyte reservoir 

plate contains additional electrolyte to increase the 

tolerance to varying operating conditions • 
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FC-13118 A volts per cell of 0.9 corresponds to an efficiency of 

approximately 65 percent. .As can be seen, the performance 

degradation over 5000 hours is quite minimal • 
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FC-2625 The individual fuel cells are stacked with bi-polar 

plates to form a complete power section containing 

sufficient cells to achieve the desired power unit 

voltage. This power section coupled with an accessory 

section which contains the necessary coolant pumps, 

thermal control valves, water removal components, 

and interface panel constitutes a complete fuel cell 

power plant capable of self-regulated operation over 

loads from 0 to 100 percent of rated. 
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FC-1330 Development was started on the Apollo power plant for 

NASA in 1961. This unit weighed approximately 2S0 pounds 

with an output of 1.S-kW. The Orbiter power plant 

program was intiated in 1972. The Navy deep ocean 

power plant program was intiate~ in 1970 for the Navy 

Deep Sumergence Rescue Vehicle.' Although not used in 

the DSRV it has provided prime power for a operational 

submersible as shown in the following charts. 
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FC-l6692 . . The cell technology in this fuel cell power plant is 

identical to that in the Space Shuttle Orbiter unit. 
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FC-16689 Reactants are stored in the spherical vessels shown 

over the open hatch. The power unit is contained in 

the horizontal cylinder which also acts as a sea water 

heat exchanger for rejected waste heat. 
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FC-16697 The use of fuel cell technology for energy storage, 

a concept first examined in the last 1960's has 

received renewed interest and funding as the power 

level for planned NASA and DOD missions increase. 

Higher power levels make it practical to consider 

separate fuel cell units to produce power with independent 

electroly~is units for hydrogen and oxygen production 

not only for energy storage but for life support and 

auxiliary thruster use as well. 
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weights based on NASA input. 
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FC-16706 This chart assumes the battery is utilized at 90% DOD. 

",-'" r 
In geo~ the 'energy density increases due to the higher 

watt hours per watt required and the smaller electrolysis 

unit required due to the longer time available to 

recharge the tankage. The atmospheric platform numbers 

reflect an B hour charge and 16 hour discharge. 
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FC-17389 The previous charts are based on a conservative approach 

of separate fuel cell and electrolytes of power units. 

Integrating fuel cells and eletrolyzer cells within 

a common module might simplify the system and reduce 

weight. Work in the late 1960's showed thF reversible 

cell although offering promise of significantly reduced 

weight, suffered severe endurance and performance 

problems. Recent advances in fuel cell and electrolyzer 
C ,· ... .'·t ,.., 

catalysts may be applicable to this con~ct and eH&IIli'Re 

an experimental examination of these materials is a needed 

research project. 

.. 



z

2 
0

0 
L

L
U

'-

0

0 
L

0 
cU

C
oI 

I.

1
1
-3

-2
3

- -

ENERGY STORAGE OPTIONS 

• Reversible cell 
H 
H 
I 

w 

~ • Separate fuel cell power plant 
and electrolyzer 

• Integrated fuel ceil/electrolysis cell 

l!3¥rfE~s POWER 
SYSTEMS 

fC17389 
810212 



*f4

0
0

w
 ~ 

~ 
.

0
 

S- 
M

 
Q

 
4

0 
0 

m
 

0 
0 

410
04 

X
f 

0 
0 

"4
04 

0 
W
4
 

m
 

W
.4 

0 
.

4) 
0d 

4J'0 
4) 

C

"4 
44 

0 
0,.4

X
 

0 
04 

"4 
L

 
2

o1 
0) 

0 
~

o
l 

0 
.0 
441~

"4 
4. 

" 
4 

$4 
0 

0l 
0

02 
$4 

n
 

>1 
0 

-
0

44~
4 

4
j. 

00
02 

4 
-

4 
) 

Q
)C

 
~ 

0
>

2~ 
14 

0 
"4 

-M
0

.0 
.4) 

0 
0- 

42 
0 

*
J

$4 
02 

04 
A

 
A

, 
I

0) 
$J 

$ 
X

 
4 

0 
0 

1l

0) 
%

o 
w

 
020

02 
41 

$4 
0 

M
H

4
_
V

 
r0r4 

-4 
M

 
41 

r-
04 

0
 

4.) 
4-4 

4
$ 

4
 

0 
41 
02 

H

0 
j 

-
4 

0 
q
 

0 
0 

0
A

M
 

0 
44 

4 
4.) 

0.
( 

41 
4 

) 
0o 

020
02 

>
 

0 
0 

m
2
 

.4
 

w
 

$4

$
'4

 
w

 
0 

>
 

0
 

$4 
0 

r
ed 

$) 
4 

$4 
(a 

02 
0200

$4 
0J 

02 
0 

toA
04 

to 
m

l 
-4 

V
 

0

P4 
04%

4
H

 
-

r 
0
4

-9 
a 

3 
0
 

p
t

> 
61V

-3-2

H 
H 
I 
w 
I 

N .. 

FC-3l49 Previous charts described fuel cells which operate 

normally over a current density range of SO to 500 amps 

per square foot. In 1966 to 1975 United Technologies 

conducted several exploratory development programs and 

design studies for the Air Force Aeropropulsion Lab on 

the use of alkaline fuel cells for short duration high 

power missions. In this application the fuel cell is 

operated at up to 10 times the power density of conventional 

long duration fuel cells. 
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FC-3040 For high power, short duration applications it is not 

desirable to condense the fuel cell product water or to 

reject the fuel cell waste heat with a space radiator. 

Schematic shows one scheme for managing for thermal 

considerations and product water removal in a fuel cell 

power plant. Excess hydrogen is vented through the 

cell stack to remove the product water. Cooling water 

is brought into the cell stack through separate cooling 

passages, turned to steam and vented overboard for heat 

removal. The pump" and start idle heater maintain the 

unit at operating temperature prior to the application of 

the load. 
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FC-3482 In a design study of a 4-MW, 30 second duration power 

supply for airborne high power, conceptual design was 

prepared for the 575-kw module shown on the right. 
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FC-2l0l Experimental data obtained in cells similar to that 

obtained in the conceptual design shown in the previous 

chart ran with eventually no degradation for periods of 

up to 60 minutes. 
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A dramatic increase in peak power density for pulse power 

can be obtained by increasing reactant pressure as shown. 
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The system weight on this chart includes complete fuel 

cell power units, reactants, tankage, and cooling water. 

As can be seen, the optimum design current density 

decreases as mission duration increases indicating the 

influence of cell efficiency on overall system weight. 
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operation of the alkaline fuel cell at extreme current 

density and power density increase the operating tempera

ture and operating pressure of the cell requiring 

improved materials and construction. Research to explore 

the upper limits of operating temperature and pressure 

and to improve the compatibility of the materials of 

construction is necessary prior to development of an 

operational power unit • 
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FC-17622 This chart shows the power section pallets for two 

4.8-MW Demonstrator power units that united Technologies 

is currently assembling in New York City and Tokyo, Japan. 

Each of the four protective shelters contain 10, 250-kW 

phosphoric acid fuel cell stacks, each made up of 

approximately 500 cells. Operation of these units will 

demonstrate t9at fuel cells can be configured to provide 

the high power and voltage requirements typical of a 

future NASA or DOD space high power mission. 
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0 & A - J. Stedman

From:

What perturbations does the fuel cell exhaust cause on
the spacecraft:

A.
In orbiter H and 0 vents are small and directed 1800

opposed to neutrilize t3rusts.

In high power fuel cell cooled by boiling water same
technique could be used. Water flow is nominally 3 lbs/kw-hr
@ total pressure of 1 atm, 2000 F.

From: P. J. Turchi, R & D Associates

What process(es) have been identified as limiting
efficiency of fuel cells:

A.
02 electrode activation loss associated with catalysis

reduces voltage (eff) by = 20% from a theoretical 100% in
H2-02 cells. Remainder of loss is associated with diffusion
of reactants and products with electrodes and ohmic losses
associated with electro4yte.

From: P. J. Turchi, R & D Associates

Does power density vs current density start to drop off
at high current density because of load line effects, or some
other effect?

Why does voltage output drop off with current density:

4L A-3 6-411-3-42 _

o , A - J. Stedman 

From: 

What perturbations does the fuel cell exhaust cause on 
the spacecraft: 

A. 
In orbiter H and 02 vents are sma.l:' and directed 1800 

opposed to neutrilize tftrusts. 

In hiqh power fuel cell cooled by boilinq water same 
technique could be used. Water flow is nominally 3 lbs/kw-hr 
@ total pressure of 1 atm, 2000 F. 

From: P. J. Turchi, R , 0 Associates 

What process(es) bave been identified as limitinq 
efficiency of fuel cells: 

A. 
02 electrode activation loss associated with catalysis 

reduces vo1taqe (eff) by ~ 20t from a theoretical lOOt in 
H2-o2 cells. Remainder of loss is associated with diffusion 
of reactants and products with electrodes and ohmic losses 
associated with e1ectro~yte. 

From: P. J. Turchi, R , 0 Associates 

Does power density vs current density start to drop off 
at hiqh current density because of load line effects, or sorna 
other effect? 

Why does vo1taqe output drop off with current density: 

A. 
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"Turbogenerators"
by

Oberly, C. E.

(Paper not available)

Q & A - C. E. Oberly

From: J. Biess, TRW Systems

Could the insulating material for the superconducting
wire be used for capacitor dielectric? What is dielectric
factor and recommended operating temperatures?

A.
We are looking at these ceramics as potential capacitor

dielectors. They retain the inherent problems of ceramic
dielectrics: air bubbles and low energy storage density.
If high thermal conductivity material were used, it could be
of great advantage for fast repeating pulses but temperatures
and refrigeration below 100 K would be required. We are
currently evaluating dielectric constants, strengths and
partial discharge resistance of these materials.

Ii -

I 

" Turbogenerat.ors II 
by 

Oberly, C. E. 

(Paper not available) 

Q & A-C. E. Oberly 

From: J. Biess, TRW Systems 

Could the insulating ma~erial for the superconducting 
wire be used for capacitor dielectric? What is dielectric 
factor and recommended operating temperatures? 

A. 
We are looking at these ceramics as potential capac~tor 

dielectors. They retain the inherent problems of ceram1C 
dielectrics: air bubbles and low energy storage density. 
If high thermal conductivity material were used, it could be 
of great advantage for fast repeating pulses but tenperatures 
and refrigeration below 100 K would be required. We are 
currently evaluating dielectric constants, strengths and 
partial discharge resistance of these ~terials. 
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"MHD Power: Overview"*
J. B. Dicks

Applied Energetics, Inc.

*Omitted are those photographic slides which were not
reproducible.

III-'-'

"MHO power: overview" * 
J. B. Dicks 

Applied Energetics, Inc. 

*Omitted are those photographic slide. which were not 
reproducible. 
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SPECIAL CONFERENCE ON PRIME POWER FOR HIGH-ENERGY SPACE SYSTEMS

FEBRUARY 22-25, 1982
Norfolk, VA

Figure 1 - Shows the Brilliant concept of MHD application. This

application was to proceed as a high priority of the
Defense Department in the middle 1960's. It resulted

in a project directed by the Air Force Aeropropulsion
Laboratory in cooperation with several other Air Force
laboratories. Its intent was to gather together the

technology needed to make a high power night time

illumination system. The project was eventually
terminated because the application was no longer
of high priority due to changing international
conditions and because some delay would have been in-
troduced in order to produce a satisfactory super-
conducting magnet and illumination system. Contractors
on the power system were Chrysler Space Division, J. B.
Dicks & Associates (now Applied Energetics), and the
University of Tennessee Space Institute.

This is the only attempt ever made by the military to
apply HD to a practical mission. It resulted in
studies of apparatus and systems which would allow a
high power MHD power supply to be mated to typical air-
craft of the date. These requirements do not differ
greatly from those pres-.itly being considered in space.

Figure 2 - Shows an actual MHD channel constructed for this program
in a mock-up of one of the magnets that were constructed
by the Air Force laboratories under contract to match the
requirement. The general construction and arrangement
shown here does not differ greatly from what might be
used for a contemporary high power supply in the range
between 250 kilowatts to 1000 kilowatts. The general
cylindrical design shown on the magnet would be that

used whether or not a superconducting magnet is used.
Alternates are, a self-excited coppei magnet, or a
super-coated aluminum magnet. The design shown here

allows for pool cooling which might be used in any
of these cases. It also allows for the cryogenic

cooling by the pool methrd. However, cooling is not

necessary and self-excited magnets would work for the
order of 100 to 200 seconds depending upon its weight.

The cylindrical configuration results from the fact
that so-called pancake coils pressed around a cylindrical
form provide the most efficient magnet. The channel itself
is of circular cross section in order to utilize the
magnetic field most effectively. A number of circular MHD

configurations have been operated in the past and would
be used anytime a magnet has no iron used in this

construction.

111-1-2

SPECIAL CONFERENCE ON PRIME POWER FOR HIGH-ENERGY SPACE SYSTEMS 
FEBRUARY 22-25, 1982 
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Figure 1 - Shows the Brilliant concept of MHD application. This 
application was to proceed as a high priority of the 
Defense Department in the middle 1960's. It resulted 
in a project directed by the Air Force Aeropropulsion 
Laboratory in cooperation with several other Air Force 
laboratories. Its intent was to gather together the 
technology needed to make a high power night time 
illumination system. The project was eventually 
terminated because the application was no longer 
of high priority due to changing international 
conditions and because some delay would have been in
troduced in order to produce a satisfactory super
conducting magnet and illumination system. Contractors 
on the power system were ~hrysler Space Division, J. B. 
Dicks & Associates (now A~~lied Energetics), and the 
University of Tennessee Space Institute. 

This is the only attempt ever made by the military to 
apply MHD to a practical mission. It resulted in 
studies of apparatus and systems which would allow a 
high power ~mD power supply to be mated to typical air
craft of the date. These requirements do not differ 
greatly from those pres~.ltly being considered in space. 

Figure 2 - Shows an actual MHD channel constructed for this program 
in a mock-up of one of the magnets that were constructed 
by the Air Force laboratories under contract to match the 
requirement. The general construction and arrangement 
shown here does not differ greatly from what might be 
used for a contemporary high power supply in the range 
between 250 kilowatts to 1000 kilowatts. The general 
cylindrical design shown on the magnet would be that 
used whether or not a superconducting magnet is used. 
Alternates are, a self-excited coppel magnet, or a 
super-coated aluminum magnet. The design shown here 
allows for pool cooling which might be used in any 
of these cases. It also allows for the cryogenic 
cooling by the pool methcd. However, cooling is not 
necessary and self-excit~d magnets would work for the 
order of 100 to 200 seconds depending upon its weight. 

The cylindrical configuration results from the fact 
that so-called pancake coils pressed around a cylindrical 
form provide the most efficient magnet. The channel itself 
is of circular cross section in order to utilize the 
magnetic field most effp~tively. A number of circular MHD 
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Figure 3 - Shows such a device had mounted the illumination application
is purely arbitrary and other suitable applications could be
substituted for it. The MD power supply is particularly
appropriate for application in which the time is short.
One has to construct the pod so as to avoid upsetting on-
board aircraft systems or on-board spacecraft systems. The
aircraft mounting and spacecraft mounting do not differ
appreciably if it is desirable to have a separate pod or
self-contained power supply and any application devices
associated with it.

Figure 4 - Shows a pod mounted version of a liquid fuel system of this
type. Improvements in combustion and better understanding
of fuels represent the greatest advance in MHD power generation
for military applications made since this work was done. The
present techniques are fuel injection liquid or powdered solid;
would allow such applications to equal or better the performance
discussed for solid type propellents below. The solid type used
in an MHD generator if not as well known as the use of liquids
in such a generator and therefore these would be discussed in
somewhat more detail.

Figure 5 - Shows the development of the diagonal wall conducting wall
generator which in some form or other forms the basis for
most American generators that have been operated. This
construction of solid conducting frames of copper within
the insulator are sandwiched between them, works well for
military applications because the heat sink design is
particularly easy, the strength is high, and the durability
is sufficiently long for any military mission for which MlD
is suitable.

The theory of the diagonal wall (DCW) is quite complex, the
most complex of all generators, but its construction is
the simplest and stron est.

Figure 6 - Shows the result of the technology required in military programs
applied to the civilian central power MD program. This is the
CFFF in Tullahoma, Tennessee, a relatively complete pilot plant
now in operation and setting records as far as pollution control
is concerned. The connection between this technology and military
technology is not particularly close as none of the pollution
control technology is required for short time military application.

Figure 7 - This shows the high field six Tesla superconducting magnet that
has been constructed for the CFFF at the Argonne National
Laboratories in Chicago. It was tested twice last summer at
6 Tesla and is a very large magnet. This magnet, on military
fuels, is capable of yielding hundreds of kilowatts of power

* and should be available for testing for any such military
power on a non-interference basis with DOE projects.
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Figure 8 - Shows a solid fuel combustor furnished by the Hercules
Corporation for a test series by the University of Tennessee
Space Institute at Arnold Engineering and Development Center
in 1967 under my direction. The cylindrical portion rules
a 9 lb. roughly 10 inch long, 6 inch diameter solid fuel
grain shown in the next figure. The rectangular portion
is a carbon nozzle and this device was bolted to some of
the liquid fuel generators that existed at that time.

Figure 9 - Shows a grain of pollutant used in this testing. The solid
loading was of the orde- of magnitude of 40% with a large
amount of potassium and aluminum present. The aluminum
oxide and other chemicals coated the walls of the generator
to a depth of several millimeters.

Figure 10- Shows the end of a generator run on the solid point with the
coating used protruding from the end. The present of this
coating and the fact (as shown later) that it does not effect
power generation in the generator appreciably. It allows one
to reduce the heat trai.fer to the walls of the generator
drastically as this podium builds up.

Figure 11- Illustrates current voltage and power characteristics from
the solid grain. Some of the instability near the end is
the result of fluctuations in combustion in the grain as
the end of the chamber is reached.

Figure 12- Shows power curves comparing liquid and solid fueld of the day.
One will note that the solid fuel power production is of the
order of 200 or more kilowatts while the liquid fuel of power
production from the same generator is much, much less (about
30-40 kilowatts). This advantage of the solid fuel has been
reduced somewhat with later experience by much improved com-
bustion and by more carefully choosing the liquid fuel used
to minimize the electron collision cross section in the
generator and thus, to .aximize power.

Figure 13- Shows more of the solid deposit on a single electrode. It will
be noted that this solid deposit covers the generator so well
that no contaminate penetrates into the insulator. Also the
covering of the generator by this material allows a much higher
standoff voltage in the generator so that the technology of 10
years ago would give, tinder these conditions, about 10 kilowatts
per meter of generator length.

Figure 14- Illustrates what can be done by using additional additives to
the fuel. This is not the result of operating with solid fuel,
but by placing high temperature additives in the flow to pur-
posely build up a coating inside the generator. Coatings in
this case were as great as centimeter in thickness without
drastically effecting the power production of the device.
Again the advantage here is that it is possible to operate
in this fashion with much, much reduced heating of the gen-
erator channel and much, much longer operation in the heat
sink mode with much less cooling required in the case in
which cooling is used.
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Figure 15 - Shows the Soviet generator operated by Velikhov using two

solid fuel rocket charges. One to bring up the field in

the coils and the second to produce maximum power.

Figure 16 - Shows the data given on these experiments, the weight of
the system and the pilot plant generator. Such a system
is not optimized. Much weight could have been saved through
the use of a saddle coil rather than the circular coil shown.

Figure 17 - Shows the experimental results on a generator run in Mainland
China in a self excited mode giving a power output of approxi-
mately 500 kilowatts. This simply shows that self excitation
is widely performed. In the beginning of the MHD program in
the United States, Mr. Tor Brogan, one of the Avco laboratory
employees succeeded in getcing approximately 30 megawatts
from a large self excited liquid fuel generator.

Figure 18 - Shows a modern combustor designed to run with preheated
oxidizer and coal as a fuel. The coal is blown in through
a central tube and then spread out into the oxidizer flow.
Such a system might be used with grandulated solid fuel in
order to gain improvements in system over those presently
being operated. Such a %stem would have the advantage of
a larger control ability, restart capability, and the
possibility of idling power. As a matter of fact, such a
system will run with seed control and would allow one to
operate a power trajectory as may be required by some of
the devices for application.

Figure 19 - ,Shows a schematic of this combustor with the coal coming in
through the central port. The oxidizer, through a plate
;iich has a hold pattern in it, creates a great deal of
turbulence. The oxidizer is preheated through burning
with some auxiliary fuel so that the hot oxidizer strikes
the fuel in a highly turbulent mixing zone with preheat
raising the temperature to the auto-ignition point. Under
these conditions a very short combustor can be utilized for
nearly complete combustio before the product enters the
generator itself. This privides for a minimum heat release
to the combustor which, in the kind of applications we are
considering here, would be lined heavily with ceramic material.
Ceramic material will not last permanently, but would last
over the several hours which represents the maximum duty
cycle of the MHD generator.
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Figure 15 - Shows the Soviet generator operated by Velikhov using two 
solid fuel rocket charges. One to bring up the field in 
the coils and the second to produce maximum power. 

Figure 16 - Shows the data given on these experiments. the weight of 
the system and the pilot plant generator. Such a system 
is not optimized. Much weight could have been saved through 
the use of a saddle coil rather than the circul~r coil shown. 

Figure 17 - Shows the experimental results on a g~nerator run in Mainland 
China in a self excited mode giving a power output of approxi
mately SOO kilowatts. This simply shows that self excitation 
is widely performed. In the beginning of the MHO program in 
the ,United States. Mr. Tor Brogan. one of the Avco laboratory 
employees succeeded in gel~ing approximately 30 megawatts 
from a large self excited liquid fuel generator. 

Figure 18 - Shows a-modern combustor designed to run with preheated 
oxidizer and coal as a fuel. The coal is blown in thro~gh 
a central tube and then spread out into the oxidizer flow. 
Such a system might be used with grandulated solid fuel in 
order to gain improvements in system over those presently 
being operated. Such a b~stem would have the advantage of 
a larger control ability, restart capability, and the 
possibility of idling power. As a matter of fact, such a 
system will run with seed control and would allow one to 
_operate a power trajectory as may be required by some of 
the devices for application. 

Figure 19 - $hows a schematic of this combustor with the coal coming in 
through the central port. The oxidizer, through a plate 
;'-'lich has a hold pattern in it, creates a great deal of 
turbulence. The oxidizer is preheated through burning 
with some auxiliary fuel so that the hot oxidizer strikes 
the fuel in a highly turbulent mixing zone with preheat 
raiSing the temperature to the auto-ignition point. Under 
these conditions a very short combustor can be utilized for 
nearly complete combustio~ before the product enters the 
generator itself. This pr~vides for a minimum heat release 
to the combustor which, in the kind of applications we are 
considering here, would be lined heavily with ceramic material. 
Ceramic material will not last permanently, but would last 
over the several hours vhich represents the maximum duty 
cycle of the MHD generator. 

111-1-5 

., 

...... _-----.. 



-Pow

L;0

111-1-6

... __ .. _. 

"- "." 
':". 

'. 

, 

. < 
'~'. 

111-1-6 

('.1 . 

( 
s 
~ 
CI' .... 

Lt 



POD CONFIGURATION

Figure 3
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BASIC RESEARCH TOPICS IN MHD

MD is one of those technologies which has reached an engineering
status that would allow it to be applied where the need for short time
high powered 'ystems arise. It has the advantage of almost immediate
full power production from an iner; start, is thus capable of high
reliability, but is limited in time to that available utilizing un-
cooled heat sink configurations. Such a time at present is of the order
of 100-150 seconds with extended lifetime depending on the amount of
cooling are placed in the system. All of this technology is based
on an engineering understanding of the device, but comparatively
little physical understanding. The phenomenon involved are complex,
involving a combination of Maxwell's equations with the gasdynamic
equations. Furthermore, the phenrqena of the boundary layer between
the hot plasma and the cold electrodes are in a even more difficult
regime of temperature over shoots, recombination, surface interaction,
and prevalent surface phenomena. Further there is the coated generator
where the walls are covered with combustion products and/or manufactured
material where the conductivity through such hot solid state materials
is poorly understood. There are, therefore, a variety of basic physical
problems in the generator that need to bc esolved and which would
eventually result in much improved performance if they could be under-
stood from a standpoint of basic physics.

In connection with the generator is the combustion process which
is also of great importance and the area in which the greatestimprove-
ments are the problems of gasdynamic turbulence, two phas flow, and
general plasma chemistry. The plasma chemistry is complicated enough
with the questions of electron attachment, collision cross section,
species concentration, etc. When ;hese are combined with two phase
flow as occurs in the case where a material such as aluminum is added
as a fuel resulting in aluminum oxide which may be either in the liquid
or solid phase in the flow, one enters an area that has been little
explored from a basic standpoint. It is desirable to know the extent
of physical interactions between the solid particle and the gas, both
gasdynamically and electrically. Such particles, in general, are at
a higher temperature than the flow around them because of the time
delay in heat transfer as the flu!i expands through a nozzle between
the particles and the fluid itselt. Since it is possible to get a
variety of material compositions in such particles which may vary from
essentially a insulating particle to one which partially conducts due
to the presence of absorbed potassium for example. Thus there is a
whole range of basic physics that could be done with profit in this
area.
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Q & A - J. Dicks

From: A. P. Fraas

1) What was the maximum electrical output from one of
your coal-fired MHD generators?

2) What was the fuel feed rate and chemical energy input
rate for the above case?

3) What would the compressor power input have been if
you had been able to use preheated air instead of
liquid 02?

4) What was the equivalent power requirement if you had
generated 02 rather than use stored liquid 02?

Answer:
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ABSTRACT

Combustion driven magnetohydrodynamic (MHD) generators show great promise
for both flight and ground-based electrical power generation. The Lewis
Research Center (LeRC) has in operation a small (4-12 MWT) cesium-seeded
H2-02 combustion MHD generator to investigate performance and fluid
dynamics at high magnetic field levels. This combustion system was chosen
because of its attractiveness for lightweight systems, the H2-02 combustion
expertise at LeRC, and the simplicity of the H2-02 system which facilitates
the understanding of the basic processes involved.

The MHD power generation experiments are conducted in a high field strength
cryomagnet (fig. 1) which was adapted from an existing facility. In its
original construction, it consisted of 12 high purity aluminum coils pool
cooled in a bath of liquid neon. In this configuration, a peak field of 15
tesla was produced. For the present experiments, the center four coils were
removed and a 23 cm diameter transverse warm bore tube was inserted to allow
the placement of the MHD epxeriment between the remaining eight coils as shown
in the cross section insert in figure 1. In this configuration, a peak field
of > 6 tesla should be obtainable. The time duration of the experiment is
limited by the neon supply which allows on the order of 1 minute of tota:
operating time followed by an 18-hour reliquefaction period. As a result, the
experiments are run in a pulsed mode. The run duration for the data presented
here was 5 sec. The magnetic field profile along the MHD duct is shown in
figure 2. Since the working fluid is in essence superheated steam, it is
easily water quenched at the exit of the diffuser and the components are
designed vacuum tight so that the exhaust pipe and demister can be pumped down
to simulate the vacuum of outer space.

The primary purpose of experiments conducted to date have been to
understand the basic phenomena associated with MHD power generation at high
magnetic field strength and to produce data necessary to validate computer
codes. The effects investigated are listed in figure 3.

In figure 4 the power output versus the square of the magnetic field is
plotted for various MHD channel configurations. Shown are four Hall channels
varying in exit to inlet area ratio from 2.56 to 6.25 and one diagonal wall
channel having an area ratio of approximately 5. It is noted that the power
output increases linearly with B2 for Hall ducts up to an area ratio of
6.25. At this area ratio there is an abrupt departure from linearity as shown
by the dashed line. This is due to the diffuser shock (supersonic duct)
moving upstream into the power generating region of the channel. This shock
Semoved by operating with vacuum exhuast and the linear dependence with
is again observed as shown by the solid curve (6.25/1 AR-vacuum). The

figure also shows the increased performance obtainable through the use of
diagonal wall channels. The single point shown at the top of the figure
represents the highest output achieved by operating fuel rich. The point
represents a power output of 175 kW which represent an extraction of 3.5
percent of the input enthalpy.

Figur4 5 is a list of effects requiring further investigatiu. -.
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82 is again observed as shown by the solid curve (6.25/1 AR-vacuum). The 
figure also shows the increased performance obtainable through the use of 
diagonal wall channels. The single point shown at the top of the figure 
represents the highest output achieved by operating fuel rich. The point 
represents a power output of 175 kW which represent an extraction of 3.5 
percent of the input enthalpy. 

Figur'.:;: 5 is a 1 ist of effects requiring further investigatl~lI. 
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H2-02 MHD POWER GENERATION EXPERIMEtIT 

INITIATED 1973, NASA FUNDING - LASER RTOP 

PHASE 1 - MODIFY EXISTING CRYOMAGNET FACILITY 
GOAL - 100 MW/M3 PULSED 
GOAL OBTAINED 

PHASE 2 - REPLACE CRYOMAGNET WITH SUPERCONDUCTING MAGNET 
GOAL - 5% ENTHALPY EXTRACTION fOR 10 MINUTES 
MAGNET WIRE PURCHASED ($500K); PRELIMINARY 'DESIGN COMPLETED 

PHASE 3 - FACILITY SCALEUP 
GOAL - 20% ENTHALPY EXTRACTION 
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EFFECTS INVESTIGATED IN LERC EXPERIMENTS 

o INSULATOR BREAKDOWN VOLTAGE 

o AZIMUTHAL DISTRIBUTION OF ELECTRIC CURRENT 

o EXIT TO ENTRANCE AREA RATIO <2.56 TO 6.25) 

o VACUUM EXHAUST PRESSURE 
. 

o COMBUSTOR UmUCED GENERATOR FLUCTUATIONS 

o GENERATOR TYPE - HALL AND DIAGONAL WAll 
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EFFECTS REQUIRING FURTHER INVESTIGATION 

o HOT ELECTRODES (REDUCE BOUNDARY LAYER VOLTAGE DROPS) 
- CERAMI C COATltlGS 
- CAPS (GRAPHITE1 ETC.) 

o COMBUSTOR REDESIGN TO IMPROVE Cs SEEDING AT LOW COMBUSTION 
PRESSURE (IMPROVE ENTHALPY EXTRACTION) 

o CORRELATION OF EXPERIMENTAL DATA WITH RECENTLY OBTAINED 
MULTI-DIMENSIONAL COMPUTER CODES 

o INVESTIGATE USE OF OTHER FUELS AND/OR ADDITIVES (INCREASE 
ELECTRICAL CONDUCTIVITY) 

, 

o FARADAY GENERATOR CONFIGURATION (IMPROVED PERFORMANCE) 

o IMPROVED DIAGNOSTICS 

Lewis Research Center 
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0&A - J. M. Smith

From: Robert Clark, Naval Research Laboratory

What multidimensional MHlD computer codes do you intend
to use to check the design of your devices? References?

Answer:

I - 111-2-9
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Q & A - J. M. Smith 

From: Robert Clark. Naval Research Laboratory 
What multidimensional MHD computer codes do you intend to use to check the design of your devices? References? 

Answer: 
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The MHD Disk Generator as a Multimegawatt Power Supply
Operating with Chemical and Nuclear Sources

J.F. Louis

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

ABSTRACT

The characteristics, performance and status of the MHD disk generator

are reviewed as a potential multimegawatt power supply working with both

chemical and nuclear sources.

The disk generator is found to be a compact high interaction power

unit with simple construction simple power conditioning and using a

circular superconducting coil. The radial flow of the disk assures zero

thrust in open loop operation and its construction simplicity may provide

significant reliability and weight advantages.

The disk generator can be operated as a high voltage, low current

power supply. Experiments have shown the disk generator as high power

(900 kW), high power density (500 MW/m3 ), high enthalpy extraction (15%)

device which has been operated with electrical fields up to 37 kV/m. The

disk generator can be operated in an open loop with either chemical or

nuclear heat sources. In a closed cycle system, the disk generator can be

used in a Braylon cycle using He as a working fluid and in a Rankin cycle

using either potassium or lithium vapors as working fluid. In both oases,

the generator operates in the non-equilibrium mode. The estimated weight

of a 1 We driven in a Braylon cycle using a fast nuclear reactor is around

5 kg/kW. An important advantage of this closed cycle is the compact

radiator operating at high temperature.

In the coupling of the disk generator with a H2 -02 rooket engine, the

disk generator operates with an equilibrium plasma (seeded with cesium) of
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ABSTRACT 

The characteristics, performance and status of the MHD disk generator 

are reviewed as a potential multimegawatt power supply working with both 

chemical and nuclear sources. 

The disk generator is found to be a compact high interaction power 

unit with simple construction simple power conditioning and using a 

circular superconducting coil. The radial flow of the disk assureS zero 

thrust in open loop operation and its construction simplicity may provide 

significant reliability and weight advantages. 

The disk generator can be operated as a high voltage, low current 

power supply. Experiments have shown the disk generator as high power 

(900 kW), high power density (500 MW/m3) , high enthalpy extraction (151) 

device which has been operated with electrical fields up to 37 kV/m. The 
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nuclear heat sources. In a closed cycle system, the disk generator can be 
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the lenerator operates in the non-equilibrium mode. The estimated weight 
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relatively high conductivity. This high conductivity allows a high

interaction and a large fraction (25%-40%) of the inlet enthalpy to be

extracted.

The research needs should cover studies on:

1) Effective plasma properties in non-equilibrium generators

2) Plasma properties in generators operating at Hall coefficient with
full seed ionization

3) Performance of disk generator with inlet swirl

4) Boundary layer effects in disk generators

5) Chemical non-equilibrium effects in generator driven by chemical
energy

6) electrode configuration and electrode effects

i

111-3-2
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Figure 2. MHD Generators for Space Power

The volume effects are found to be larger than wall effects at a level
in excess of 1 MWe for MilD ge-aerators.

MHD generators can be used with high temperature heat sources driven by
chemical or nuclear energy.

With chemical energy, the weight of fuel and oxidizer limits the opera-
tion to a few minutes. With combustion gases, the electron temperature is
equilibrium with the expanding gas. The generator should provide a single
output and no net thrust. The exhaust of the combustion gases to vacuum provide
a high expansion ratio which allows a high enthalpy extraction limited only
by the minimum conductivity. At the low pressure end, the generator has to
handle a large volume flow and there is the possibility of non-equilibrium
effects at the low pressure end.

Driven by a nuclear reactor, an MHD generator could be operated for a
total time close to one hour. The working fluid could be He or H2. In both
cases, the generator would operate with electron temperatures appreciably lar-
ger than the temperature of the working fluid. Again, simple loading and no
thrust would be required.

Since the MHD generator is a turbine, it can be used either by Rankine
or Brayton closed loop cycles operating for long periods of time such as days.
The working fluid can be helium, for the Brayton cycle and lithium or potassium
supersaturated vapors for Rankine cycles.

ITI-3-4
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Figure 2. MHD Generators for Space Power 

The volume effects are found to be larger than wall effects at a level 
in excess of 1 MWe for MHD ge-'Ierators. 

MHO generators can be used with high temperature heat sourc~s driven by 
chemical or nuclear energy, 

With chemical energy, the weight of fuel and oxidizer limits the opera
tion to a few minutes. With combustion gases, the electron temperature is 
equilibrium with the expanding gas, The generator should provide a single 
output and no net thrust. The exhaust of the combustion gases to vacuum provide 
a high expansion ratio which allows a high enthalpy extraction limited only 
by the minimum conductivity. At the low pressure end, the generator has to 
handle a large volume flow an~ there is the possibility of non-equilibrium 
effects at the low pressure end. 

Drive~1 by a nuclear reactor, an MHO generator could be operated for a 
total time close to one hour. The working fluid cou~d be He or H2' In both 
cases, the generator would operate with electron temperatures appreciably lar
ger than the temperature of the working fluid. Again, simple loading and no 
thrust would be required. 

Since the MHD generator is a turbine, it can be used either by Rankine 
or Brayton closed loop cycles operating for long periods of time such as days. 
The working fluid can be helium, for the Brayton cycle and lithium or potassium 
supersaturated vapors for Rankine cycles. 
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MHD GENERATORS

FOR SPACE POWER

1) PE a wiW (E)

2) CHEMICAL ENERGY

A) TOTAL OPERATING TIME IN MINUTES

B) EQUILIBRIUM TE=TB

C) SINGLE OUTPUT

D) EXHAUST TO VACUUM HIGH EXPANSION RATIO

HIGH ENTHALPY EXTRACTION

4 HIGH VOLUME FLOW/UNIT OF ENERGY

POSSIBILITY OF NON EQUILIBRIUM

E) NO THRUST

3) NUCLEAR ENERGY

NON EQUILIBRIUM OPERATION T > T
E B

OPENLOOP: TOTAL OPERATION TIME UP TO ONE HOUR

WORKING FLUID HE OR H2

CLOSED LOOPR: SPACE POWER AND AUGMENTED THRUST

TOTAL OPERATING TIME = DAY

RANKINE OR BRAYTON CYCLES

I 'Figure 2
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1) PE ~ InN (E) 

2) CHEMICAL ENERGY 

MHD GENERATORS 
FOR SPACE POWER 

A) TOTAL OPERATING TIME IN MINUTES 
B) EQUILIBRIUM TE:TB 
C) SINGLE OUTPUT 
D) EXHAUST TO VACUUM + HIGH EXPANSION RATlO 

E) NO THRUST 

3) NUClEAR ENERGY 

+ HIGH ENTHALPY EXTRACTION 
+ HIGH VOLUME FLOW/UNIT OF ENERGY 
+ POSSIBILITy OF NON EQUilIBRIUM 

NON EQUILIBRIUM OPERATION T > T 
E B 

OPEN lOOP: TOTAL OPERATION TIME UP TO ONE HOUR 
WORKING FLUID HEOR~ 

CLOSED LOOP: SPACE POWER AND AUGMENTED THRUST 
TOTAL OPERATING TIME : DAY 
RANKINE OR BRAYTON CYCLES 

Figure 2 
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Figure 3. The Disk Cenerator

The outward flow disk generator shown in Figure 3 is particularly well
suited for space power. The generator creates no thrust; it is a single
outpuc device; it eliminates the multiple electrodes Sy circular s=nmetry;

it is made of two circulating walls which can take higher electrical fields
than the electrode walls of linear generators. This configuration eliminates

end losses associated with the fringing of the magnetic field. The disk con-
fiuration zan accommodate large expansions and wakes of the magnetic field
created by a single pancake coil. The disk generator is a high specific power

but also high voltage-low current mHD generator.
111-3-6
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FIgure 3. The Disk Generator 

The outward flow disk generator shown in Figure 3 is particularly well 
suited for space power. The gener~cor creates no thrust; it is a single 
0Utput device; it eliminates the multiple electrod~s by circular s)~~try; 
it is made of two circulating walls which can take higher electrical field. 
than ehe electrOde walls of linear gener.ators. This c~nfisurati~n elimin~t~s 
end losses associated with the fringing of the Qagnecic field. The disk con
fiburatton =an accommodate large expansions and ~akes of the magnet1c field 
created by a single pancake coil. The disk generator is a high sp.cific r~wer 
but also high ~oltage-low current MHO G~n~r~tor. 
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The use of inlet swirl allows increases in efficiency as shown and demon-
strated in Figure 4.
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DISK. GENERATOR

1) HIGH EXPANSION - OUTFLOW DISK GENERATOR

2) FEW ELECTRODES

3) HIGH ELECTRIC FIELD

DISSIPATION OVER ELECTRODE WALL Ex .

oE2

DISSIPATION OVER INSULATOR E 2
ti+ (Wr)

(ER)MAX > w.(E A

Figure 5.

The outflow disk generator is indicated for high expansion ratio devices
to be used for space power. The few electrodes required by the disk lead to
higher reliability and simpler power conditioning than for the linear generator.

Whereas the dissipation over an electrode wall is proportional to the
scolar conductivity, the dissipation over an insulating wall is proportional
to conduc!.-vity expressed as a tensor. As a result the maximum electric field
which can be sustained in the disk generator is wr larger than the maximtm
electric field sustainable in an linear generator.

Since WT can easily equal to 4 or 5 in space applications, the disk
generator is a high voltage and low current generator.

Electric fields up to 37 kV/ mhave been measured in the laboratory.
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The maximum power density can be achieved with little inlet swirl and
the maximum power donsity of disk generator is larger by at least one order
of magnitude over the linear generator.
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Preliminary Weight Estimate

Svstenr Study 1 - 1 MWE

WEIGHTS:
'I MUT'E

Kgm

Reactor 600

Shield 1200

Generator'Duct, Nozzle and Diffuser 70

Magnet 950

Refrigerator (Magnet and Motor) (20 watt) 140

Regenerator (at 1.5 Kgm/m ) 280

9
Radiator (at 5.5 Kgm/m-) 9000 K,E = 0.9 960

Ducts 80

Compressor (at 0.02 Kgm/KW) 90

Motor (12,000 rpm; Multipole) 320

Controls 50

Refrigerator Power (20 KW at 25 kgm/kW) 500

TOTAL 5240.-

Total Without Shield 4040

Figure 9. gives the weight estimate of a closed loop, Brayton cycle, power
system using a fast nuclear reactor. Yor 1 MWe output, the estimated weight
is 5 kg/hWe and should be reduced toward 1 kg/hWe at the 100 MWe level.~'h~eand sould eIII- 3 -1'he t h

Preli~inarv ~eisht Estimate 

System Study I'l - 1 1'fi..'E 

w'EIGHTS: 

Reactor 

Shield 

Generator 'puct, Nozzle ,and Diffuser 

Magnet 

Refrigerator (~fagnet and !-fotor) (20 '-1att) 

Reg~nerator (at 1.5 Kgm/m
2

) 

? 
Radiator (at 5.5 Kgm/m-) 900 o K,£ 0.9 

Ducts 

Compressor (at 0.02 Kgm/~~) 

Motor (12,000 rpm; Mu1tipo1e) 

C.:>ntrClls 

------------ ----------
Refrigerator P,,-,,-er (20 1\1\ at 25 kgm/kt~) 

TOTAL 
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'1 M'I.'E 
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600 . 
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960 

~O 
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-----
524Q·~-
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Figure 9. gives the weight estimate of a closed loop, Brayton cycle, power 
system using a fast nuclear reactor. ~or 1 MWe output, the estimated weight 
is 5 k8/hwe and should be reduced toward 1 kg/hWe at the 100 MWe level. 

III-3-12 

--- - -.--- -----

.l 
T 

. i 



STATUS OF DISK GEJNERATOR

1) PLASMA-PROPERTIES WELL UNDERSTOOD
[NON EQUILIBRIUM WITH LOW SEED
CONCENTRATION NEED TO BE BETTER UNDERSTOODI

2) DISK PERFORMANCE WELL PREDICTED
FOR SHOCK TUNNEL OPERATION

3) TECHNOLOGY OF DISK WALLS CAN ADAPT
TECHNOLOGY OF INSULATING WALLS
OF LINEAR GENERATORS

4) WALL EFFECTS UNDER QUASI STEADY
STATE NEED TO BE TESTEM

5) CHANNEL ENGINEERING NEED TO BE
DEVELOPED

Fit nr 10
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PROPOSED PROGRAM

DISK IHD GElERATOR DRIVEN BY CHEMICALENERGY

1) SYSTEM STUDIES TO DEFINE OPTIMUM, OPERATING PARAMETERS

2) PULSE EXPERIMENTS USING CHEMICAL ROCKET 110 MW(THJ
WITH LOW VACUUM EXHAUST AND EITHER CONVENTIONAL
COPPER MAGNET OR SUPERCONDUCTING MAGNET

EVALUATE 1) CHANNEL CONSTRUCTION
2) CHANNEL PERFORMANCE
3) ELECTRODE EFFECTS
4) WALL EFFECTS
5) POSSIBLE NO- ,,-EQUILIBRIUM

EFFECTS

3) SHOCK TUNNEL TESTS
TO STUDY: 1) PLASI'LA PROPERTIES

2) POSSIBLE NON-EQUILIBRIUM EFFECTS
3) ELECTRODE CONFIGURATION
4) PERFORMANCE

FIGURE II

Figure 11 and 12. describe proposed programs for the use of the disk genera-
tor in space. The research topics deal with channel performance, electrode
effects, effect of seed concentration and dissipation mechanisms within the
generator at high values of the Hall parameter
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'PROPOSED PROGRAM

DISK DRIVEN BY NUCI FAR FNERGY

1) SYSTEM STUDIES TO DEFINE OPIlMUM OPERATING PARAMETERS

2) PULSE EXPERIMENTS USING HEAT STORAGE FACILITY WITH PARTIAL

VACUUM TO TEST CHANNELS AT DEFINED CONDITIONS

EVALUATE 1) CHANNEL CONSTRUCTION

2) CHANNEL PERFORMANCE

3) ELECTRODE EFFECTS

4) EFFECT OF SEED CONCENTRATION

5) ON EFFECTIVE o AND WT

3) SHOCK TUNNEL EXPERIMENTS

TO STUDY EFFECTS OF TEMPERATURE

PRESSURE

SEED CONCENTRATION

1';AGNETIC FIELD

FIGURE 12
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Q & A - J. F. Louis

From: P. J. Turchi, R & D Associates

What are fundamental research issues that distinguish
disk generators from standard MHD generators? Azimuthal
symmetry?

A.
The fundamental differences distinguishing the disk

from the linear generators are associated with the circular
symmetry which eliminates the electrodes, this leads to
reduced losses , simpler power conditioning
and also the disk uses a much simpler magnet. This leads to
higher power density.

From: Roy Pettis,

Would pancake coils suffice for the field magnets for a
disk generator? What channel construction and magnet con-
struction problems would you expect for a disk generator?

A.
National Magnet Laboratories made studies of the magnet

system. These studies indicated that a pancake coil would
suffice.

The magnet construction is simple and has been demon-
strated. You will find more details on both magnet and
generator construction in Ref. 3.

1
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SELF-EXCITED MHD POWER SOURCE FOR SPACE APPLICATIONS

C.D. Maxwell, C.D. Bangerter, and S.T. Demetriades

STD Research Corporation

Arcadia, California

Abstract

Space applications of magnetohydrodynamic (MHD) electrical
power generation can meet a variety of mission requirements.
These range from moderate amounts of electrical power (1-100 MW)
for periods of minutes to hours ("CW-MHD"), to very large
electrical pulses (1-1000 GW) over periods of 1-100 microseconds
("Pulsed MHD"). High repetition rates are feasible (thousands
per minute). By self-exciting the MHD generator (that is, by
applying some of the generated power to produce the magnetic
field), system complexity and weight are minimized. Small,
self-excited, combustion-driven MHD systems with mass-to-power
ratios of the order 1 kg/kW and specific energy extraction rates
of 0.8 MJ/kg of fuel Are being tested. Small, self-excited,
chemical explosion -"iven giant-pulse generators with
mass-to-power ratios .. the order 0.001 kg/kW and specific energy
extraction rates of 0.4 MJ/kg of explosive have been tested. On
the basis of theoretical advances at STD Research Corporation,
this paper extrapolates the experimental results to date with
CW-KHD and Pulsed MED devices to the expected performance in the
space environment. So far it appears that these specifications
can be exceeded in space. The fluid mechanics of high-
interaction, moderate-to-high magnetic Reynolds number MHD flows
govern (and will ultimately limit) the performance of such
devices. These fundamental limitations must be properly
understood before devices of the3e or better specifications can
be constructed.
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Fiq. 18. Schematics of Excitation and Load1nq Circuits. 
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SELF-EXCITED MHD FOR SPACE PRIME POWER

ADVANTAGES

* COMPACTNESS -- LOW SPECIFIC WEIGHT

* HIGH POWER -- HIGH SPECIFIC ENERGY EXTRACTION

* SIMPLICITY -- NO MOVING PARTS

* STOREABLE -- NO MAINTENANCE

* INSTANT READINESS -- FAST START/STOP CAPABILITY

* HIGH REPETITION RATE
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SELF-EXCITED MHD FOR SPACE PRIME POWER

CRITICAL PROBLEMS

* HIGH INTERACTION MAGNETOHYDRODYNAMIC FLOW BEHAVIOR

• POWER GENERATION AT MODERATE-TO-HIGH

MAGNETIC REYNOLDS NUMBER

• CONTROLLED HIGH-CONDUCTIVITY WORKING FLUID GENERATION
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"USING AN EFFECTIVE SOLID-FUEL PLASMA GENERATOR, SPECIFIC

POWER OUTPUT [AND POWER DENSITY] OF UP TO 0.6 MJ/KG AND 500
W/CM3, RESPECTIVELY, WAS GENERATED, FURTHER INCREASING THESE

PARAMETERS (AND ACCORDINGLY THE COEFFICIENT OF ENTHALPY EXTR-

ACTION) CAN BE ACHIEVED ONLY IF THE LIMITING EFFECT OF PROCESSES

ASSOCIATED WITH STRONG INTERACTION ARE SUPPRESSED, THE NATURE OF

THESE PROCESSES IS NOT YET FULLY UNDERSTOOD, THUS IT IS NECESSARY

TO CONTINUE THE STUDY OF THESE PHENOMENA."

--VELIKHOV, YEP,, ET AL., "FACTORS INFLUENCING THE

SELF-EXCITATION OF PULSE TYPE MHD GENERATORS," JUNE 1975
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Q & A - C. Maxwell

From: H. Bloomberg, Beers Associates, Inc.

Have the results of 3-D simulations for high interaction
actually been confirmed experimentally? Are there references
on this?

A.
Yes, see Vetter el al., AIAA-80-0024,

Vetter et al., AIAA-81-0173,
Demetriades, et al., AIAA-80-0249

and Maxwell, et al., AIAA-80-0168
for example. Also, recent experimental work at Arnold
Engineering Development Center confirms 3-D magneto
aerothermal effect predictions made earlier (see Demetriades,
et al., AIAA-81-0248, also Maxwell, et al., AIAA 81-1231 and
U.S. Dept. of Energy Report "Analytical Investigation of
Critical Phenomena in MHD Generators" presented at the
DOE/MHD Division Contractors Meeting 1 February 1982 by
STD Research Corporation)

From: Roy Pettis

What factors determine the minimum power and energy
required by the battery used in the self-exciting process?
Can you always count on this initial excitation system
being small, in an absolute sense; or can this sub system
itself become physically large?

A.
The self-excitation threshold is determined by the

characteristics of the magnet and the impedance of the remain-
ing elements of the circuit. In particular, it is determined
by losses in the MHD generator which increase its internal
impedance at low current. Chief among these losses is the
electrode voltage drop.

For a successful self-excited generator design, the
energy supplied by the exciter will always be a very small
fraction of the energy delivered by the MHD generator.
Depending upon the energy density of the exciter, its size
should also remain small compared to the MHD generator
system. In addition, there are ways of eliminating the
exciter entirely from the system.
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Q & A-C. Maxwell 

From: H. Bloomberg, Beers Associates, Inc. 

Have the results of 3-D simulations for high interaction 
actually been confirmed experimentally? Are there references 
on this? 

A. 
Yes, see Vetter el al., AIAA-80-0024, 

Vetter et al., AIAA-8l-0173, 
Demetriades, et al., AIAA-80-0249 

and Maxwell, et al., AIAA-80-0l68 
for example. Also, recent experimental work at Arnold 
Engineering Development Center confirms 3-D magneto 
aerothermal effect predictions made earlier (see Demetriades, 
et al., AIAA-8l-0248, also Maxwell, et al., AIAA 81-1231 and 
U.S. Dept. of Energy Report "Analytical Investigation of 
Critical Phenomena in MHO Generators" presented at the 
DOE/MHO Division Contractors Meeting 1 February 1982 by 
STD Research Corporation) 

From: Roy Pettis 

What factors determine the ~n1mum power and energy 
required by the battery used in the self-exciting process? 
Can you always count on this initial excitation system 
being small, in an absolute sense; or can this sub system 
itself become physically large? 

A. 
The self-excitation threshold is determined by the 

characteristics of the magnet and the impedance of the remain
ing elements of the circuit. 'In particular, it is determined 
by losses in the MHO generator which increase its internal 
impedance at low current. Chief among these losses is the 
electrode voltage drop. 

For a successful self-excited generator design, the 
energy supplied by the exciter will always be a very small 
fraction of the energy delivered by the MHO generator. 
Depending upon the energy density of the exciter, its size 
should also remain small compared to the MHO gene'rator 
system. In addition, there are ways of eliminating the 
exciter entirely from the system. 
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I
Q & A - C. Maxwell (Cont.)i

From: P. J. Turchi, R & D Associates

Do your codes include chemistry and heat transfer effects
on conductivity near walls/electrodes?

Would they predict spoke phenomena?

A.
Yes. One of the early successes of the STD/MHD codes

was their ability to correctly predict near-electrode voltage
profiles and nonequilibrium phenomena, which depend strongly
upon these effects.

Yes. Not only can they predict the spoke phenomena, the
STD/MHD codes can also predict the random "dancing" or
flexure of the arc columns as well as the movement of the
arc spot on the electrodes.

From: P. J. Turchi, R & D Associates

Please comment on flow nonuniformities, (conductivity
and velocity), and their effects on generator performance.

What magnetic Reynolds number values correspond to the
extrapolated high interaction-parameter regime?

A.
Both are extremely important. For example, conductivity

nonuniformities cause severe deviations from the electrical
performance computed by 1- or 2-dimensional models. Velocity
nonuniformities cause extreme departures from ordinary 1-
or 2-dimensional gasdynamic computations (e.g., boundary
layer separation). In addition, there is strong, nonlinear
coupling between the two modes of nonuniformity which renders
devices impossible to operate as designed by 1- and 2-dimen-
sional models.

We have analyzed MHD generators with magnetic Reynolds
numbers as high as rm = 400/meter and interactioy parameters
based on pressure, i_ from 0.6 to 6/(meter tesla ). For MGD -
accelerators, magnetic Reynolds numbers may be of the order
30/meter and interaction parameters based on pressure of
103 to 106/(meter tesla2).
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Q & A-C. Maxwell (Cont.) 

From: P. J. Turchi, R&D Associates 

Do your codes include chemistry and heat transfer effects 
on conductivity near walls/electrodes? 

Would they predict spoke phenomena? 

A. 
Yes. One of the early successes of the STO/MHO codes 

was their ability to correctly predict near-electrode voltage 
profiles and nonequilibrium phenomena, which depend strongly 
upon these effects. 

Yes. Not only can they predict the spoke phenomena, the 
STO/MHO codes can also predict the random "dancing" or 
flexure of the arc columns as well as the movement of the 
arc spot on the electrodes. 

From: P. J. Turchi, R&D Associates 

Please comment on flow nonunifor.mities, (conductivity 
and velocity), and their effects on generator performance. 

What magnetic Reynolds number values correspond to the 
extrapolated high interaction-parameter regime? 

A. 
Both are extremely important. For example, conductivity 

nonuniformities cause severe deviations from the electrical 
performance computed by 1- or 2-dimensional models. Velocity 
nonuniformities cause extreme departures from ordinary l-
or 2-dimensional gasdynamic computations (e.g., boundary 
layer separation). In addition, there is strong, nonlinear 
coupling between the two modes of nonunifor.mity which renders 
devices impossible to operate as designed by 1- and 2-dimen
sional models. 

We have analyzed MHO generators with magnetic Reynolds 
numbers as high as r = 400/meter and interactio~ parameters 
based on pressure, i m from 0.6 to 6/(meter tesla). For MGO 
accelerators, magnet~c Reynolds numbers may be of the order 
la/meter and interaction parameters based on pressure of 
103 to 106/(meter tesla2). 
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"Chemical Sources: Research Needs"
by

Massie, L.

(Paper not available)
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I

"Critique of MHD Power"
by

Jackson, W.

(Paper not availablel

0 & A - W. Jackson

From:

What are costs for MHD power that can be estimated for
space based system?

A.
Recent MHD cost estimating has been for commercial

terrestial systems. All component costs have been estimated
using design approaches and materials described in my talk.
In the 1960's, weight and cost estimates were made of the
several space power systems described by session authors.
It would now be possible to take the methodology and technology
base data developed by DoE and use them to refine and update
these earlier calculations. I am not aware that this has
been attempted.

II-6 -1
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LIQUID-METAL MHD FOR SPACE POWER SYSTEMS

E. S. Pierson
Argonne National Laboratory

Argonne, IL. 60439

Abstract

The two-phase-generator liquid-metal MHD (LMMHO) energy-conversion
concept, developed at Argonne National Laboratory, appears very attractive
for space applications. It combines the high-temperature capability and
high power density of the previously-proposed LMMHD concepts with a high
cycle efficiency unattainable with these previous LMMHD concepts. The
operation of the Brayton-cycle (gas-cycle) and Rankine-cycle (vapor-cycle)
two-phase-generator LMMHD concepts is explained. The key features which
make LMMHD attractive for space applications are summarized. The current
status of LMMHD technology is discussed, with emphasis on the experimental
data. ANL has the technology base to analyze LMMHD systems for space power
applications, and to build prototypes at different temperatures.
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LIQUID-METAL MHO FOR SPACE POWER SYSTEMS 

E. S. Pierson 
Argonne National Laboratory 

Argonne, IL. 60439 

Abstract 

The two-phase-generator liquid-metal MHO (LMMHO) energy-conversion 
concept, developed at Argonne National Laboratory, appears very attractive 
for space applications. It combines the high-temperature capability and 
high power density of the previously-proposed L~WIHO concepts with a high 
cycle efficiency unattainable with these previous LMMHD concepts. The 
operation of the Brayton-cycle (gas-cycle) and Rankine-cycle (vapor-cycle) 
two-phase-generator LMMHD concepts is explained. The key features which 
make LMMHD attractive for space applications are summarized. The current 
status of LMMHD technology is discussed, with emphasis on the experimental 
data. ANt has the technology base to analyze LMMHD systems for space power 
applications, and to build prototypes at different temperatures. 
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VIEWGRAPH 1I
Introduction

Liquid-metal MHD (LMMHD) energy-conversion systems were first proposed
in the early 1960s specifically for space power systems. The early LMMD
concepts were .appropriate for the high-temperature environment envisioned
for space systems, but the efficiencies were low because of significant
energy losses. Research at Argonne National Laboratory (ANL) in the
middle-to-late 1960s, aimed at minimizing these losses, resulted in the
two-phase-generator LMMHD concept proposed here. This is the only LMMHD
concept discovered to date that appears attractive for commercial appli-
cations. One feature is that the efficiencies are higher than for al-
ternative existing or new concepts. Now it is proposed that the circle be
closed, and this high-efficiency LMMHD concept be applied to space ap-
plications which will utilize the unique combination of high efficiency and
high-temperature capability.
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VIEWGRAPH 2

Schematic of LMMHD Brayton System

In the Brayton-cycle (gas-cycle) LMMHD concept, an inert gas, e.g.,
helium, is the thermodynamic working fluid, and a liquid metal, e.g.,
lithium is the electrodynamic fluid in the MHD generator. In operation,
the gas and liquid are combined in the mixer and the resulting two-phase
mixture enters the MHD generator. The MHD generator acts as a combined
turbine and electric generator; the gas expands, drives the liquid across
the magnetic field, and, thus, generates electrical power. Because the
liquid has a high heat (energy) content, expansion occurs at almost constant
temperature, and a great deal of energy is still available in the gas that
leaves the MHD generator. (The liquid acts as an "infinite-reheat" source
for the gas, heat energy is continuously transferred from the liquid to
the gas, and most of the energy out of the generator comes from the liquid).
It is this almost-constant-temperature expansion that accounts for the
potentially higher efficiency of the two-phase LMMHD concepts. From tPe
MHD generator, the two-phase mixture enters a nozzle, where additional
gas-liquid energy is used (as in the generator) to accelerate the liquid;
the resulting high-speed flow is separated in a separator (possibly rotating
to minimize losses), and the liquid pressure needed to return the liquid
through the primary heat exchanger to the mixer is obtained in the diffuser.
The nozzle-diffuser system may be replaced by a liquid-metal pump.

The gas leaving the separator still has considerable thermal energy,
,which must be used effectively in order to obtain the highest efficiency
for the system. It can be transferred from the hot gas to the colder gas
in a regenerator, extracted with a gas turbine, extracted with a steam
boiler, or used to provide heat for some other process. These components
can be combined.

Heat addition can be to the liquid metal, the gas, or both. Because
the liquid-metal mass flow rate is much higher than the gas mass flow rate,
the heat addition can be solely to the liquid metal, with the gas being
heated by the liquid in the mixer, to yield a simpler system without a
significant effect on efficiency.

1 7
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Schematic of lMMHO Brayton System 

In the Brayton-cycle (gas-cycle) lMMHO concept, an inert gas, e.g., 
helium, is the thermodynamic working fluid, and a liquid metal, e.g., 
lithium is th~ electrodynamic fluid in the MHO generator. In operation, 
the gas and liquid are combined in the mixer and the resulting two-phase 
mixture enters the MHO generator. The MHO generator acts as a combined 
turbine and electric generator; the gas expands, drives the liquid across 
the magnetic field, and, thus, generates electrical power. Because the 
liquid has a high heat (energy) content, expansion occurs at almost constant 
temperature, and a great deal of energy is still available in the gas that 
leaves the MHO generator. (The liquid acts as an "infinite-reheat" source 
for the gas, heat energy is continuously transferred from the liquid to 
the gas, and most of the energy out of the generator comes from the liquid). 
It is this almost-constant-temperature expansion that accounts for the 
potentially higher efficiency of the two-phase LMMHD concepts. From tpe 
MHO generator, the two-phase mixture enters a nozzle, where additional 
gas-liquid energy is used (as in the generator) to accelerate the liquid; 
the resulting high-speed flow is separated in a separator (possibly rotating 
to minimize losses), and the liquid pressure needed to return the liquid 
through the primary heat exchanger to the mixer is obtained in the diffuser. 
The nozzle-diffuser system may be replaced by a liquid-metal pump. 

The gas leaving the separator still has considerable thermal energy, 
-which must be used effectively in order to obtain the highest efficiency 
for the system. It can be transferred from the hot gas to the colder gas 
in a regenerator, extracted with a gas turbine, extracted with a steam 
boiler, or used to provide heat for some other process. These components 
can be combined. 

Heat addition can be to the liquid metal, the gas, or both. Because 
the liquid-metal mass flow rate is much higher than the gas mass flow rate, 
the heat addition can be solely to the liquid metal, with the gas being 
heated by the liquid in the mixer, to yield a simpler system without a 
significant effect on efficiency. 
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VIEWGRAPH 3

Schematic of LMMHD Rankine System

The Rankine-cycle (vapor cycle) LMMHD concept differs from the Brayton-
cycle version only in the use of a condensable fluid, e.g., cesium, as the
thermodynamic working fluid with a compatible liquid metal, e.g., lithium.
Again the energy in the (superheated) vapor leaving the separator is
recovered in a regenerator, a low-pressure turbine, or used for process
heat, and heat addition can be solely to the liquid metal, with the vapor
being generated from the condensate in a direct-contact mixing boiler.
Because of the almost-constant-temperature expansion, LMMHD Rankine-cycle
calculated efficiencies are higher than those of conventional steam plants
for the same source and sink temperatures.
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Schematic of LMMHD Rankine System 

The Rankine-cycle (vapor cycle) lMMHD concept differs from the Bray ton
cycle version only in the use of a condensable fluid, e.g., cesium, as the 
thermodynamic working fluid with a compatible liquid metal, e.g., lithium. 
Again the energy in the (superheated) vapor leaving the separator is 
recovered in a regenerator, a low-pressure turbine, or used for process 
heat, and heat addition can be solely to the liquid metal, with the vapor 
being generated from the condensate in a direct-contact mixing boiler. 
Because of the almost-constant-temperature expansion, LMMHD Rankine-cycle 
calculated efficiencies are higher than thosp. of conventional steam plants 
for the same source and sink temperatures. 
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FEATURES FOR SPACE POWER SYSTEMS

* HIGH POWER DENSITY

* No SOLID HIGH-TEMPERATURE MOVING PARTS

* FLUIDS ARE STABLE AT HIGH TEMPERATURES,

E.G., LITHIUM AND CESIUM
I

RANKINE-CYCLE FOR BEST EFFICIENCY, LOWEST
WEIGHT AT HIGH HEAT REJECTION TEMPERATURES

* HIGH EFFICIENCY, TYPICALLY 1/2 TO 2/3
OF CARNOT EFFICIENCY

e EASILY COUPLED TO MOST HEAT SOURCES

* MATCH DESIRED TEMPERATURE RANGE BY

CHOICE OF FLUIDS

* ENERGY STORAGE IN KINETIC ENERGY OF

FLUID FOR PULSED APPLICATIONS
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VIEWGRAPH 4

Features for Space Power Systems

LMMHD has a number of features which make it very attractive for space
power systems. The simplicity of the concept, with no solid moving parts
required except.for the condensed liquid puiup at the lowest temperature of the
cycle, should result in high power density and high reliability. Although
both Brayton and Rankine versions are available, the Rankine version is
expected to yield the best efficiency and least weight/volume at the higher
heat rejection temperatures required for space. The use of two fluids enables
the ULMHD system to be easily and effectively coupled to almost any heat
source. Note that heat addition can be to the liquid metal, avoiding the need
for a separate boiler or gas/vapor heater. The concept may be well suited to
some pulsed power needs because energy can be stored in the kinetic energy of
the liquid metal.
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LMMHD has' a nUll1ber of features which make it very attractive for space 
power systems. The simplicity of the concept, with no solid moving parts 
required except. for the condensed liquid pUllt;) at the lowest temperature of the 
cycle, should result in high power density and high reliability. Although 
both Brayton and Rankine versions are available, the Rankine version ;s 
expected to yield the best efficiency and least weight/volume at the higher 
heat rejection temperatures required for space. The use of two fluids enables 
the Lf.1MHD system to be easi 1y and effectively coup1 ed to almost any heat 
source. Note that heat addition can be to the liquid metal, avoiding the need 
for a separate boiler or gas/vapor heater. The concept may be well suited to 
some pul sed power needs because energy can be stored in the k i neti c energy of 
the liquid metal. 
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STATUS OF LMMHD TECHNOLOGY

* SYSTEM ANALYSIS CAPABILITY EXISTS

* EXPERIMENTAL EXPERIENCE ON UNIQUE LMMHD COMPONENTS --

MIXER: AIR-WATER DATA

GENERATOR: EFFICIENCIES >O,6 AT HIGH VOID
FRACTIONS AND POWER DENSITIES

NOZZLE: JPL AND BIPHASE ENERGY SYSTEMS DATA

SEPARATOR: BASIC STUDIES, JPL AND BIPHASE

ENERGY SYSTEMS DATA

DIFFUSER: JPL AND BIPHASE ENERGY SYSTEMS DATA

M MATERIALS GENERALLY AVAILABLE

* LMMHD LOW-TEMPERATURE PROTOTYPE, JOINT

ANL-BEN-GURION UNIVERSITY-SOLMECS PROGRAM
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Status of LMMHD Technology

ANL has developed extensive energy system analysis and optimization
capability. This capability is being applied to LMMHD systems for various
terrestrial applications, and the required component models and fluid
property routines have been developed.

Experimental and analytical studies of the non-standard components for
the LMMHD systems -- gas-liquid mixer, LMMHD generator, nozzle, separator,
and diffuser -- have been conducted at ANL and elsewhere since the early
1960s. Examples of recent ANL component development progress are:

1. The measurement of generator efficiencies greater than 0.6 at
power densities equal to or greater than anticipated.for practical
generators, with a small -.20 kWe ambient-temperature generator.

2. The experimental demonstration that the slip ratio (the ratio of
gas velocity to liquid velocity) in generators decreases as the
electromagnetic interaction, liquid velocity, and temperature
increase.

3. The completion of basic studies of mixers and rotating separators,
and the development of prototype designs.

Jet Propulsion Laboratory (JPL) and Biphase Energy Systems have extensively
studied and tested nozzles, separators, and diffusers. Thus, the technQlogy
exists to build and test a system to demonstrate the LMMHD concept.

The materials technology base developed for LMFBRs and CTRs . ovides a
sound basis for LMMHD systems. The extensive JPL experience with high-
temperature (up to 1400 K) lithium-cesiun systems is especially applicable
to LMMHD space systems.

Planning has been underway for approximately a year on a joint program
to build a low-temperature LMMHD prototype in Israel. Participants would
be Solmecs Corporation, Ben-Gurion University of the Negev, and ANL. We
are waiting for the final go-ahead.
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Status of LMMHO Technology 

ANL has developed extensive energy system analysis and optimization 
capability. This capability is being applied to LMMHO systems for various 
terrestrial applications, and the required component models and fluid 
property routines have been developed. 

Experimental and analytical studies of the non-standard components for 
the LMMHO systems '-- gas-liquid mixer, LMMHO generator, nozzle, separator, 
and diffuser -- have been conducted at ANL and elsewhere since the early 
1960s. Examples of recent ANL component development progress are: 

1. The measurement of generator efficiencies greater than 0.6 at 
power densities equal to or greater than anticipated. for practical 
generators, with a small ~20 kWe ambient-temperature generator. 

2. The experimental demonstration that the slip ratio (the ratio of 
gas velocity to liquid velocity) in generators decreases as the 
electromagnetic interaction, liquid veloCity, and temperature, 
increase. 

3. The completion of basic studies of mixers and rotating separators, 
and the development of prototype designs. 

Jet Propulsion Laboratory (JPL) and Biphase Energy Systems have extensively 
studied and tested nozzles, separators, and diffusers. Thus, the technQlogy 
exists to build and test a system to demonstrate the LMMHD concept. 

The materials technology base developed for LMFBRs and eTRs c :ovides a 
sound basis for LMMHD systems. The extensive JPL experience with high
temperature {up to 1400 K} lithium-cesium systems is especially applicable 
to lMMHD space systems. 

Planning has been underway for approximately a year on a joint program 
to build a low-temperature LMMHO prototype in Israel. Participants would 
be Solmecs Corporation, Ben-Gurion University of the Negev, and ANL. We 
are waiting f~r the final go-ahead. 
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Q & A - E. S. Pierson

From: J. Biess, TRW Systems

For a 10-50 kw liquid metal MHD Space Power System, what
would be the operating time or what is the limiting factor?
What would be the weight density and efficiency(energy)?

A.
Operating time depends on the needs and the heat (energy)

source. There are no inherent time limits other than long-
term erosion/corrosion of containment materials.

The power density and efficiency are unknown until
studies are done for space, both obviously depend on the
heat-source temperature which is undefined.

From: R. English, NASA-Lewis Research Center

Please cite materials data for containing Li-Cs mixtures
at high temperature.

Inasmuch as j x B forces act on the liquid in your MHD
generators, please describe how you prevent liquid-gas
separation at high void fractions.

A.
Jet Propulsion Laboratory did experiments in late 1960's

to ^. 20000 F.

Experimentally gas-liquid separation is not a problem.
In fact, the ratio of gas to liquid velocities decreases
and approaches unity as the electromagnetic interaction is
increased. We suspect that the high electromagnetic pressure
gradient breaks up the bubbles. This is a good research
area.

From:

What does the separator look like?

What heat source temperature required?

What types of Rankine working fluids have been considered?
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SOLAR 1 ID SYSTEMz WITH TWO PHASE FLOW

WITH "MAGNETIC" LIQUID METAL

j Amit Goswami,* Ronald D. Graves and Carl Spight

AMAP Industries, Inc.
Columbia, MD

Abstract

Solar power is one of the major resources available to space systems.
Whereas the technology of solar cells and its limitations are weil
known, there is another technique, solar LZMHD, pioneered by H. Branover
and, E. Pierson which shows promise as a relatively high efficiency,
inexpensive and compact prime power device usable in space. The solar LlaD
system ermploys a liquid metal to extract heat from a mirror-solar col-
lector system. A second organic volatile liquid is then allowed to
come in contact with the hot metal and evaporate. The two phase fluid
system then moves along a pipe, the gas imparting part of its flow
momentum to the liquid metal. The moving liquid metal passes through
a magnetic field perpendicular to the flow direction; thereby an induced
current is generated with is collected by the usual electrode ensemble.

The method has obvious u-cits compared to, say, a Rankine cycle system
(in terms of attainable efficiency) or solar cells (in terms of cost),
but so far the actual efficiency -xhieved has been low. This is
attributable to the inhomogeneity of the two phase flow.1 The gas passes
through the liquid metal mainly in the form of bubbles without sharing
much of its forward momentum. We suggest that an order of magnitude
improvement is possible on Branover's system if one combines the magnetic
fluid concept2 with the two phase flow.idea. The term magnetic fluid
refers to a suspension of small single-domain ferromagnetic particles
in a carrier liquid. A suitable magnetic fluid in the present context
is a suspension of iron particles in mercury. We theorize that the use
of magnetic fluid liquid metal instead of a regular liquid metal for
the two phase flow will inhibit void formation when a magnetic field is
employed to align the magnetic particles in the direction of the flow.
The primary reason for this is the additional magnetic stress in the
medium which tends to inhibit the formation of any nonuniformity such
as a bubble or a void in the unperturbed medium. Preliminary calcula-
tions bear this idea out.

Our contention is that if the two phase flow consisting of the organic
vapor and an aligned magnetic fluid is free of appreciable void fractions,
then the momentum of the vapor will be uniformly dispersed to the liquid
metal, thus producing much greater velocity for the metal flow. Also
the electrical conductivity improves as does the stability of the two
phase flow against choking. These factors correspondingly produce greater
induced electromagnetic power.

There are some experimental studies in connection with fluidized beds

that bear out some of our ideas. Calculations are now underway to
concretize these ideas toward the eventual building of a scale model.

*On sabbatical leave from the University of Oregon
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SOLAR ImD SYSTEM WITH TWO PHASE FLOW 
WITH "HAGNETlC" LIQUID METAL 

AIlit Goswaaai..* Ronald D. Graves and Carl Spi,ght 
Al~P Industries, Inc. 

Columbia, MD 

Abstract 

Solar power is one of the major resources available to space syst .... 
Whereas the technology of solar cells and its limitations are well " 
known, there 'is another teChnique, solar LMHRD, pioneered by H. Branover 
and, E. Pi~rson which shows promise as a relatively high efficiency, 
inexpensive and compact prime power device usable in space. The solar Ll~ 
system employs a liquid metal to extract heat from a mirror-solar col
lector system. A second organic volatile liquid is then allowed to 
come in contact with the hot metal and evaporate. The two phase fLuid 
system then moves along a pipe, the gas imparting part of its flow 
momentum to the liquid metal. The moving liquid metal passes through 
a magnetic field perpendicular to the flow direction; thereby an induced 
current is generated with is collected by the usual electrode ensemble. 

The method has obvious ~rits compared to, say, a Rankine cycle system 
(in terms of attainable efficiency) or solar cells (in terms of cost), 
but so far the actual efficiency ~hieved has been low: This is 
attributable to the inhomogeneity of the two phase flow. l The gas passes 
through the liquid metal mainly in the form of bubbles without sharing 
much of its forward momentum. We suggest that an order of magnitude 
improvement, is possible on Branover's s,stem if one combines the magnetic 
fluid conceptL with the two,phase flow.idea. The term magnetic fluid 
refers to a suspension of small single-domain ferromagnetic particles 
in a carrier liquid. A suitable magnetic fluid in the present context 
is a suspension of iron particles in mercury. We theorize that the use 
of magnetic fluid liquid met~j instead of a regular liquid metal for 
the two phase flow will inhibit void formation when a magnetic field is 
employed to align the magnetic particles in the direction of the flow. 
The' primary reason for this is the additional magnetic stress in the 
~dium which tends to inhibit the formation of any nonuniformity such 
as a bubble or a void in the unperturbed medium. Preliminary calcula
tions bear this idea out. 

Our contention is that if the two phase flow consisting of the organic 
vapor and an aligned magnetic fluid is free of appreciable void fractions, 
then the momentum of the vapor will be uniformly dispersed to the liquid 
metal, thus producing much greater velocity for the metal flow. Also 
the electrical conductivity improves as does the stability of the two 
phase flow against choking. These ~actors correspondingly produce greater 
induced electr~gnetic power. 

There are some experimental studies in connection with fluidized beds 
that bear out some of our ideas. Calculations are now underway to 
concretize these ideas toward the eventual building of a scale model. 

*On sabbati~al leave from the University of Oregon 
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Viewgraph 1. Branovers3 two-phase liquid metal solar 1MID generator. We
propose to use a "magnetic liquid", such as single domain1 iron in mercury
with the iron particles aligned with the help of a longitudinal magnetic
field, instead of an ordinary liquid metal.
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Viewgraph I. Branover's two-phase liquid metal solar HHD generator. We 
p:opose t~ use a "~agnetic. liquid':, such as single domain iron in mercury 
w1th the 1ron part1cles a11gned w1th the help of a longitudinal magnetic 
field, instead of an ordinary liquid metal. 

" #.: 

Liquid mer:a; is huted in the sobr culh:etor and nows into ·tbe mixer·inlector, wbere droplets ur In orpnic RUld :are in· 
jected. The droplets vaporize and provide tbe kinctic cnergy to .ccelerate the. liquid met. I. A di~-ct curran is &cnt"r:ared. 
whcn the liquid 11\I:t31 moves throu&h the m:tp1ctic riell!.· . .. . . 
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View Graph 2. The Bernoulli equations for a single bubble.

Ordinary fluid:

Magnetic fluid:

Here * is the velocity - potential, a is the surface tension, k is the
curvature of the bubble,H is the magnetic field and U is the permeability
of the "magnetic liquid." Clearly, the effect of the second term on the
right side in the second equation is to reducethe bubble size.
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View Graph 2. The Bernoulli equations for a single bubble. 

Ordinary fluid: 

Magnetic fluid: 

Here. is the velocity - potential. a is the surface tension, k is the curvature of the bubble.B is the magnetic field and ~ is the permeability of the "magnetic liquid." Clearly. the effect of the second tem on the right side in the second equation is to reduce the bubble size. 
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Viewgraph 3. The variation of the kinetic energy imparted to the liquid
by the bubble is shown as a function of the bubble's shape parameter y.
( 7 &(L-PV(ao-G) i"'. ,G is the shear rate) for a gas.bubble in an
ordinary fluid, see ref. 3. The bubbles break up when y reaches the low
value for which the imparted kinetic energy tends to be maximu. Since
the effect of magnetization is to break up the bubbles to smaller sizes,
we conclude that this should improve upon the K.E. imparted to the liquid
metal.
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Viewgraph 3. The variation of the kinetic energy imparted to the liquid 
by the bubble is shown as a function of the bubble's shape paraaeter y 
( -: a(p.-e.) I (J.a-G)Z/,J l/J ,G is the shear rate) for a gas _bubble in an 
Ord1nary fluid, see ref. 3. The bubbles break up when y reaches the low 
value for which the imparted kinetic energy tends to be maximu. Since 
the effect of magnetization is to break up the bubbles to smaller sizes, 
we conclude that this should improve upon the K.E. imparted to the liquid 
metal. 
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Viewgraph 4. Fluidized bed data of ref. 4 shows that manetization of

the bed improves its fluidization as a gas passes through it, making

the two phase flow homogenized and stable. The graph shows the scaling

of the transition superficial velocity UT of the flow with the magnetic

field, while the minimum fluidization velocity UM is independent of the

applied field, see ref. 4. In our case, the velocities are scaled up to

about I =/sec and the applied field required is of the order of a tesla,

quite tractable. .
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Viewgraph 4. Fluidiz.d bed data of ref. 4 shows that magnetization of 
the bed iMproves its fluidization as a gas passes through it, .&kinK 
the two phase flow hOMogenized and stable. The graph shows the scaling 
of the transition superficial velocity UT of the flow with the magnetic 
field, while.the MiniMUM fluidization velocity UM is ~ndependent'of the 
applied field, see ref. 4. In our case, the .velocities are scaled up to 
about 1 M/sec and the applied field required is of the order of a tesla, 
quite tractable. . , 
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Viewgraph 5. Branover and Yakhot (ref. 5) have derived the following
flow equation for their 2 - Phase LHM Model:

2.D

ie %

-to.

Here u is the velocity of the two phase flow, ' is the mixture quality,
k (x) is the load factor and a is the void fraction. The rest of the
notation is standard. If the void fraction a is reduced as is expected
from the employment of a magnetic fluid, the left hand side of the above
equation would be much less apt to be < 0, thus eliminating the condition

I that leads to instabilities and choking.
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Q & A - A. Goswami

From: E. S. Pierson, Argonne National Laboratory

1. The basic ideas and technology for liquid-metal MHD
were developed at ANL, not by Herman Branours.

2. Instabilities in the MHD generator have not been a
problem in ANL experiments.

A.
Yes. I'm most fortunate to hear about your work and am

looking forward to talking with you at length.

From: Roy Rice, Naval Research Laboratory

In your magnetic fluid are reactions and Curie temperatures
a limitation. If so, will the use of ferrites be of signifi-
cant help.

A.
For solar MHD, consideration of Curie temperature is

not important. But for high temperature, we may have to
consider ferrites. Thanks.

,tII-8-6 "

has_ 

Q & A-A. Goswami 

From: E. S. Pierson, Argonne National Laboratory 

1. The basic ideas and technology for liquid-metal MHO 
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MHO POWER GENERATION FOR 
SPACE APPLICATIONS 

• HISTORICAL DEVELOPMENT 

• STATUS OF DEVELOPMENT 

• TECHNICAL MILESTONES 

• SPACE POWER SYSTEM REQUIREMENTS 

• HIGH POWER MHO SYSTEM DEVELOPMENT 

• SUMMARY 
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MILITARY DEVELOPMENT OF 
MHD POWER SYSTEMS 

AIR FORCE 

• 1971 400 kWe HIGH POWER DENSITY PROGRAM 

• 1974 1.5 MWe VIKING I PROGRAM 

• 1974 EXPLOSIVE MHO STUDY 

• 1974 10 MWe VIKING II STUDY 

• 1975 10- 50 MWe HIGH POWER STUDY 

• 1976 2.5 MWe SOLID FUEL PROGRAM 

• 1977 200 kWe LIGHTWEIGHT MHO CHANNEL 

• 1978 30 MWe HPMS PROGRAM 

NASA 

• 1970-71 COMBINED CYCLE NON-EQUILIBRIUM STUDIES 

• 1970'S H2 - 02 EXPERIMENTS 

NAVY 

• 1970'S SHOCK TUBE EXPERIMENTS 

• 1980'S . HYBRID MHO SYSTEM ..dAvca EVERETT 



The development of MHD for various military applications

was initiated in the early 1960's and has continued to date.

The early activities, such as LORHO and Project Brilliant were

directed toward specific requirements. This approach continued

through the 1970's as more and more technical efforts were direc-

ted toward high performance, lightweight applications requiring

airborne or space deployment. These efforts, which included con-

ceptual designs as well as hardware fabrication and experimental

programs increased the important performance parameters signifi-

cantly.
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STATUS OF MHO POWER 
SYSTEM DEVELOPMENT 

HEAT SOURCE 

• LIQUID FUEL 

• SOLID FUEL 

• NU(;LEAR REACTOR 

98.80/0 C· EFFICIENCY DEMONSTRATED 

2.5 MWe SYSTEM OPERATED 

NERVA REACTOR SYSTEM STUDIES 
ROTATING BED REACTOR CONCEPTUAL DESIGN 

SUPERCONDUCTING LIGHTWEIGHT MAGNET 

• B~ILlIANT PROGRAM 

• 2 MWe PROTOTYPE 

K3940 

3.9 TESLA FOR 1 MWe SYSTEM 

4.5 TESLA (DESIGN) 

&AVCO EVERETT 
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The status of each of the major components plays a sig-

nificant role in the overall system development. For the heat

source both liquid and solid fuel combustion devices have been

successfully demonstrated during various development programs.

Nuclear reactor heat sources of the NERVA type have been de-

veloped and advanced concepts such as the rotating bed reactor

are being pursued. Superconducting magnet systems have been

fabricated for relatively small systems of less than 1 M1, and

conceptual design studies have been completed for MHD systems

as large as 50-100 MWe
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STATUS OF MHO POWER 
SYSTEM DEVELOPMENT 

CHANNEL/DIFFUSER 

• VIKING HIGH PERFORMANCE PROGRAM 

1.5 MWe POWER OUTPUT 

50 THERMAL CYCLES 

-60MWe/m3 

- 5A/cm2 

• LIGHTWEIGHT CHANNEL DEMONSTRATION (-40 kg DRY) 

200 kWe POWER OUTPUT 30 MWe/m3 

250 THERMAL CYCLES 2 - 4 A/cm2 

• HPMS LIGHTWEIGHT HIGH POWER CHANNEL DESIGN (600 kg DRY) 

30 MWe POWER OUTPUT 

1000 THERMAL CYCLES 

200 MWe/m3 

6- 8A/cm2 

• HPMS LIGHTWEIGHT DIAGNOSTICS CHANNEL TEST (63 kg DRY) 

30 kg/SEC FLOW RATE 

500(DESIGN), 15(TEST) THERMAL CYCLES 

. K3944 

100 g DYNAMIC LOAD 

600 W/cm2 HEAT LOAD 

LDAvca EVERETT 



Several development programs have been completed which

have substantially increased the MHD channel performance and

decreased the MHD channel mass. These results have increased

the power density by a factor of three. Electrical power levels

investigated in these programs have ranged from a few hundred

kilowatts to tens of megawatts.
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Several development programs have been completed which 

have substantially increased the MHD channel performance and 

decreased the MHD channel mass. These results have increased 

the power density by a factor of three. Electrical power levels 

investigated in these programs have ranged from a few hundred 

kilowatts to tens of megawatts. 
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TECHNICAL MILESTONES FOR 
SPACE APPLICATIONS OF MHO 

HEAT SOURCE CLOSED CYCLE - HIGH TEMPERATURE HEAT EXCHANGER 
OPEN CYCLE - NONE 

CHANNEL EQUILIBRIUM - LIFETIME AT HIGH CURRENT DENSITY 
NON- EQUILIBRIUM - SUSTAINED NON- EQUILIBRIUM OPERATION 

MAGNET LIGHTWEIGHT SUPERCONDUCTING MAGNET DEMONSTRATION AT 
10- 30 MWe SIZE 

POWER CONDITIONING DEMONSTRATION CONNECTING POWER SOURCE WITH LOAD 

SYSTEM SATISFY SYSTEM MASS, VOLUME, AND INTERFACE 
REQUIREMENTS 

1<1941 
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Technical milestones for space applications of MHD are

primarily in the channel, magnet and systems portion of the

power system. The MD channel lifetime at high current density

must be demonstrated for currents and lifetimes required. The

channel design and construction techniques required have been

demonstrated in several development programs. The superconduc-

ting magnet development requires a lightweight superconducting

magnet demonstration for a 10-30 MV system. The total system

must be developed and packaged to satisfy mass, volume, and

interface requirements.
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Technical milestones for space applications of MHD are 

primarily in the channel, magnet and systems portion of the 

power system. The MHO channel lifetime at high current density 

must be demonstrated for currents and lifetimes required. The 

channel design and construction techniques required have been 

demonstrated in several development programs. The superconduc

ting magnet development requires a lightweight ~uperconducting 

magnet demonstration for a 10-30 M~~ system. The total system 

must be developed and packaged to satisfy mass, volume, and 

interface requirements. 
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REQUIREMENTS FOR MHO 
SPACE POWER SYSTEMS 

• MASS AND VOLUME REQUIREMENTS 

o RELIABILITY, MAINTAINABILITY, RECHARGABILITY 

• ADAPTABILITY, DEPLOYABILITY, SPACEABILITY 

• HEAT REJECTION SYSTEMS 

• THRUST (OPEN CYCLE ONLY) 

• EXHAUST PRODUCTS (OPEN CYCLE ONLY) 

• MAGNETIC AND ELECTRIC FIELD EFFECTS 

K3942 
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The primary requirements for MD space power systems are

mass and volume restrictions, reliability and maintainability

considerations, heat rejection capacity, and control of thrust

and exhaust products. Mass and volume requirements are established

by the mission requirements. The control of thrust and exhaust

products is required only for the open cycle system. However,

the thrust generated is of the same order of magnitude as that

generated for comparable sized chemical lasers, and consequently,

can be readily neutralized.

111-9-11

k "l

, , 

The primary requirements for MHD space power systems are 

mass and volume restrictions, reliability and maintainability 

considerations, heat rejection capacity, and control of thrust 

and exhaust products. Mass and volume requirements are established 

by the mission requirements. The control of thrust and exhaust 

products is required only for the open cycle system. However, 

the thrust generated is of the same order of magnitude as that 

generated for comparable sized chemical lasers, and consequently, 

can be readily neutralized. 

1II-9-l1 

_.J. ________ ~ ___________ ...... _______ .... 



9
 

-
P%

 
0

C4 
N

2 
R

 
-

S

C
l)L

9
 

N
 

0 
%

N
N

'

0004 
0 

N
o

 
La 

0q 
N

N
N

 
-

-
r- 

V
. 

f-
4- 

N 
0 

0 
001

0l 
N

 
-

0 
0 

-%
.

(9- 
4-

c
c
 

N
 

-
4

C
V

) 
a 

a

N
N

z~
 0 

L
C

)22 
2 

2

o
c

U0u 
< 

C
'4

'L
J 

C
)

L
L

I 
cc

2c) 
0~ 

U
.-

ui 
j1C

C
-0--2

.... .... .... 
I 

'" I .... 
N 

-- ---

HIGH POWER STUDY MHD SYSTEM 
MASSES AND VOLUMES 

(SHIELDED DESIGNS FOR LIQUID FUEL SYSTEMS) 

POWER MW 10 25 25 50 50 

VOLTAGE KV 60 60 60 200 200 

TOTAL TIME SEC 63 64 120 75 120 
CYCLES # 3 16 1 3 10 

COMBUSTOR. 

NOZZLE. FUEL kg (m3) 900 (0.77) 2100 (2.0) 3690 (3.5) 4700 (4.5) 7250 (6.9) 

CtiANNEL & 

DIFFUSER kg (m3) 60 (0.11) 115 (0.27) 115 (0.27) 180 (0.53) 180 (0.53) 

MAGNET kg (m3) 1020 (1.6) 1590 (2.6) 1590 (2.6) 2320 (4.1) 2320 (4.1) 

DC-DC CONVERTER kg (m3) 250 (0.58) 510 (1.15) 510 (1.15) 1750 (4.3) 1750 (4.3) 

CONVERTER 

COOLANT SYSTEM kg (m3) 50 (0.11) 85 (0.19) 110 (0.19) 130 (0.29) 170 (0.29) 

OVERALL 

COOLANT SYSTEM kg (m3; 430 (0.47' 540 (0.59' 750 (0.80) 720 (0.78) 900 (0.95) 

TOTAL SYSTEM kg (m3) 2710 (3.64' 4940 (6.80) 6765 (8.51) 9800 (14.50) 12.570 (17.07) 

K3'3!S 
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Data are presented from the High Power Study sponsored

by the USAF Aero Propulsion Laboratory for liguid fuel systems

for airborne applications. These masses and volumes for the

systems shown are complete systems including all power condition-

ing, controls, and auxiliary equipment. The data show that for

a lightweight power supply system operating at 200 kV for 120

sec and producing 50 MW the total system mass and volume are

=12,000 kg and =17 m3, respectively.

III1-9-13

, 

I , 

Data are presented from the High Power Study sponsored 

by the USAF Aero Propulsion Laboratory for liguid fuel systems 

for airborne applications. These masses and volumes for the 

systems shown are complete systems including all power condition

ing, controls, and auxiliary equipment. The data show that for 

a lightweight power supply system operating at 200 kV for 120 

sec and producing 50 M~e the total system mass and volume are 

=12,000 kg and =17 m3 , respectively. 
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HIGH POWER STUDY MHO SYSTEM 
MASSES AND VOLUMES 

(SHIELDED DESIGNS FOR SOLID FUEL SYSTEMS) 

POWER MW 10 25 25 50 50 

VOLTAGE KV 60 60 60 200 200 

TOTAL TIME SEC 63 64 120 75 120 

CYCLES # 3 16 1 3 10 

COMBUSTOR. 

NOZZLE. FUEL kg (m3) 700 (0.5' 1870 (1.3) 3310 (2.3) 4170 (2.9) 6740 (4.7) 

CHANNEL & 

DIFFUSER kg (m3, 60 (0.11' 115 (0.27) 115 (0.27' 180 (0.53, 180 (0.53' 

MAGNET kg (m3, 1020 (1.6' 1590 (2.6) 1590 (2.6' 2320 (4.1' 2320 (4.1' 

DC-DC CONVERTER kg (m3) 250 (0.58) 510 (1.15) 510 (1.15' 1750 (4.3' 1750 (4.3, 

CONVERTER 

COOLANT SYSTEM kg (m3, 50 (0.11) 85 (0.19, 110 (0.19, 130 (0.29' 170 (0.29' . 
OVERALL 

COOLANT SYSTEM kg (m3, 430 (0.47' 540 (0.59' 750 (0.80, 720 (0.78, 900 (0.95) 

TOTAL SYSTEM kg (m3, 2510 (3.37) 4710 (6.1) 6385 (7.31, 9270 (12.9' 12.060 (14.87' 

1C393. 

.&AVCC EVERETT 

..... --



Data are presented from the High Power Study sponsored by

the USAF Aero Propulsion Laboratory for solid fuel systems for

airborne applications. These masses and volumes for the sys-

tems shown are complete systems including all power condition-

ing, controls, and auxiliary equipment. The data show that for

a lightweight power supply system operating at 200 kV for 120

sec and producing 50 MW. the total system mass and volume are

=12,000 kg and =15 m3 , respectively.
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Data are presented from the High Power Study sponsored by 

the USAF Aero Propulsion Laboratory for solid fuel systems for 

airborne applications. These masses and volumes for the sys

tems shown are complete systems including all power condition

ing, controls, and auxiliary equipment. The data show that for 

a lightweight power supply syst~ operating at 200 kV for 120 

sec and producing 50 M~e the total system mass and volume are 

=12,000 kg and =15 m3 , respectively. 
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The MHD system performance parameters are shown for the

current systems developed during the High Power Study as well

as for the mid and far term systems. The data given are for

complete systems which include all power conditioning, controls,

and auxiliary equipment. The performance levels represent total

system performance including all system losses and inefficiencies.

The system shown generates 25 MV at 60 kV and provides for run

durations of 120 sec. All systems investigated were capable of

pulse or steady-state operation.

I

111-9-17

I , 

The ~mD system performance parameters are shown for the 

current systems developed during the High Power study as well 

as for the' mid and far term systems. The data given .are for 

complete systems which include all power conditioning, controls, 

and auxiliary equipment. The performance levels represent total 

system performance including all system losses and inefficiencies. 

The system shown generates 25 M~~ at 60 kV and provides for run 

durations of 120 sec. All systems investigated were capable of 

pulse or steady-state operation. 
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The MD channel shown in the photograph is the 200 kWe

lightweight channel fabricated using a filament wound epoxy

coated fiberglass outer shell. This 40 kg channel successfully

completed a 250 thermal cycle test program, which included dura-

tion tests of up to 60 sec as well as pulse tests. At the con-

clusion of the test program the channel was in good condition

and producing the design level.

i
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The MHO channel shown in the photograph is the 200 k~~ 

lightweight channel fabricated using a filament wound epoxy 

coated fiberglass outer shell. This 40 kg channel successfully 

completed a 250 thermal cycle test program, which included dura

tion tests of up to 60 sec as well as pulse tests. At the con

clusion of the test ~rogram the channel was in good condition 

and producing the design level. 
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HIGH POWER MHO SYSTEM 
EXPERIMENTAL CONDITIONS 

REACTANTS JP-4&L02 

SEED CS2C03 

EMULSIFIER SPAN-80 

MASS FLOW 30kg/SEC 

STAGNATION PRESSURE 30atm 

STAGNATION TEMPERATURE 3420K 

INLET CONDUCTIVITY 15 mho/m 

CHANNEL DESIGN ELECTRIC POWER 30 MWe 

PEAK DESIGN MAGNETIC FIELD 4TESLA 
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The experimental co, ,tions for the High Power MHD System

development program sponsored by the USAF Aero Propulsion Lab-

oratory are shown. The experimental conditions were obtained

during the test program. The performance parameters for the

detailed design o.. the channel and magnet are also shown. The

measured conductivity is sufficient to achieve the design power.
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The experimental co; '~tions for the High Power MHO System 

development program sponsored by the USAF Aero Propulsion Lab-

oratory are shown. The experimental conditions were obtained 

during the test program. The performance parameters for the 

detailed design 0.'. the channel and magnet are also shown. The 

measurea co~ductivity is sUfficient to achieve the design power. 
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I

The diagnostics channel shown in the photograph was de-

signed and tested to measure the electrical conductivity in

the High Power MD System program. This 63 kg channel was de-

signed for a flow rate of 30 kg/sec. The channel was construc-

ted using the novel lightweight channel fabrication techniques

which utilize a filament wound, epoxy coated fiberglass shell

as the principal structural member. The channel was successfully

operated during a combustor development test program.
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The diagnostics channel shown in the photograph was de

signed and tested to measure the electrical conductivity in 

the High Power MHO System program. This 63 Kg channel was de

signed for a flow rate of 30 Kg/sec. The channel was construc

ted using the novel lightweight channel fabrication techniques 

which utilize a filament wound, epoxy coatec fiberglass shell 

as the principal structural member. The channel was successfully 

o~erated during a combustor development test program. 
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HIGH POWER MHO SYSTEM 
PERFORMANCE SUMMARY 

COMBUSTOR GOAL 

• OPERATING CONDITIONS 30.4 kg/sec 

30 atm 

• C· EFFICIENCY 99.3% 

• STABILITY STABLE 

• OPERATION: START TIME 1.0 SEC 

SHUTDOWN AVOID RAW FUEL, 
CARBON OR SEED 

INJECTOR 

IGNITION RELIABLE 

• IONIZATION 

DIAGNOSTICS CHANNEL 

• CONDUCTIVITY 16 mho/m 

• DYNAMIC LOAD 41 

• STRUCTURAL PERFORMANCE 

K~)34 

DEMONSTRA,TED 

YES 

YES 

98.8% 

NO SPONTANEOUS 
INSTABILITY 

1.3 SEC 

YES 

YES 

15 mho/m 

221 

COMMENTS 

SATISFACTORY CONDUCTIVITY 

DYNAMIC STABILITY NOT 
DEMONSTRATED 

CAN BE REDUCED 

PERFORMED WELL 

67 em SUFFICIENT LENGTH 

ADEQUATE, BUT GOOD ,POTENTIAL 

FOR IMPROVEMENT 

FRAME & SHELL INT~GRITY 

UP TO 25& 

INTEGRITY MAINTAINED 

. .&Avca EVERETT 

, 
... 

• - -• 04 .• p.~ 



The 30 M% liquid fuel generator system is shown in the

drawing. The system dimensions are approximately 1.25 m in

diameter and 3 m in length. The dry system mass is approxi-

mately 5000 kg. The superconducting magnet is approximately

two meters in length with a peak field of 4.5 Tasla. The com-

bustor shown is a LO2/JP-4 system using CS2CO3 seed material.

The power conditioning and reactant storage tanks are not shown.

1
I
I
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The 30 M~~ liquid fuel generator system is shown in the 

drawing. The system dimensions are approximately 1.25 m in 

diameter and 3 m in length. The dry system mass is approxi

mately 5000 kg. The superconducting magnet is approximately 

two meters in length with a peak field of 4.5 Tasla. The com

bustor shown is a L02/JP-4 system using CSi=03 seed material. 

The power conditioning and reactant storage tanks are not shown. 
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SUMMARY AND CONCLUSIONS 

• HIGH ENTHALPY EXTRACTION 

• FLEXIBILITY FOR VARIOUS OPERATING CONDITIONS 

• INSTANT ON/INSTANT OFF CAPABILITY 

• PULSE OPERATION 

• HIGH EFFICIENCY fLOW MASS & VOLUME 
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The MD power supply system can provide tens of megawatts

of electrical power for space applications. The system has sub-

stantially operating flexibility for various operating times,

pulse lengths and pulse rates, and power levels. The instant on/

instant off capability provides the necessary response to command

signals. The overall power system is a high efficiency, low mass

and volume device which is attractive for space applications.
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The MHO power supply system can provide tens of megawatts 

of elect~ical power for space applications. The system has sub-

stantially operating flexibility for various operating times, 

pulse lengths and pulse rates, and power levels. The instant onl 

instant off capability provides the necessary response to command 

signals. The overall power system is a high efficiency, low mass 

and volume device which is attractive for space applications. 
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Magnetohydrodynamic Power Supply Systems

for Space Applications

Daniel W. Swallom
Avco Everett Research Laboratory

Everett, Massachusetts

The electrical power requirements for futuire space based
weapons systems of the 1990's may require power levels of 1-100M%.
Generally, these power requirements will be for pulsed power sys-
tems, which will often result in a very specific energy conver-
sion and power conditioning system for each application. In addi-
tion, other components of the power system such as heat rejection,
system controls, and spacecraft environment will be unique to this
application.

A high power magnetohydrodynamic eMHD) system is capable of
providing high performance, short duration electrical power for
the type of applications required by space based weapons systems.
The USAF High Power System Programs for the development of portable
MHD power supplies have shown that the generator system scales fa-
vorably as the generator size increases. Consequently, the MHD
generator system becomes more attractive as the required electri-
cal power increases. For MHD systems capable of tens of seconds of
pulse lengths, power to mass ratios can be obtained which would
allow for multi-megawatt power supplies to be deployed for space
applications.

For space applications the power system must meet the require-
ments associated with satellite vehicles. These requirements in-
clude not only mass and volume constraints, but also reliability,
maintainability, adaptability, and deployability. Vith respect
to the combustor and channel mass and volume requirements, the
USAF development programs have demonstrated lightweight, high per-
formance power system components. Airborne studies have also been
completed which have defined the magnet and power conditioning com-
ponents as well as addressing the overall systems packaging.

The development of MHD technology for space applications will
permit the deployment of power systems capable of producing tens
of megawatts for pulse lengths of up to hundreds of seconds with
tens of pulses per mission. This capability can provide the neces-
sarypower for space-based weapons systems envisioned for deploy-
ment in the mid 1990's.
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Ma9netohydrodynamic Power Supply Systems 

for Space Applications 

Daniel ,,~. Swallom 
Avco Everett Research Laboratory 

Everett, Massachusetts 

The electrical power requirements for future space based 
weapons systems of the 1990's may require power levels of l-lOOM~. 
Generally, these power requirements will be for pulsed power sys
tems, which will often result in a very specific energy conver
sion and power conditioning system for each application. In addi
tion, other components of the power system such as heat rejection, 
system controls, and spacecraft environment will be unique to this 
application. 

A high power magnetohydrodynamic ~D) system is capable of 
providing high performance, short duration electrical power for 
the type of applications required by space based weapons systems. 
The USAF High Power System Programs for the development of portable 
MHO power supplies have shown that the generator system scales fa
vorably as the generator size increases. Consequently, the MHD 
generator system becomes more attractive as the required electri
cal power increase& For MHO systems capable of tens of seconds of 
pulse lengths, power to mass ratios can be obtained which would 
allow for mUlti-megawatt power supplies to be deployed for space 
applications. 

For space applications the power system must meet the require
ments associated with satellite vehicles. These requirements in
clude not only mass and volume constraints, but also reliability, 
maintainability, adaptability, and deployability. Hth respect 
to the combustor ana channel mass and volume requirements, the 
USAF development programs have demonstrated lightweight, high per
formance power system components. Airborne studies have also been 
completed which have defined the magnet and power conditioning com
ponents as well' as addressing the overall systems packaging. 

The development of MHO technology for space applications will 
permit the deployment of power systems capable of producing tens 
of megawatts for pulse lengths of up to hundreds of seconds with 
tens of pulses per mission. This capability can provide the neces
sarypower for space-based weapons systems envisioned for deploy
ment in the mid 1990's. 
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Q & A - D. Swallom

From: Roy Pettis

(1) What effects will the effluent from the generator exhaust
have on the other parts of the spacecraft, especially sensi-
tive optical components?

(2) Will the high velocity of high-interaction MHD systems
lessen the danger of such effluents depositing on the space-
craft?

(3) Is research on these questions underway?

(4) Where?

(5) Is the problem less for "cleaner fuels", H2 , rather than
those filled with particulates?

A.
(1) The effects of the MHD generator exhaust on the sensi-

tive optical components would be similar to a rocket combus-
tor exhaust or chemical laser exhaust.

(2) Probably, but the problem has not been investigated in
detail.

(3) No

(4) N/A

(5) The question of fuel deposition may be somewhat depen-
dent on the fuel selected. However, the products of stoichio-
metric combustion for H2 systems (H 0) and hydrocarbon
systems (H 0 & CO ) are gaseous spegies. Consequently, the
stoichiomeiry (fuil rich condition to maximize the electrical
conductivity N 10%) will probably be a larger influence on
the generation of particulates.

From: P. J. Turchi, R & D Associates

What are the basic research issues that could allow
improvements in the system extrapolations you have made?

A.
The basic research issues which could allow for improve-

ments on the system extrapolations are directly related to

1
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Q & A - D. Swallom (Cont)

the technical milestones. These issues can be summarized on
a component basis.

Combustor - Basic research directed toward the combustion
phenomena of systems using high energy liquid fuels which
contain metallic particles for higher performance. In addi-
tion research work in the area of emulsions which permit the
Cs2CO3 seed material to be mixed with the fuel before injec-
tion into the combustor.

Channel - Materials development program to insure that
the electrode materials 2available can operate with current
densities up to 10 A/cm for operating times of 1000's of
seconds. In conjunction with the materials development pro-
gram, electrode configuration research should be closely
coupled to the materials research program to insure that a
viable, high temperature MHD electrode emerges as the product
of this research.

Mignet - Lightweight, high strength composite material
development research is needed to develop the materials
necessary for the construction of lightweight, high field
superconducting magnets. In addition, development research
should be performed to investigate the potential ways of
using these composites to provide the highest strength,
lightest weight magnet structure.

Power Conditioning - The key research issue for power
conditioning is the high current solid state switch tech-
nology required for the intermediate dc to ac conversion
required for the dc-dc converter.

Systems - Basic research in the area of electric charge
and/or effluence build up on the spacecraft surface as a
result of the hot, ionized exhaust products from the MHD
system.
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ABSTRACT 

IF POWER IS REQUIRED IN SPACE FOR MORE THAN A LARGE FRACTION OF A DAY, STEADY STATE 

POWER SOURCES (SUCH AS SOLAR AND NUCLEAR) WILL HAVE THE LIGHTEST SYSTEM WEIGHT. IF 

MEGAWATTS OF POWER ARE NEEDED, CLOSED-CYCLE MHO SYSTEMS (IF SUCCESSFULLY DEVELOPED) 

HAVE THE POTENTIAL OF BEING VERY LIGHT AND HIGHLY EFFICIENT. SUCH MHO GENERATORS ARE 

UNIQUELY CAPABLE OF FULLY EXPLOITING ADVANCES IN HIGH-TEMPERATURE REACTOR TECHNOLOGY 

WHICH COULD MAKE UP TO 2500 K LONG-LIFE, INERT-GAS-COOLED REACTORS FEASIBLE. A 

PARTICULARLY ATTRACTIVE MHO SYSTEM IS A TURBO-MHO CYCLE WHICH HAS A TURBINE DRIVEN 

COMPRESSOR. IT POTENTIALLY HAS VERY LOW SPECIFIC MASS, HIGH EFFICIENCY, AND RELATIVELY 

LOW MHO GENERATOR ENTHALPY EXTRACTION. IN ADDITION, THE SIGNIFICANT RECENT EXPERIMENTAL 

PROGRESS ON THE FEASIBILITY OF T»E REQUIRED NONEQUILIBRIUM CLOSED-CYCLE MHO GENERATOR IS 

REVIEWED. 
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COMMENTS REGARDING TURBO-MHO CYCLE 

THE TURBO-MHD CYCLE, PROPOSED BY SEIKEL AND NICHOLS (JOURNAL OF SPACECRAFT AND ROCKETS, 

/; VOL. 9, NO.5, MAY 1972, PP. 322-326) IS PARTICULARLY ATTRACTIVE. IT USES A TURBINE 
I .~ 

DRIVEN COMPRESSOR AND HAS MINIMUM SYSTEM MASS AT HIGH-CYCLE EFFICIENCY (APPROXIMATELY 

40 PERCENT) AND LOW-RADIATOR AREA AND TEMPERATURE. A 2500 K, 10 MWe TURBO-MHO POWER 
H 
~ SYSTEM, SHIELDED FOR MANNED MISSIONS, COULD ACHIEVE SPECIFIC MASSES OF 3.5 TO 5 kg/kW • , e 

6 IF TURBINE INLET TEMPERATURE IS INCREASED FROM 1250 K TO 1500 K, SPECIFIC MASS REDUCES , 
~ 

0.7 kg/kwe • THE ENTHALPY EXTRACTION OF THE MHO GENERATOR IS 17 TO 19 PERCENT IN THE 

OPTIMIZED TURBO-MHD SYSTEM COMPARED TO ALMOST 37 PERCENT FOR AN OPTIMIZED ALL MHO SYSTEM 

WITH AN ELECTRIC MOTOR DRIVEN COMPRESSOR. THE ALL MHO SYSTEM WOULD HAVE SOMEWHAT SMALLER 

RADIATORS BUT SUBSTANTIALLY HIGHER (200 TO 400 K) RADIATOR AND COMPRESSOR TEMPERATURES 

AND AN EFFICIENCY OF ~ BRAYTON CYCLE (21 PERCENT). 
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COMMENTS ON NASA LeRC CLOSED-CYCLE FACILITY 

BECAUSE OF THEIR RELATIVELY LOW OPTIMUM MHO ENTHALPY EXTRACTION, TURBO-MHO CYCLES SHOULD 

BE ATTRACTIVE DOWN TO REACTOR OUTLET TEMPERATURES BELOW 2000 K. TESTS IN THE NOW 

DISMANTLED STEA~Y-STATE MWt CLOSED-CYCLE FACILITY AT NASA LeRC SHOWED THAT STRUCTURALLY 

RELIABLE LONG LIFE NEARLY ADIABATIC CLOSED-CYCLE MHO CHANNELS COULD BE CONSTRUCTED OF 

ALUMINA INSULATORS AND WALLS AND TUNGSTEN ELECTRODES FOR UP TO 2100 K FLOWS. THIS NASA 

LeRC FACILITY WAS THE WORLD'S ONLY SUCCESSFUL CLOSED-LOOP CLOSED-CYCLE FACILITY. IT USED 

A GRAPHITE RESISTANCE HEATER TO HEAD ARGON UP TO 2300 K. IT HAD, AS CONSTRUCTED, LIMITED 

VOLTAGE AND MAGNET FIELD STRENGTH CAPABILITIES. TESTING WAS LIMITED TO INTERMITTENT BLOW-

DOWN INJECTION OF CESIUM SEED INTO THE STEADY-STATE HOT ARGON STREAM. 
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COMMENTS ON EINDOVEN CLOSED-CYCLE MHD FACILITY 

-
TESTING IN THE NEW 2000 K,5 MWtCLOSED-CYCLE MHO BLOW-DOWN FACILITY AT TECHNICHE HOGESCHOOL-

ENDHOVEN (THE) HAS DEMONSTRATED SIGNIFICANT PROGRESS IN OBTAINING REQUIRED GENERATOR PER-

FORMANCE. THIS EFFORT IS BEING CONDUCTED UNDER AN "AGREEMENT IN THE FIELD OF MHO POWER 

GENERATION" BETWEEN THE U. S. DEPARTMENT OF ENERGY AND THE NETHERLANDS ENERGY RESEARCH 

FOUNDATION. THE TOP OF THE FACILITY'S REGENERATIVE HEATER EXCHANGER IS SHOWN IN THE 

LOWER RIGHT OF THE PICTURE. THE BLOW-DOWN ARGON FLOWS TO THE LEFT THRU THE LARGE GATE 

VALVE TO THE TEST CHANNEL AND EXHAUST EQUIPMENT. THE PICTURE SHOWS THE FACILITY BEFORE 

THE MAGNET WAS INSTALL~D. A COLD WALL DUTCH CHANNEL DESIGN HAS PRODUCED 375 Mw OR e 

7.5 PERCENT ENTHALPY EXTRACTION FROM A 1900 K FLOW. 

THE NOMINAL 60 SECOND DUTCH BLOW-DOWN TESTS WITH 10 SECONDS AT FULL MAGNETIC FIELD (5 TESLA) 

UNEQUIVOCALLY DEMONSTRATED NONEQUILIBRIUM POWER GENERATION IN A LINEAR GENERATOR WITH CESIUM 

SEEDED ARGON FLOW. RESULTS CONFIRM THE PRIOR NONEQUILIBRIUM DEMONSTRATIONS BOTH IN BLOW-

DOWN EXPERIMENTS AT LOWER MAGNETIC FIELDS AND ENTHALPY EXTRACTION BY THE ITALIANS, AND THE 

OVER 20 PERCENT ENTHALPY EXTRACTION RESULTS OBTAINED IN SHOCK TUBES BY G. E. AND THE DUTCH. 
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U. S. DEPARTMENT OF ENERGY/GENERAL ELECTRIC 

HOT-WALL MHO CHANNEL FOR TESTING IN EINDOVEN BLOW-DOWN FACILITY 

IN 1981 HIGHER CLOSED-CYCLE GENERATOR PERFORMANCE SHOULD BE OBTAINED IN THE DUTCH 

FACILITY. IN ADDITION TO TESTING OF ADDITIONAL DUTCH CHANNELS, TESTING OF THE HOT-

WALL U. S. CHANNEL SHOWN IS PLANNED. IT WAS DESIGNED AND FABRICATED BY G. E. THE 

CHANNEL IS CONSTRUCTED WITH BORON NITRIDE INSULATION AND MOLYDENUM ELECTRODES WHICH 

CAN BE INSTALLED FLUSH WITH THE WALL OR PROTRUDING INTO THE STREAM AS SHOWN. THE ELEC-

TRODE TEMPERATURE CAN BE VARIED OVER A WIDE RANGE BY TWO ALTERNATIVE METHODS OF COOLING. 

THE U. S. ALSO SUPPLIED A GRAPHITE RESISTANCE HEATER TO BE USED IN AN AUXILIARY LOOP TO 

PREHEAT THE CHANNEL BEFORE BLOW-DOWN. 
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MAJOR CLOSED-CYCLE MHO TECHNOLOGY ISSUES 

o FROM A SYSTEM VIEWPOINT 

- COMPONENT SENSITIVITY 

- DISK VS. LINEAR GENERATORS 

o FROM A PHYSICS AND ENGINEERING VIEWPOINT 

- NONEQUILIBRIUM FLOW 

- MATERIALS 
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COMMENTS ON CLOSED-CYCLE MHO TECHNOLOGY ISSUES 

THE COAUTHORS, AS' RESPECTIVE MANAGERS FROM THE EARLY 60'S (UNTJL RECENTLY) OF THE TWO 
LARGE CLOSED-CYCLE MHO EFFORTS IN THE UNITED STATES (NASA LeRC AND G. E.VALLEY FORGE), 

ASSESS THAT THE MAJOR CLOSED-CYCLE MHO TECHNOLOGY ISSUES REQUIRING ADDITIONAL EFFORT ARE: 

1. FROM A SYSTEM VIEWPOINT: 
A. ASSESS SENSITIVITY OF SYSTEM WEIGHT TO GENERATOR PERFORMANCE, REACTOR 

TEMPERATURE, AND ADVANCED REACTOR AND RADIATOR CONCEPTS. 

B. EVALUATE POTENTIAL OF DISK VS. LINEAR GENERATOR GEOMETRY. IN DISK 
GENERATORS, A SWIRLING FLOW IS EXPANDED RADIALLY AGAINST AN AXIAL FIELD 

WITH POWER EXTRACTION FROM INNER AND OUTER RADII. RECENT STUDIES FOR 

COAL-FIRED POWER PLANTS INDICATE THAT CLOSED-CYCLE DISK GENERATORS MAY 
OFFER HIGH PERFORMANCE WITH SIMPLER (POSSIBLY LIGHTER) MAGNETS AND REQUIRE 

LESS POWER CONSOLIDATION EQUIPMENT • 

2. FROM A GENERATOR PHYSICS AND ENGINEERING VIEWPOINT, IT WILL BE ESSENTIAL 

TO CONTINUE HOT-WALL BLOW-DOWN EXPERIMENTS WITH IMPROVED CHANNELS AT "THE" 

AFTER THE PLANNED TESTS OF THE INITIAL U. S. CHANNEL. THIS WILL BE NEEDED 

TO FULLY EVALnATE AND DEMONSTRATE: 

A. NONEQUILIBRIUM GENERATOR FLOW WITH REAL ELECTRODE VOLTAGE DROPS, HOT

WALL CURRENT LEAKAGE, TURBULENT ELECTRICAL CONDUCTIVITY, AND THREE 

DIMENSIONAL REAL GENERATOR CORE FLOW AND BOUNDARY LAYER PHENOMENA AND 

THEIR ANALYTICAL UNDERSTANDING. 

B. MATERIALS FOR HIGH-TEMPERATURE INSULATORS AND ELECTRODES AND THE 
ENGINEERING TECHNIQUES FOR RELIABLE CONSTRUCTION OF LONG-LIFE 
REFRACTORY CHANNELS. 
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CONCLUDING COMMENTS 

IN CONCLUSION, POTENTIALLY ATTRACTIVE NUCLEAR CLOSED-CYCLE MHO SPACE POWER SYSTEMS HAVE 

BEEN PROPOSED TO UTILIZE BOTH SOLID-CORE AND VERY HIGH TEMPERATURE GAS-CORE FISSION 

REACTORS AND EVEN FUSION REACTORS. TECHNOLOGY FOR COOLING MHO GENERATORS, DEVELOPED FOR 

OPEN-CYCLE MHO, PRESENTLY LIMITS COOLANT TEMPERATURE TO HUNDREDS OF DEGREES BELOW A SPACE-, 
~ 

i' POWER SYSTEMS HEAT-SINK TEMPERATURE, THE RADIATOR. IN ADDITION, COOLED GENERATORS MUST 
~ 

, BE OPERATED AT A SUFFICIENT POWER LEVEL TO MINIMIZE THE RATIO OF HEAT LOSSES (SURFACE 

~-

1 

l 

t 

H 
1-1 
H 
I .... 
o 
I .... 
w 

AREA) TO POWER PRODUCED (VOLUME). THE AUTHORS, THEREFORE, FEEL THAT A SOLID FUEL REACTOR 

OPERATING NEAR THE TEMPERATURE LIMITS WERE NEAR ADIABATIC HOT-WALL MHO NONEQUILIBRIUM 

GENERATOR DESIGN CAN BE UTILIZED IS THE MOST A~TRACTIVE CONCEPT FOR INITIAL MHO SPACE-

POWER SYSTEMS. A 1 TO 10 MWe SYSTEM SHOULD BE LIGHT ENOUGH TO MINIMIZE THE REQUIRED 

SPACE-SUBASSEMBLY OF THE SYSTEM AFTER SHUTTLE LAUNCH. REGARDING NUCLEAR REACTORS, AS 

SHOWN, THE SPECIFIC WEIGHT OF SHIELDED SMALL REACTORS WILL BE DOMINATED BY THE SHIELDING 

AND THEIR WEIGHT WILL IN TURN BE A LARGE FRACTION OF THE POWER SYSTEM WEIGHT. THUS, 

CONCEPTS TO LOWER SHIELDED REACTOR WEIGHT OF SMALL REACTORS ARE DESIRABLE; ALTERNATIVE 

ISOTOPE SOURCES COULD, ALSO, BE ATTRACTIVE. 
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Q & A - G. R. Seikel

From: A. Bridgeforth, JPL

Is long life turbine/compressor bearings still a limiting
factor?

A.
Bob English will discuss this in his paper Tuesday.
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MHD GENERATOR RESEARCH AT STANFORD

J. K. Koester, C. H. Kruger, and T. Nakamura

Stanford University

ABSTRACT

The behavior of MHD channels have been studied over a wide range of
conditions in the High Temperature Gasdynamics Laboratory at Stanford
University. This research is primarily experimental in nature with the use
of advanced diagnostic methods and comparable theoretical and numerical
studies for the interpretation of the data and application of the results
to large-scale generators. Experiments are conducted in an 8 MIth flow
facility with either clearn or dirty fuels and a variable 02/N2 oxidizer
in the 0.6 m-2. 7 T magnet or the smaller 6T superconducting magnet.

Present MHD research areas include MHD boundary layer interactions,
Hall-field breakdown, plasma nonuniformities, plasma fluctuations and
magneto-acoustic waves, surface deposits of slag, disk generators, and
electrode configurations. Plasma velocity, temperature, and electron number
density have been measured with spatial and temporal resolution by optical
diagnostics. These techniques include laser doppler velocimetry, generalized
line reversal, emission spectroscopy, laser fluorescence, far infrared
interferometry, laser transmissometry, and optical pyrometry. Other diagnostics
used are probe-tube microphones. cinephotography, and the AC resistance
instrument. Wtih this extensive diagnostic capability, many channel pheno-
mena such as , lectrode boundary layer Joule heating, sidewall boundary
layer velocity overshoot, slag particle size, effect of radicals (such ae
PO;) on electron density, and surface deposit polarization have been observed,
measured, and compared with theory. These results are intended to provide
support for MHD hardware development in areas where performance limitations
and design constraints are not now adequately understood.
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KOH SEEDII-'

ALCOHOL/ .,,BURRNER PLENUM AT PTCAL DIFFUSER SCRUBBER
COAL- SECTION SECTION 1ETION
SLURRY0 I ECT L

I MAGNET I

FIG. 1. Schematic of a combustion plasma MHD flowtrain. By combining the
flows of liquid fuel, potassium salt solutions, particulate (ash, coal)
slurries, oxygen, and nitrogen, a wide range of plasma parameters are
produced for experiments. Various test sections with appropriate optical
ports have been used with advanced diagnostics (e.g. [l]) for the
in situ measurement of MHD plasma behavior and plasma-surface inter-
actions.

* FIG. 2. The M-8 (8 MWt) slagging electrode generator flowtrain before
insertion in the conventional 2.7 T magnet.
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FIG. 1. Schematic of a combustion plasma MHD flowtrain. By combining the 
flows of liquid fuel, potassium salt solutions, particulate (ash, coal) 
slurries, oxygen, and nitrogen, a wide range of plasma parameters are 
produced for experiments. Various test sections with appropriate optical 
ports have been used with advanced diagnostics (e.g. [1]) for the 
1!!. ~ measurement of MHD plasma behavior and plasma-surface inter
actions. 

FIG. 2. The M-8 (8 MWt ) slagging electrode generator flowtrain before 
insertion in the conventional 2.7 T magnet. 
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FIG_ 3. The dual beam forward scatter anemt)Uleter used for measure
ment of the velocity profiles in the insllator (sidewall) boundary 
layer [2]. 
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FIG. 4. Sidewall velocity profile for the control case of no magnetic
field and no current compared with the Stanford turbulent boundary
layer computer code [2].
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FIG. 5. Sidewall velocity profile showing the velocity overshoot
effect caused by the MBD body forces. The data is in agreement
with a modified tubbulent boundary layer code by selecting the
level of channel turbulence. The velocity overshoot effect
increases the skin friction and heat transfer rate to the
sidewalls [3].
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increases the skin friction and heat transfer rate to the 
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FIG. 6. The turbulence intensity profile corresponding to the

previous velocity profile C 3]. The effect of magnetic damping
and wall roughness on sidewall turbulence is under investigation.
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FIG. 8. Measured temperature profiles in the anode boundary layer

with and without applied current. The effect of Joule heating on
the temperature profile compares well with theory 14,5].
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FIG. 8. Measured temperature profiles in the anode boundary layer 
with and without applied current. The effect of Joule heating on 
the temperature profile compares well with theory [4,5]. 
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FIG. 9. Cross-section of the probe-tube microphone for the measure-
mert of pressure fluctnations in the harsh MD environment over a -
frequency range from a few Hertz to over 10 KHZ (6,71. The response
of this device is made uniform by tailoring the acoustical damping
at the center of the probe-tube.
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FIG. 10. The effect of magnetic field on pressure pulses formed by 
a capacitive discharge (at time • 0) ac.ross an electrode pair: 
Note that the MIlD body force results in: an inversion of the 
pressure pulse at higher magnetic fields [~). 
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TIME IASECJ
Luinosity voltage as a function of time from detectors
at the entrance, middle, and exit of the 1410 generator.

FIG. 11. Entropy waves were produced by a capacitive discharge upstream
of the test section and measured by luminosity probes viewing through
the center of an electrode. The luminosity probe voltage signals versus
time at three channel locations show the entropy (temperature) pulseconvected through the channel (8].
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FIG. 11. Entropy waves were produced by a capacitive discharge upstream 
of the test section and measured by luminosity probes viewing through 
the center of an electrode. The luminosity probe voltage signals versus 
t~e at three channel locations show the entropy (temperature) pulse 
convected through the channel [8]. 
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FIG 12. The voltage-current characteristic for an axial discharge
across a 19 m magnesia interelectrode insulator. The transitions
to the low voltage-tigher current mode result in a destructive arc.
Two types of breakdown were observed: a fast plasma breakdown and
a slow insulator breakdown which occurs at a lower threshold voltage.
(9,101.
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FIG 12. The voltage-current characteristic for an axial discharge across a 19 IIIIIl magnesia interelectrode insulator. The transitions to the low voltage-ttgher current mode result in a destructive arc. Two types of breakdown were observed: a fast plasma breakdown and a slow insulator breakdown which occurs at a lower threshold voltage. 
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Hazy blue region.
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piled up on cathode

FIG 13. Typical behavior of the inter-electrode insulator region
during a "slow" axial breakdown across a 7.5 mm gap. This sketch
was constructed from a cine frame taken " 4.5 seconds after the
voltage was applied [91. 1
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FIG 13. Typical behaviDr of the inter-electrode insulator reaion during a "slow" axial breakdown acrosa a 7.5 DIll aap. This sketch was constructed from a cine fr.me taken ~ 4.5 seconds after the 
voltage was applied {9]. 
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FIG 14. Threshold voltage as a function of Insulator gap size.
Figure shows the highest voltage for which no breakdown occurred
and the lowest voltage for which breakdown occurre', thus establish-
ing the breakdown threshold for plasma and insulator breakdown.
Data for 1mm, 9mm and 18-m gaps taken from experiments described
in reference t101. All insulators were MgO except the imm gap,
which was dense alumina.
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FIG. 15. Transverse discharge mode for slagging metal anodes. The
slag film forms from ash deposits which build up until the surface
becomes fluid (typically "a lm in thickness). The critical
current density for diffuse to arc mode transition was investigated
as a function of electrode temperature for various electrode materials
(12,131.
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FIG. 15. Transverse discharge lIIOde for s1agging metal anodes. The 
slag fUm forms from ash deposits which buUd up untU the surface 
becomes fluid (typically ~ lmm in thicknesa). The critical 
current density for diffuse to arc mode transitian was investigated 
as a function of electrode temperature for various electrode materials 
[12,131. 
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B -2.6 T
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IF = 4.2 amp
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AANODE
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FIG. 16. A large fraction of slag electrical conduction is due to ion
transport (largely Fe+ + and K). This causes the slag layers to
polarize becoming highly resistive at the anode and highly conductive
at the cathode. The axial resistance between neighboring electrodes
was measured during MHD generator operation with an AC resistance
instrument. Here, the change in axial resistance at the anode
and at the cathode is correlated with a charge transfer parameter
(14].
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FIG. 16. A large fraction of slag electrical conduction is due to ion 
transport (largely Fe++ and t+). This causes the slag layers to 
polarize becoming highly resistive at the anode and highly conductive 
at the cathode. The axial resistance between neighboring electrodes 
was measured during MHD generator operation with an AC resistance 
instrument. Here, the change in axial resistance at the anode 
and at the cathode is correlated with a charge transfer parameter 
[14]. 
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0.1 mm
Al
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q+
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anode

(a) (b) (C)

FIG. 17. Computed distributions of current (a) and voltage (b) for
the conditions of a slagging platinum-rhodium capped electrode experiment.

The magnetic field is 2.6T, electrode temperature is 1700K, and the

average current density - 0.8 A/cm 2 . The current distribution in the

slag layers is shown by the expanded scale plot (c). The polarized
value of slag conductivity was estimated by adjusting its minimum
value until the experimental voltage probe distribution matched that
of the model. Note the large leakage currents in the slag over the
intercathode Lnsulators. This large leakage results in excessive

Joule heating with a partial thinning of the slag layer (15].
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FIG. 17. Computed distributions of current (a) and voltage (b) for 
the conditions of a slagging platinum-rhodium capped electrode experiment. 
The magnetic field is 2.6Tt electrode temperature is 1700K, and the 
average current density. 0.8 A/cm2• The current distribution in the 
slag layers is shown by the expanded scale plot (c). The polarized 
value of slag conductivity was esttmated by adjusting ita minimum 
value until the experimental voltage probe distribution matched that 
of the model. Note the large leakage currents in the slag over the 
intercathode :!.."l!lulators. This large leakage results in excessive 
Joule hesting with a partial thinning of the slag layer [15]. 
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FIG. 18. Conceptual design of a baseload inflow disk generator (1250 MW(th))
The combustion gas from four combustors is distributed around the outer
radius of the channel by a scroll and is injected tangentially inward.
At the exit of the channel the gas flows axially out into the diffuser.
A feasibility study of the inflow disk MD generator for baseload
applications was performed. Each design element, i.e., the combustor,
the inlet flow patch, the generator channel, the diffuser and the magnet,
was studied in detail in order to provide a comprehensive assessment

* of the inflow disk generator. Based on these results, the performance
of the inflow disk generator was calculated. It was shown that the
performance of the inflow disk generator is similar to that of the
diagonal generator within the uncertainty of the analysis.
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fiG. 18. Conceptual design of a baseload inflow disk generator (1250 MW~th» 
The combustion gas from four combustors is distributed around the outer 
radius of the channel by a scroll and is injected tangentially inward. 
At the exit of the channel the ,88 flows axially out into the diffuser. 
A feasibility study of the inflow disk MBD generator for baseload 
applications was performed. Each desilD e1_ent, 1. e., the combustor. 
the inlet flow patch, the generator channel, the diffuser and the magnet, 
was studied in detaU in order to provide a comprehensive .. s ... mct 
of the inflow disk generator. Based on these results, the performance 
of the inflow disk generator was calculated. It was show that the 
perfomance of the inflow disk generator is a:lmUar to that of the 
diagonal generator Within the uncertainty of the analyds. 
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RADIAL NOZZLE

G-10 BASE BLOCK G-10 BASE BLOCK

PEG FIL

C~rMOE TO DIFFUSER

SCALE (INCH)

FIG. 19. The generator channel shown in FIG. 19 and 20 is designed to
allow experiments both with clean fuel and coal up to a maximm thermal 1
input of 3.5 MW1. The channel is of water-cooled peg wall construction.
Copper pegs capped with stainless steel are Installed In fiberglass1
reinforced epoxy (G-10). Each peg is Insulated in the azimuthal
direct ion as well as In the radial direct ion in order to measure
possible nonuniformities or Instabilities. The objective of the
program is to investigate:

(i) The effect of scroll induced nonunifozmities on generator
performance;

(ii) The current discharge phenomena taking place at the electrode
surface and In the generator core;

(iii) The boundary layer and the slag surface effects.
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FIG. 19. The generator ch8Dllel aho1ill :in FIG. 19 and 20 is desilDed to I 
allow experiments both with clem fuel and coal up to a aaz1aua thermal. 
:input of 3.S MIl. The ch8lll1el is of water-cooled pel wall con8tructlon. 
Copper pegs capped with .taiDl ... steel are iD.talled :In fibeqla.. J 
reinforced epoxy (G-lO). lat:ll pel is insulated in the adautbal 
direc:t1an as well as in the radiel d1rec:tiClll in order to .... ure 
possible nonUD.1fomiti .. or instabUiti... The objective of the .. 
progra is to investigate: 

(1) The effect of scroll :induced 1101lUD.ifomit1 .. OIl lilluator 
performanca; 

(ii) The current d:f.acbarge phcoaena takiDl place at the electroda 
SUlrfaca and in the genarator cora; 

(iii) The boundary layer md the da. 8Urfaca effec:t8. 
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Planviewof the 3.5 ~t experimental disk generator. 
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Q & A - J. K. Koester

From: P. J. Turchi, R & D Associates

Why is there a critical current density?

A.
A critical current density occurs at the anode due to the

electrothermal instability. Many materials associated with
the channel (slag layers, ceramic electrode, the plasma)
have electrical conductivity that is strongly temperature
dependent. As dlna increases, the critical current density

dT
decreases. For the slag coated elctrode case, the slag breaks
down (into arcs) before the plasma boundary layer.

A critical current density occurs at the cathode due to
limitations on the thermionic emission of electrons at the
electrode surface (or the slag layer surface).
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From: P. J. Turchi, R , 0 Associates 

Why is there a critical current density? 

A. 
A critical current density occurs at the anode due to the 

electrothermal instability. Many materials associated with 
the channel (slag layers, ceramic electrode, the plasma) 
have electrical conductivity that is strongly temperature 
dependent. As dlna increases, the critical current density 

d'T" 
decreases. For the slag coated elctrode case, the slag breaks 
down (into arcs) before the plasma boundary layer. 

A critical current density occurs at the cathode due to 
limitations on the thermionic emission of electrons at the 
electrOde surface {or the slag layer surface}. 
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• POTENTIAL SPACE POWER MISSIONS 

• SPACE POWER TECHNOLOGY CAPABILITIES 
- SNAP 
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- ROVER . 
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• CONVERSION TECHNOLOGY 

• RADIATOR TECHNOLOGY 
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SPACE POWER TECHNOLOGY 

SOLAR REACTOR 

FEATURE CURRENT· ADVANCED CURRENT ADVANCED MILITARV UTILlTV REACTOR 

SPECIFIC POWER 10-14 15-25 0.5 40-65 INCREASED PAVLOAD CAPAC lTV 
(WIk,) 

SIZE 14 10 3 2 REDUCED CROSS SECTION 
(m2IkW.) REDUCED DRAGISOLAR PRESSURES 

H ENHANCED MANEUVERING 

1 ... SIMPLIFIED DEPLOVMENT 
SIMPLIFIED POSITIONING 

~ POWER DEGftADA TlON 
NATURAL ENVIRONMENT 20 10 I ~O ~O BOL IS APPROXIMATEL V EQUAL 

(10 VEAR) ; TOEOL 
VAN ALLEN RANGE··· 25-80 7-4 =-;0 ~O ASSURED LONGER LIFE 
(bl YEAR) 

; 

NUCLEAR EXO ATMOS. 3·10 1·5 ~o =-=0 SURVIVABLE WITH MINIMUM 
(% PER INCIDENT) PENALTY 

'l4 SPECIFIC POWER 
REDUCTION FOR 45-50 25·30 '11::5 =-:5 
LASER PROTECTION·· 

• .... R.f.rence DSCS II _ .. 
•• Synchronoul "Iitu • 

••• 2000 nm circul .. orbil. 60/6 mil .... protection 
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CATEGORIES OF 

NUCLEAR POWER PLANTS 

1 • LONG·LIFE,10-1000 kWe - i.e., SP-100 OR 

~ SP-100 DERIVATIVES 

... 

. 
I 

• MULTIMEGAWATT, SHORT DURATION (PROBABLY 

DUAL MODE) , 

• MAINTAINABLE AND REFUELABLE POWER PLANTS, 

100-3000 kWe. 

• LUNAR PROCESS HEAT REACTOR, HUNDREDS OF 

MEGAWATTS 

• PROPULSION REACTORS 
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DESIRABLE PO.WER PLANT CHARACTERISTICS 

RELIABILITY HIGH-RELIABILITY COMPONENTS 

NO SINGLE-FAILURE POINTS 

~ WEIGHT SINGLE SHUTTLE OR lESS 
I 
~ 
t 

CD 

VOLUME 

SHIELDING 

• 100 kWe RANGE < 20 kg/kWe 

• 1 MWe RANGE < 10 kg/kWe 
* • 10;MWe RANGE < 3 kg/kWe 

• 
• 

• 100 MWe RANGE < 0.3 kg/kWe 

SINGLE-SHUTTLE COMPATIBLE 

1012 _1013 nvt 
106 -107 rad 

* . 
Assumes use of nuclear electric propulsion to higher orbits 
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EXTENSION OF SP-100 TECHNOLOGY 
TO MEGAWATT-LEVEL POWER SUPPLIES 

• HEAT PIPE REACTOR CONCEPT EXTENDABLE TO 10 MWe 
- DYNAMIC CONVERSION SUCH AS RANKINE, BRAYTON 

OR STIRLING, OR THERMIONIC GENERATORS 
- REDUNDANCY THROUGH MULTIPLE INDEPENDENT 

HEAT EXCHANGERS 

+ • FUEL OF CHOICE WilL REMAIN U02 .... 
en 

• SP-l00 DATA ON SHIELD, CONTROLS, AND REFLECTOR ARE 
ALL APPLICABLE TO HIGHER POWER LEVELS 

• 
• EXPERIMENTAL AND ANALYTICAL DEVELOPMENTS RELATIVE 

TO SAFETY ARE READILY APPLICABLE TO HIGHER POWER 
LEVELS 

• RADIATOR DEVELOPMENTS DEPEND ON THE COUPLING 
· SCHEME ADOPTED FOR SP-100 COMPARED TO CONVERTER 

TEMPERATURE FOR HIGHER POWER LEVELS 
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REQUIREMENTS TIME POWER lEVEL 

• -
( H ASAT, SATELLITE DEFENSE, HUNDREDS-Of- TENS-Of-MEGAWATTS 
~. < . , 
~ ~ WEAPONS TESTS SECONDS 
~ I 

'" .... :: -..J 
;. ABM DEFENSE UP TO SEVERAL TENS-Of-MEGAWATTS 

;:. HOURS 
-) 

,. 
I 

ST ATION-KEEPING 5 -10 YEARS TENS-Of-KILOWATTS 

.. 
f ORBITAL TRANSFER DAYS MEGAWATTS 

1 
VEHICLE AND ... 

MANEUVERING 

I 
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REACTOR TECHNOLOGY 
, , 

.I 

NUCLEAR ROCKET AND DERIVATIVES 

.;. " . 
• POWER LEVELS 45-5000 WWT AT 2450 K 

• DEMONSTRA'rED LIFETIME - 2 HRS • 
• . ' 

• SOLID CORE, GAS COOLED REACTOR DESIGN 
1 

'DATA BASE COULD BE RECONFfGURED TO'PROVIDE 90TH 

" HIOH AND' LOW ELECTRIC POWER LEVELS. ~I 

~"ITATUS--OVER BILLION DOLLARS INVESTED IN DEVELOPMENT, 
~ 

NOW D I SCONT I NUED 
... 

. ... 
.•... . , 

~ ... , " 
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HEX FLAT 
HEX LD. 

HISULA TOR O. D • 
INSULATOR LD. 

OUTER TIE-TUEE O.D. 
• OUTER TIE TUBE I.D. 

ZRH O.D. 
...... - ZRH LD. 

a----I:mER TIE TUEE O.D. 
'--- BlUER TIE TUBE l.D. 
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NUCLEAR ROCKET 'TESTS 

H 
< • .... , 
N 
~ 

K I WI-BAD (t POWER TEST) 
K I WI-B4.E (2 POWER TESTS) 

~.:~;' .~. NRX-A2 (2 POWER TESTS) . . . 
.... · -"KIWI-TNT 
:' ;. NRX--A3 (3 POWER TESTS) 

PHOEBUS- tA (' POWER TEST) 
: NRX/EST (to STARTS) 

.. ~ NRX-AS (2 POWER TESTS) 
~ PHOEBUS-II (1 POWER TEST) . 

•.. ,1. ". PHOEBUS-2 (COLD FLOW, Tt:STS) 
. NRX-A6 (1 POWER TEST) .• 
: . ";" .,' XECF (COLD FLOW) I 

. ~(. PHOEBUS-2A (3 POWER TESTS) 
. PEWEE- t (2 POWER TESTS) 

X£ (28 STARTS) 
Nr-:,' (4 POWER TESTS) 

• ·• ... .aWJ~.~~& __ a ..... _ ...... t....- .. __ 1 ... ...l -L..Jj0 ___ ... _ ............ _A._ ... .1. . .1. ••• -

trid ihnl ;;-] i? m 'I.L_~.~"_~ __ ~ 

~ay, 196A ~ .... 
. I 

August-Sept ember_ 19SA 
Septembe,-Octob.,. '9S • 
January,' t96S , . 
Aprll-M:JY, 1965 
June, 1965 
Dec., 1965-Mar chi 1968 .. 
June, 1966 
February, 1967 
July-August, 1967 

.December, 1967 
rebruary-Apr~ "18 
June-July. 1988 •. 
Novembe,-Decembe,. '118 
Deaembe, .. tt88-Auou' t. 1181 
June-Jul,. tl12 
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I DRIVE MOTOR

I DISTRIBUTION DOE

THRUST

PRESSURE -ROTATING

ROTATPORON

FRI

ROTATTTON HLYDDERBDOOCETENIN

FLO

FUL-OTO
PARTICLSVD1R2U

I'" ~ 

Il .. 

I 
I 
1 

THRUST 
BEARINGS 

PRESSURE 
SHELL 

ROTATION 

AFT 
BEARING 

I 
1 
I 
I 
I 
I 
I 

.I. ...... . 

~ 

. ''". '. 
~' .. 

.-

BERYLLIUM 
REFLECTOR 

Ro.TATING FLUIDIZED BED ROCKET ENGINE 

V-1-27 
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ROTATING 
POROUS 

FRIT 

HYDROGEN 
FLOW 

,CONTROL 
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POISON 
SECTION 
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ILLUSTRATIVE RBR DESIGNS 

235U FUEL 

BED INTERNAL DIAMETER (em) 63.5 
BED HEIGHT (em)' 63.5 
FUEL BED THICKNESS (em) 10.2 
REFLECTOR THICKNESS (em) 

RADIAL 30 
AXIAL 30 

H 
<: THROAT DIAMETER (em) 18 I .... 
I OVERALL HEIGHT (em) . 123.5 IV 

co .. 
OVERALL DIAMETER (em) 143.9 
CRITICAL MASS (kg) 156 
BED VOIDAGE (%) 60 
URANIUM CONCENTRATION (at.%) 9.5 
CHAMBER PRESSURE (psia)· 1125 
H2 FLOW RA TE (kg/s) 20 
POWER, MW (T = 3000 K) 1000 
REACTOR WEIGHT (kg) 4750 

(INCLUDING PUMPS AND 
PRESSURE VESSEL) 

"Sed; II .. • 



j Pl~~RIARY SHIELD~PRESSURE CONTAINER

T" %..CONTROL DRUM

6•D , 00,. ,M" -- W... .

UOUTLE

Z OUTZRMODEATOR 1~AMOCAO
"-- PARTICULATE FUEL BED [HTGR TYPE]

POROUS CYLINDRICAL

CONTAINERS FOR FUEL

F±,Te2" : High Power Density Space Reactor [H20 or Gas Coolant].Note: Support ribs for the reactor are not shown. Outer and
inner moderator regions also provide radial reflector zones
which may be made of either H20 or ZrH2 . Control drums extend
into the outer moderator/reflector region. The fuel bed diman-
sions are typically of the order of 45 am in length and 30 cm
in diameter.

I
I

II

.I 

.. 

I ,. 
I 
I 
I 

P 
I 
I , 
I (;UOU\l.,'j.' 

IN.t..l;;'r 

: 4 
. ( P. 

PRIHARY SHIELD 

PRESSURE CONTAINER 
CONTROL DRUM 

OUTU JtODUA1'Oa 

PARTICULATE FUEL BED lH'l'CR TYPE] 

POROUS CYLINDRICAL 
CONTAINUS FOR FUEL 

¥ 

COV:.A.~'!' 

Ot;"'~T 

F!b~te 1%: High Power Density Space Reactor (H20 0: Cas Cool&n~l. 
No~e : SupiX)~ :il:Is for the :eactor ue not shown. Ou~.r ana 
inner moderator regions also proviae raaial reflector zones 
which may be maae of either H20 or ZrH2 • Con~rol drums ex:ena 
into the ou~er moaerato:/:eflector :eg.on. The fuel bea aimen
sions are typically of the orae: of 4S ~ in length and 30 em 
in diamete:. 
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STATUS OF ROTATING FLUIDIZED BED REACTOR 

• HALF-SCALE MODEL TESTED AT BNL IN EARLY 19705 
- VERIFIED THERMAL HYDRAULIC PERFORMANCE 

AT, LOW TEMPERATURES 
- N2 GAS AT 10 atm USED WITH GLASS OR COPPER 

BEADS TO SIMULATE H2-COOLED HTGR FUEL BED 
- DEMONSTRATED STABLE OPERATION AND LOW 

~ TEMPERATURE DIFFERENTIALS BETWEEN GAS 
I 

Z AND FUEL 
o 

• USES HTGR FUEL PARTICULATES 
; 

• REFLECTOR CONTROL SIMILAR TO ROVER AND SNAP 
REACTORS 
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ESTIMATED RADIATOR AREA AND MASS . 

POWER LEVEL (MWe) 

10 100 1,000 

REJECT HEAT (BASED ON 40 400 4,000 

20% EFFICIENCY) (MWt) 

AREA (BASED ON 800 8,000 80,000 I 

1000 K REJECT TEMP.) (m2 ) 

MASS ESTIMATE (BASED 11,000 110,000 1,100,000 
ON 14 kg/m2 ) (kg) 
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CONVERSION CHARACTERISTICS 

CONVERSION OPTION I TYPE FEATURES 

BRAYTON ROTARY ENGINE LOW HEAT REJECTION TEMPERATURE; 
LARGE SIZE RADIATOR; LIMITED 
MODULARITY MUST MAINTAIN 
HERMETICITY; LABORATORY 
DEMONSTRATED; HIGH CONVERSION 
EFFICIENCY 

RANKINE ROTARY ENGINE HIGH HEAT REJECTION TEMPERATURE; 
SMALL SIZE RADIATOR; MUST MAINTAIN 
HERMICITY; COMPONENTS DEMONSTRATED; 
REASONABLY HIGH EFFICIENCY 

MHO FIELD EFFECT VERY HIGH OPERATING TEMPERATURES; 
HIGH HEAT REJECTION TEMPERATURES; 
NOT DEVELOPED FOR SPACE; LOW 
EFFICIENCY 

THERMOELECTRIC SOLID STATE MEDIUM HEAT REJECTION TEMPERATURE; 
MODERATE SIZE RADIATOR; MODULAR; 
VACUUM OPERATION; FLIGHT DEMONSTRATED; 
LOW CONVERSION EFFICIENCY 

THERMIONIC ELECTRON HIGH HEAT REJECT TEMPERATURE; SMALL 
EMISSION SIZE RADIATOR; MODULAR; MUST MAINTAIN 

HERMETICITY; LABORATORY DEMONSTRATED; 
LOW TO MODERATE CONVERSION EFFICIENCY 
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CONVERSION TECHNOLOGY 

• THERMOELECTRICS 
- SiGe DEMONSTRATED OVER 5-yr ON VOV AGER 

MISSIONS 
- SiGe-GaP WITH HIGH-TEMPERATURE COATINGS 

DEMONSTRATE 40% IMPROVEMENT OVER SiGe. 
EFFICIENCY ~ 5% WITH T H~ = 1275 K; ~ 7.5% WITH 
T HJ = 1400 K ; 

- ADVANCED MATERIALS SUCH AS CARBIDES AND 
SULFIDES COULD DOUBLE SiGe PERFORMANCE. 
MATERIALS BEING MADE BUT SAMPLES NOT DOPED. 
EFFICIENCY ~ 8-10% WITH T HJ = 1500-1550 K 

• THERMIONIC 
- DEMONSTRATED TECHNOLOGY IS 12% EFFICIENCY, 

40,000 HOURS AT 1970 K EMITTER TEMPERATURE 
- ADVANCED TECHNOLOGY TO REDUCE EMITTER 

TEMPERATURE TO 1650 K, AT 15% EFFICIENCY, NEEDS 
MUCH FURTHER WORK 

- HIGH-TEMPERATURE INSULATORS A MAJOR PROBLEM 
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• BRAYTON CYCLE RUN 30,000 HOURS TO DEMONSTRATE 
LONG LIFE 

• SUPERALLOYS AND GAS-BEARING SYSTEM BEING 
DEVELOPED FOR SIPS PROGRAM (1.3 kWe). SPECIFIC MASS 
~ 34 kg/kWe (BASED ON 100 kWe POWER LEVEL) 

1 • REFRACTORY METAL ALLOYS (Mo OR Ta ALLOYS) NEED .... 
~ TO BE DEVELOPED FOR 1500 K OPERATION. SPECIFIC 

MASS ~ 29 kg/kWe .. 

• CERAMICS COULD INCREASE TURBINE TEMPERATURE TO 
1650 K. SPECIFIC MASS ~ 24 kg/kWe . 

• MAJOR DEVELOPMENTS NEEDED IN TURBO-MACHINERY 
AND HEAT EXCHANGERS AS TEMPERATURES INCREASE 
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HIGH-TEMPERATURE RANKINE CYCLES 

H • 

1 • COMPONENTS DEMONSTRATED IN EARLY 19705 FOR 375 kV\le .... 
~ POTASSIUM CYCLE. SYSTEM EFFICIENCY ~ 19%. TURBINE 

TEMPERATURE 1420 K; REJECT HEAT TEMPERATURE 925-800 K 

• NO SYSTEM LOOPS RUN 

• PROBLEM AREAS INCLUDE: 
- DEMONSTRATION OF JET CONDENSER IN ZERO GRAVITY 

CANNOT BE PERFORMED IN GROUND DEMONSTRATION 
TESTS 

- POTENTIAL PROBLEMS WITH SEALS IN ROTATING UNITS 
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STIRLING ENGINE 

• POTENTIAL HIGH EFFICIENCY WITH HIGHER HEAT REJECTION 
TEMPERATURE THAN RANKINE CYCLE" 

! • LOW-SPEED PISTONS HAVE POTENTIAL SEAL PROBLEMS AND * HEAVY CONVERSION SYSTEM WEIGHTS 

• HIGH-SPEED CYCLE USING ROTARY MOTION HAS MECHANICAL 
AND LUBRICATION PROBLEMS 
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MAGNETOHYDRODYNAMICS 

• NEED HIGH TEMPERATURES, > 2500 K 

• A COMBINED CYCLE SUCH AS TURBO·MHD IS NEEDED FOR 
HIGH EFFICIENCIES . 

I 
,; 

• ONL V TERRESTRIAL COMPONENTS IN DEVELOPMENT. THESE 
HAVE JUST PASSED 1000 HOUR TEST 
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HEAT REJECTION 

H • DEMONSTRATED SYSTEMS 
+ - PUMPED TUBE AND FIN 
w 
\Q . . 

• ADVANCED DEVELOPMENT 
- HEAT PIPE (0.35 kg/kW) 

• RESEARCH 
- LIQUID DROPLET (10 MW, ALUMINUM, 1000 K, 

0.04 kg/kW) 

~ .. 
~ 



liti

0 i
@

1~
~

 
I 

L

II 
I 

I.V-1 
'4

0

I 

H .< 
I .... 
I .. 
o 

., 
Heat exchanger 

------------ -----------------------------
._----
---- ----

--- - - -- - -- - -- - - ---- - - - - - - - - - - - - - - - - ----

--------------------------------------

Spinning collector Droplet generator 

Droplet stream 

Schematic of a tWo-station droplet-stream 
radiator system. 
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TECHNOLOGY NEEDS 

H t • ELECTRIC CONVERTERS> 20% EFFICIENT WITH A REJECT 
6 HEAT TEMPERATURE> 1000 K 

• LIGHT-WEIGHT RADIATORS, AS LOW AS 0.05 kg/kWt 
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ENERGY- RELIABLE, PORTABLE, ABUNDANT-

IS A MOST CRITICAL FACTOR IN 

ESTABLISHING MAN'S PERMANENT 

PRESENCE IN SPACE. 
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STEPS IN EXTRATERRESTRIAL EXPANSION 

• REUSABLE SPACE TRANSPORTATION SYSTEMS 

• PERMANENT MANNED SPACE STATIONS (LEO&GEO) 

.• SPACEBASED INDUSTRIES 

• LUNAR SETTLEMENTS 

• LUNAR/ASTEROID RESOURCE UTILIZATION 
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TECKNOLOGICAL BOUNDARY CONDITIONS FOR NUCLEAR
ELECTRIC SPACE POWER PLANTS

A. P. Frahs

ABSTRACT

A serious attempt to assess the potential and feasibility of the many
candidates for nuclear electric space power applications must confront some
basic technological facts that limit what one can reasonably hope to
accomplish with any given concept. First, the upper limit to the efficiency
of any thermodynamic cycle was defined by Carnot, and the subsequent 160
years has not only disclosed the character and magnitude of the many losses
that regretably but inevitably make the efficiency of any actual cycle much
less than that of an ideal cycle, but has also shown the upper temperature
limit attainable with the materials available for any actual cycle. The
cycle efficiency determines not only the thermal energy output of the
reactor required for any given electrical power output (and thus the size
and weight of the reactor and shield assembly), but also the size and
weight of the radiator to reject the waste heat. Materials considerations
such as corrosion, strength, and radiation damage at elevated temperatures
establish basic limits on the design of the reactor, shield, turbine
generator, and other key components. Allowable radiation doses to personnel,
lubricants, elastomers, and electronic components determine the size, weight,
and shape of the reactor shield after account is taken of such factors as
activation of the reactor coolant, directional differences in the degree of
shielding required for the spacecraft in question, and radiation scattering
from structures such as the radiator. Further, an exceptionally high
reliability with essentially no maintenance is required. Assessments for a
wide variety of systems show that they differ greatly in the reliability
probably achievable, with only a few systems giving promise of meeting the

stringent requirements. This problem is closely related to that of
reactor safety - a technically complex subject rendered still more difficult
by public perceptions and the current antinuclear hysteria. Again, studies
have shown basic differences that make some systems more acceptable thanI.I
others. Additional problems include the control of free liquid surfaces
under zero -g conditions, instrumentation and control, and meteoroid
protection of the radiator. The more significant information available on
these factors as gained from experiments and design studies is reviewed
with particular attention to the implied technological limitations on the
size, weight, performance, and developmental feasibility of nuclear
electric space power plants.
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TECitNOLOGICAL BOUNDARY CONDITIONS FOR NUCLEAR 
ELECTRIC 3PACE POlVER PLANTS 

A. P. Fraas 

ABSTRACT 

sa 

A serious attempt to assess the potential and feasibility of the many 
candidates for nuclear electric space power applications must confront some 
basic technological facts that limit what one can reasonably hope to 
accomplish with any given concept. First, the upper limit to the efficiency 
of any thermodynamic cycle was defined by Carnot, and the subsequent 160 
years has not only disclosed the character and magnitude of the many losses 
that regretably but inevitably make the efficiency of any actual cycle much 
less than that of an ideal cycle, but has also shown the upper temperature 
limit attainable with the materials available for any actual cycle. The 
cycle efficiency determines not only the thermal energy output of the 
reactor required for any given electrical power output (and thus the size 
and weight of the reactor and shield assembly), but also the size and 
weight of the radiator to reject the waste heat. Materials considerations 
such as corrosion, strength, and radiation damage at elevated temperatures 
establish basic limits on the design of the reacto;, shield, turbine", 
generator, and other key components. Allowable radiation doses to personnel, 
lubricants, elastomers, and electronic components determine the size, weight, 
and shape of the reactor shield after account is taken of such factors as 
activation of the reactor coolant, directional differences in the degree of 
shielding required for the spacecraft in question, and radiation scattering 
from structures such as the radiator. Further, an exceptionally high 
reliability with essentially no maintenance is required. Assessments for a 
wide variety of systems show that they differ greatly in the relLability 
probably achievable, with only a few systems giving promise of meeting the 
stringent requirements. This problem is closely related to that of 
reactor safety - a technically complex subject rendered still more difficult 
by public perceptions and the current antinuclear hysteria. Again, studies 
have shown basic differences that make some systems more acceptable than 
others. Additional problems include the control of free liquid surfaces 
under zero -g conditions, instrument~tion and control, and meteoroid 
protection of the radiator. The more significant information available on 
these factors as gained from experiments and design studies is reviewed 
with particular attention to the implied technological limitation6 on the 
size, weight, performance, and developmental feasibility of nuclear 
electric space power plants. 
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Fig. 1. Effects of the emitter on the output of a typical thermionic
cell.

Fig. 2. The weight of the radi.-ar Lor per unit of waste heat rejected from
the thermodynamic cycle drops as its temperature is increased, but
the efficiency of the cycle drops rapidly. The combined effects
define both the temperature that gives the minimum specific weight
for any given cycle and working fluid. The lowest radiator
specific weights are obtained with alkali metal vapor Rankine
cycles.

Fig. 3. In sy tems handling high temperature fluids, corrosion and deposits
are faciiors that commonly limit the life of the system. Corrosion
rates increase with temperature, and her -e, corrosion considerations
commonly limit the peak temperature in the thermodynamic cycle and
thus the cycle efficiency. For Fe-Cr-Ni alloy systems, the
highest peak cycle temperature and lowest corrosion rates are given
by boiling potassium or cesium systems.

Fig. 4. The weight of the boiler and high temperature piping for a Rankine
cycle system depends on the ratio of the creep strength of the
structural alloy to the vapor pressure of the cycle working fluid.
Increasing the cycle peak temperature gives a drop in the creep
strength and an increase in the vapor pressure so that the
resulting increases in the wall thicknesses and component weights
reach a practicable limit that often defines the peak cycle
temperature.

Fig. 5. The size and weight of a turbine drop rapidly with an increase
in turbine wheel tip speed, but the stresses increase rapidly, and
the creep strength drops rapidly with an increase in temperature.
These considerations favor the use of the molybdenum alloy TZM,
the highest strength alloy available. Plotting both the stress
induced in the blades by centrifugal force against tip speed
and the allowable creep stress against temperature show
graphically the limiting combinations for these three parameters.

Fig. 6. Reducing the number of stages in the turbine for a given set of
conditions reduces its size and weight, but it also reduces the
aerodynamic efficiency. The high atomic weight of cesium gives
both a smaller number of stages and a smaller diameter turbine
than obtainable for potassium when allowances are made for
aerodynamic, moisture churning, and seal leakage losses.

Fig. 7. The smallest number of system components is given by a single-
loop system with a boiling reactor and a direct condensing
radiator.

Fig. 8. The subtle nuclear and boiling flow stability problems of a
boiling reactor can be avoided by adding components to give a
two-loop system with a primary liquid circuit that carries heat
from the reactor to the boiler for the Rankine cycle system. This
increases the number of components by about 50%.
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Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

It: l'lP'_~J... rt: 
Effects of the emitter on the output of a typical thermionic 
cell. 1\ 

The weight of the radi~~~r fDr per unit of waste heat rejected from 
the thermodynamic cycle drops as its temperature is increased, but 
the efficiency of the cycle drops rapidly. The combined effects 
define both the temperature that gives the minimum specific weight 
for any given cycle and working fluid. The lowest radiator 
specific weights are obtained with alkali metal vapor Rankine 
cycles. 

In sy.~ems handling high temperature fluids, corrosion and deposits 
are facl:ors that commonly limit the life of the system. Corrosion 
rates increase with temperature, and he~~e, corrosion considerations 
commonly limit the peak temperature in the thermodynamic cycle and 
thus the cycle efficiency. For Fe-Cr-Ni alloy systems, the 
highest peak cycle temperature and lowest corrosion rates are given 
by boiling potassium or cesium systems. 

The weight of the boiler and high temperature piping for a Rankine 
cycle system depends on the ratio of the creep strength of the 
structural alloy to the vapor pressure of the cycle working fluid. 
Increasing the cycle peak tempprature gives a drop in the creep 
strength and an increase in the vapor pressure so that the 
resulting increases in the wall thicknesses and component weights 
reach a practicable limit that often defines the peak cycle 
temperature. 

The size and weight of a turbine drop rapidly with an increase 
in turbine wheel tip speed, but the stresses increase rapidly, and 
the creep strength drops rapidly with an increase in temperature. 
These considerations favor the use of the molybdenum alloy TZM, 
the highest strength alloy available. Plotting both the stress 
induced in the blades by centrifugal force against tip speed 
and the allowable creep stress against temperature show 
graphically the limiting combinations for these three parameters. 

Reducing the number of stages in the turbine for a given set of 
conditions reduces its size and weight, but it also reduces the 
aerodynamtc efficiency. The high atomic weight of cesium gives 
both a smaller number of stages and a smaller diameter turbine 
than obtainable for potassium when allowances are made for 
aerodynamic, mois ture churning" and seal leakage losses. 

The smallest number of system components is given by a single
loop system with a boiling reactor and a direct condensing 
radiator. 

The subtle nuclear and boiling flow stability problems of a 
boiling reactor can be avoided by adding components to give a 
two-Iuop system with a primary liquid circuit that carries heat 
from the reactor to the boiler fur the Rankine cycle system. This 
increases the number of components by about 50%. 
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Fig. 9. A three-loop system can be employed to avoid both the problems of
a boiler-reactor and a direct condensing radiator as well as
provide redundancy in the heat rejection system. This gives about
three times the number of components required for the single-loop
system.

Fig. 10. Configuration for a 45-degree shadow cone shield for 450-kWt
heat pipe reactor core having a diameter of 9.9 in. and a length
of 12 in. The shield weight was estimated to be 14,700 lbs for
radiation doses at a 100-ft radius of 3 rem/hr within the
shadow cone and 100 rem/hr outside the shadow cone. Increasing
the shadow cone angle to 90 degrees and reducing the dose at
100 ft outside the shadow cone increased the shield weight to
25,000 lbs.
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A three~loop system can be employed to avoid both 
a boil~reactor and a direct condensing radiator 
provide redundancy in the heat rejection system. 
three times the number of components required for 
system. 

" 

the problems of 
as well as 
This gives about 
the single-loop 

Fig. 10. Configuration for a 45-degree shadow cone shield for 450-kWt 
heat pipe reactor core having a diameter of 9.9 in. and a length 
of 12 in. The shield weight was estimated to be 14,700 lbs for 
radiation doses at a IOO-ft radius of 3 rem/hr within the 
shadow cone and 100 rem/hr outside the shadow cone. Increasing 
the shadow cone angle to 90 degrees and reducing the dose at 
100 ft outside the shadow cone/increased the shield weight to 
25,000 lbs. L !,/C''J;-('" 
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ftble 2. CoIIpariaoo at l'b¥a1cal Properties at Potaaalua. teal ... 

aDd water tor CoDdenains Conditions 

Pota .. iua Ceal .. water 

IJ.1.uld vapor IJ.quld Vapor IJ.quld Vapor 

1'eIIPeratll1'e. -., 10110.0 800 115.6 

Preaaure, paia 1.50 0.66 1.50 

Specific 1101_. 
H tta/lb 0.~9 267.15 0.0091 610 0.01619 228.65 
<: 

IIItbalW. Btl1/1b 28'.0 1170.4 69 267 83.56 Ull.8 , ..., 
Heat at -.poriution. , 

~ Btu/lb 887.4 232 1.(28.14 

Specific beat. 
Btu/lb'-" 0.1823 0.1266 0.056 O.a) 0.998 0.43 

Viacoait,.. lb/tt'br 0.37 0.0189 0.50 0.054 1.42 0.G!9 

'ftIe~l cODdl1ctiY1t,.. 
Btli/br' tt·-., 21.0 0.0036.3 11.2 0.0055 0.371 0.012 

~Ddtl Bo., cpA/k 0.00'21 0.659 0.0(I!5 0.589 3.82 1.011 

Surface teDaiOD. 
lb/tt O.OOIfl 0.0038 0.00469 
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Table 2. Estimated Size and Weight of Each of a Series of Typical 376 kw(e) 
Power Plants (excluding the shield) 

Liquid -cooled reactor 

, i Boiling reactor Direct Indirect 
~ 

Direct condenser condenser condenser , 

i 
~ 

2-Loop ~ I-Loop I-Loop 3-Loop 
i 
t H 

I 
<: Structural material Stainless Niobium Niobium Niobium I 
N 

• 
, 

steel· UI 

Reactor outlet 

f temperature, of 1540 2000 2000 :!OOO 
~ 

~ 
Reactor thernlal output, Mw .,., 2.2 2.4 2.55 

Radiator height 
(for a 10-ft-diam), ft 35.8 17.8 27.1 38.3 

Power plant weight 
(excluding shield), Ib 5725 4200 6920 ~660 
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Table 3. Comparison of the Relative Mechanical Reliability of One-, Two-, 
Three-Loop 367 kw(e) Potassium Vapor Systems 

Boil i ng reactor 
Liquid-Cooled Liquid-cooled 

System reactor reactor 
direct condenser 

direct condenser indirect condenser 

Number of loops 2 3 

Number of key mecha- 9 14 31 
nicaJ components 

: 

Mechanical reliability 0.9 0.7 0.6 
for 10,000 hr 



ot

0-

s
o

 
0
 

r- 
E 

E
." 

E
~ 

v

E
 

-E

iv2-

... ~ ... ~ .• __ ..... ___ ........ 4~"' __ .·.·_"_· - _ •• _ .0 ___ •• ________ _ ._------------_ ... 

Table 4. Factors Affecting the Reliability of Instrumentation and Controls 

of One-, Two-, and Three-Loop Systems 

Boiling Liquid-cooled Liquid-cooled 

System 
reactor reactor reactor 

direct direct indirect 

condenser condenser condenser 

Number of loops 1 2 3 

i 1 H Number of control functions 
\ : 

< 
I requiring electronic equipment 

\ ~ N 
I 

-..I Simple J 2 2 

Complex 0 2 2 

Minimum complement of 

instrument sensors 
Vital for normal operation 3 7 9 

Diagnostic 23 45 85 

Electric power required for 

motors for a 367 kw(e) plant, kw 1 30 50 

Estimated relative reliability of 

control system for 10,000 hr 0.9 <0.4 <0.2 

• SOd _____ _ 
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EFFECTS OF REACTOR DESIGN, COMPONENT CHARACTERISTICS,

AND OPERATING TEMPERATURES ON DIRECT CONVERSION POWER SYSTEMS

by

G. 0. Fitzpatrick and E. J. Britt
Rasor Associates, Inc.
Sunnyvale, California

ABSTRACT

This paper presents the results of a parametric study of unmanned
space nuclear reactor power systems utilizing either thermoelectric or
thermionic energy converters. An in-core reactor design and two heat
pipe cooled out-of-core reactor designs were considered. One of the
out-of-core designs utilized long heat pipes (LHP) directly coupled to
the energy converters. The second utilized a larger number of smaller
heat pipes (mini-pipe) radiatively coupled to the energy converter. In
all cases the entire system, including the power conditioning subsystem
and its radiator, were constrained to be launched by a single shuttle.

The mass and size of each system was studied as a function of
several variables including: power level, lifetime, number and size of
core heat pipes, fuel swelling model, reactor and heat rejection tempera-
tures, converter type and performance level, allowable radiation dose at
the payload, shadow shield cone angle, power conditioning temperature and
efficiency, etc.

The most critical component determining system performance is the
reactor. Its design is driven by concerns for fuel swelling rate which
is in turn dependent on the nature of the swelling, reactor power level,
and the number and size of the heat pipes used to cool the core.

Previous performance projections for the SPAR thermoelectric out-
of-core design were largely confirmed, although production of 100 kWe
will require a thermal power level of 1600 kWt, not 1200 kWj as originally
expected. Such a system can potentially deliver up to 300 RWe prior to
reaching the size limit of the shuttle if a larger number of reactor core
heat pipes are used.

Power levels exceeding 1 1/2 MWe are possible if the reactor core
temperature is increased (above %, 1800 K) to permit use of thermionic
converters. Fuel swelling control in this case should be possible if
the minipipe core design is used.

Power levels of 5 MWe with lifetimes of thousands of hours may be
possible with advances in fuel swelling control and conversion system
performance (either thermionic or thermoelectric). Greater than 10 MWe
may be possible for short lifetimes. The advances required to achieve
these objectives are described.
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Rasor Associates, Inc. 
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This paper presents the results of a parametric study of unmanned 
space nuclear reactor power systems utilizing either thermoelectric or 
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several variables including: power level, lifetime, number and size of 
core heat pipes, fuel swelling model, reactor and heat rejection tempera
tures, converter type and performance level, allowable radiation dose at 
the payload, shadow shield cone angle, power conditioning temperature and 
efficiency, etc. 

The most critical component determining system performance is the 
reactor. Its design is driven by concerns for fuel swelling rate which 
is in turn dependent on the nature of the swelling, reactor power level, 
and the number and size of the heat pipes used to cool the core. 

Previous performance projections for the SPAR thermoelectric out
of-core design were largely confirmed, although production of 100 kWe 
will require a thermal power level of 1600 kWt , not 1200 kWt as originally 
expected. Such a system can potentially del iver up to 300 RWe prior to 
reaching the size limit of the shuttle if a larger number of reactor core 
heat pipes are used. 

Power levels exceeding 1 1/2 ~1We are possible if the- reactor core 
temperature is increased (above ~ 1800 K) to permit use of thermionic 
converters. Fuel swelling control in this case should be possible if 
the minipipe core design is used. 

Power levels of 5 MWe with lifetimes of thousands of hours may be 
possible with advances in fuel swelling control and conversion system 
performance (either thermionic or thermoelectric). Greater than 10 MWe 
may be possible for short lifetimes. The advances required to achieve 
these objectives are described. 
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This study was based on analytical models of each of the key
subsystems of an unmanned reactor space power plant, as shown above.
These subsystems were combined in an overall power plant model which was
constrained to fit within the shuttle bay. Only fast reactors were
considered. Two out-of-core heat pipe cooled reactor designs were tested
utilizing either thermionic or thermoelectric energy converters. One in-
core thermionic reactor design was also considered.
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subsystems of an unmanned reactor space power plant, as shown above. 
These subsystems were combined in an overall power plant model which was 
constrained to fit within the shuttle bay. Only fast reactors were 
considered. Two out-of-core heat pipe cooled reactor designs were tested 
utilizing either thermionic or thermoelectric energy converters. One in
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The first shield location, as illustrated here, is typical of the
SPAR-type system. The proximity of the shield to the reactor results in
a minimal shield mass. However the high temperature heat pipes from the
reactor must pass around or through the reactor, with attendant technical
difficulties.
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The first shield location, as illustrated here, is typical of the 
SPAR-type system. The ·proximity of the shield to the reactor results in 
a minimal shield mass. However the high temperature heat pipes from the 
reactor must pass around or through the reactor, with attendant technical 
difficulties. 
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By locating the converter between the shield and reactor, as shown
here in the mini-pipe design, it is possible to minimize the length of
the high temperature heat pipes. However a large shield is required,
and low temperature heat pipes must still pass the shield to reach the
primary radiator.
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By locating the converter between the shield and reactor, as shown 
here in the mini-pipe design, it is possible to minimize the length of 
the high temperature heat pipes. However a large shield is required, 
and low temperature heat pipes must still pass the shield to reach the 
primary radiator. 
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Radiation coupling of heat from the reactor to the energy converters
was used in the mini-pipe design. This concept eliminates the need for a
high temperature electrical insulator which also passes heat. It permits
mechanical de-coupling of the reactor heat source and energy conversion
subsystems, a significant advantage in avoiding differetial thermal
expansion difficulties.
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high temperature electrical insulator which also passes heat. It permits 
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A variety of 100 kWe designs were studied. Two levels of thermo-

electric performance, well demonstrated and near-term were considered.
Three thermionic operating points were treated, two corresponding to
specific converter demonstrations and the third to an improved near-term
performance level. The reactor temperature for the thermionic systems
is several hundred degrees higher than that of the thermoelectric systems.
Depending on lifetime and design, the specific mass for these systems
varied between 16.5 and 30.5 kg/kWe. The biggest differences between
systems were in size. The thermionic systems are about half the size of
the thermoelectric because of their smaller radiators.
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A variety of 100 kWe designs were studied. Two levels of thermo
electric performance, well demonstrated and near-term were considered. 
Three thermionic operating points were treated, two corresponding to 
specific converter demonstrations and the third to an improved near-term 
performance level. The reactor temperature for the thermionic systems 
is several hundred degrees higher than that of the thermoelectric systems. 
Depending on lifetime and design, the specific mass for these systems 
varied between 16.5 and 30.5 kg/kWe. The biggest differences between 
systems were in size. The thermionic systems are about half the size of 
the thermoelectric because of their smaller radiators. 
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The ability of various systems to scale-up in power is illustrated
here; near-term conversion system performance levels are assumed. Circles
appear on each line when the length of the power system exceeds that of
the shuttle bay. Because of its lower efficiency and heat rejection
temperature the thermoelectric system is size-limited to below 350 kWe.
The in-core thermionic system can achieve 700 kWe. The mini-pipe therm-
ionic design reaches 1.2 MWe in a single shuttle launch.
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here; near-term conversion system performance 1evels are assumed. Circles 
appear on each line when the length of the power system exceeds that of 
the shuttle bay. Because of its lower efficiency and heat rejection 
temperature the thermoe1ectric system is size-limited to be10w 350 kWe. 
The in-core thermionic system can achieve 700 kWe. The mini-pipe therm
ionic design reaches 1.2 MWe in a single shuttle launch. 
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The peak power d-2livered in a pulsed system is illustrated here. It
is assumed that the pulse length is short, on the order of a second or
less. With this constraint the thermionic system can provide pulsed
power of up to 5 MWe. This is the result of the fact that proportionately
little heat flows through the thermionic converter when it is operating
open-circuit and not delivering power. Substantial quantities of heat
continue to flow through the thermoelectric converter under similar open
circuit conditions. The limiting size of the pulsed thermoelectric system
is about the same as a steady-state system.
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The peak power d~livered in a pulsed system is illustrated here. It 
is assumed that the pulse length is short, on the order of a second or 
less. With this constraint the thermionic system can provide pulsed 
power of up to 5 MWe. This is the result of the fact that proportionately 
little heat flows through the thermionic converter when it is operating 
open-circuit and not delivering power. Substantial quantities of heat 
continue to flow through the thermoelectric converter under similar open 
circuit conditions. The limiting size of the pulsed thermoelectric system 
is about the same as a steady-state system. 
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Given shuttle size constraints the thermoelectric system produces
substantially more power than the thermionic system if temperatures are
held below 1400 K. Above about 1500 K the thermionic system is more
effective, even assuming the thermoelectric system could operate at
higher temperatures with the same value of Z (for Si-Ge + GaP) achieved
at its present high temperature limit. The power conditioning radiator
limits the size of the thermionic system to 1.2 MWe, assuming a power
conditioning efficiency of 90% and a power conditioning radiator tempera-
ture of 408 K. Under these conditions there is little incentive to go
above 1700 K with the converter. However, if the power conditioning
efficiency is increased, or its temperature increased, its size is
reduced. Then further increases in converter temperature result in higher
output power levels. As shown, with a power conditioning efficiency of
95% it is reasonable to expect 1.8 MWe with near-term thermionic perfor-
mance and temperatures of 2000 K.
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Given shuttle size constraints the thermoelectric system produces 
substantially more power than the thermionic system if temperatures are 
held below 1400 K. Above about 1500 K the thermionic system is more 
effective, even assuming the thermoelectric system could operate at 
higher temperatur~s with the same value of Z (for Si-Ge + GaP) achieved 
at its present high temperature limit. The power conditioning radiator 
limits the size of the thermionic system to 1.2 MWe, assuming a power 
condition;ng efficiency of 90% and a power conditioning radiator tempera
ture of 408 K. Under these conditions there is little incentive to go 
above 1700 K with the converter. However, if the power conditioning 
efficiency is increase1, or its temperature increased, its size is 
reduced. Then further increases in converter ~emperature result in higher 
output power levels. As shown, with a power conditioning efficiency of 
95% it is reasonable to expect 1.8 MWe with near-term thermionic perfor
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Improvements in conversion system performance can lead to substan-
tially higher power systems. By eliminating the arc-drop in the thermionic
converters, continuous power levels between 2.5 MWe and 5 MWe, become
possible, depending on power conditioner efficiency and design tempera-
ture. Similar-evels would be reached with thermoelectric converters if
their figure-of-merit Z can be increased to above 3 x 10 3 K"' at high
operating temperatures.
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Improvements in conversion system performance can lead to substan
tially higher power systems. By eliminating the arc-drop in the thermionic 
converters, continuous power levels between 2.5 MWe and 5 MWe, become 
possible, depending on power conditioner efficiency and design tempera
ture. Simi lar levels would be reached" with thermoelectric converters if 
their figure-of-merit Z can be increased to above 3 x 10- 3 K- 1 at high 
operating temperatures. 
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An important concern in all reactor power systems with long design
lifetimes is fuel swelling. The studies reported here assumed, conser-
vatively we believe, swelling based on Arrenhius functions of temperature
as described in Reference 1. This plot shows the impact of an even more
conservative assumption; that it is necessary to fill one-half the core
with tungsten, to keep swelling levels to 15%. The mass of a low power
(100 kWe) system might double if this were done, but at I MWe the system
mass would increase only 30%. This illustrates that even extreme measures
may be taken, if necessary, to control fuel swelling and still produce an
acceptable system mass at high power levels.
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An important concern in all reactor power systems with long design 
lifetimes is fuel swelling. The studies reported here assumed, conser
vatively we believe, swelling based on Arrenhius functions of temperature 
as described in Reference 1. This plot shows the impact of an even more 
conservative assumption; that it is necessary to fill one-half the core 
with tun~sten, to keep swelling levels to 15%. The mass of a low power 
(100 kWe) system might double if this were done, but at 1 MWe the system 
mass would increase only 30%. This illustrates that even extreme measures 
may be taken, if necessary, to control fuel swelling and still produce an 
acceptable system mass at high power levels. 
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cor·1PARISON OF NUCLEAR SPACE POWER SYSTEMS 

15- CONE 1/2 ANGLEi 1013 NVTi 107 RAO SYSTEM ""'SS • JRO.TIl POTENT i COMMENTS 
TI: Labontory 100 kWe TO SHUTTLE 

TE: S1·6e+GaP LIMIT 

8M1 SWELLING leO.TfUL'V UOUS 10 ... 
POWER CONOITIONING INCLUDED DUTY 

SYSTEM LIFETIME ~ YRS /1 YR 71 YR 71 YR 7 I 

TE 2200 kg 1970 kg 300 kWe 350 kWe INSIGNIFICANT 
SWELLING LONG, HI TEMP, LONG HEAT PIPE 

TI 2800 2330 600 2600 SWELLING HEAT PIPES 
ACCOMMODATED 

TE 3040 2510 300 320 INSIGNIFICANT I 

HINI HEAT PIPE 
SWELLING LARGE NUMBER TI·· 2150 1650 1200 6000 SWELLING OF SMALL HEAT 
ACCOMMODATED PIPES 

IN-CORE -FLASHLIGHT- - TI - - 750 - COMPLEX CORE· VERY HIGH 
PUMPED LOOP TEMPERATURE 
COOLING CAPABILITY 

• SANDWICH CORE MAY SOLVE SOME OF THESE DIFFICULTIES 
--10 MWE CAN BE PRODUCED FOR APPROXIMATELY ONE HOUR WITH A VARIANT OF THIS DESIGN 
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In conclusion, our studies show the potential for reactor space
power system outputs of one to five megawatts or more. A versatile
computer program is available which can be used to study performance
trade-offs parametrically. It can easily show the system benefits
resulting from advances in reactor design and fuel swelling control,
converter performance, heat transfer system capability, power con-
ditioning characteristics, and radiator design. It should prove to be
a useful tool to program planners in guiding their research efforts.

I

I IV-3-23

1 
I 
I 
I 
C:U, 

b'S 4, -

In conclusion, our studies show the potential for reactor space 
power system outputs of one to five megawatts or more. A versatile 
computer program is available which can be used to study performance 
trade-offs parametrically. It can easily show the system benefits 
resulting from advances in reactor design and fuel swelling control, 
converter performance, heat transfer system capability, power con
ditioning characteristics, and radiator design. It should prove to be 
a useful tool to program planners in guiding their research efforts. 
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GAS COOLED REACTORS SPAN MUCH OF THE HISTORY OF NUCLEAR ENERGY. MAJOR 
TECHNOLOGICAl ADVANCEMENTS IN COMPACTNESS AND HIGH POWER DENSITY WERE 
GAINED FROM THE AIRCRAFT NUCLEAR PROPULSION AND NUCLEAR ROCKET (ROVER) 
PROGRAMS. A MATURE FUEL BEAD TECHNOLOGY HAS BEEN DEMONSTRATED IN RECENT 
YEARS IN REACTORS BUILT IN THE UNITED STATES AND THE FEDERAl REPUBLIC 
OF GERMANY. 
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STARTING AT THE LOS ALAMOS SCIENTIFIC LABORATORY IN THE MID 1950'S, THE ROVER 
PROGRAM EVOLVED THROUGH SEVERAL GENERATIONS OF HYDROGEN COOLED PROPULSION 
REACTORS. THE NERVA SERIES OF TEST REACTORS BUILT BY WESTINGHOUSE PRODUCED 
MORE THAN 1000MW(t) AT 400Q°F - THE OUTPUT OF HOOVER DAM IN THE SIZE OF AN 
OFFICE DESKI LARGER [4OOOMW(t)] PHOEBUS REACTORS WERE BUILT BY LASL AND THE 
NERVA DESIGN WAS APPROACHING FLIGHT ~TED STATUS WHEN THE PROGRAM WAS TERMINATED 
DURING POS'T-APOLLO SPACE ECONOMIES. 
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THIS TABLE LISTS MAJOR TESTS THAT WERE CONDUCTED UNDER ROVER OVER AN EIGHT 
YEAR PERIOD AT NRTS. NEVADA. NUMEROUS TESTS AT POWER AND RAPID TRANSIENTS 
WITH EFFECTIVE AUTOMATIC CONTROL WERE DEMONSTRATED WITH THESE REACTORS - AMONG 
THE HIGHEST POWER DENSITY HEAT ENGINES EVER BUILT BY MAN. 
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NUCLEAR ROCKET TEST SUMMARY 

KIWI-B4D (1 POWER TEST) May, 1964 

KIWI-B4E (2 POWER TESTS) August-September, 1964 

NRX-A2 (2 POWER TESTS) September-October, 1964 

KIWI-TNT January, 1965 

NRX-A3 (3 POWER TESTS) April-May, 1965 

PHOEBUS-1A (1 POWER TEST) June, 1965 
H 
<: + NRX/EST (10 STARTS) Dec., 1965 -March, 1966 
" NRX-AS (2 POWER TESTS) June, 1966 

PHOEBUS-1B (1 POWER TEST) February,1967 

PHOEBUS-2 COLD FLOW TESTS July-August, 1967 

NRX-A6 (1 POWER TEST) December, 1967 
XECF (COLD FLOW) . February-April, 1968 

PHOEBUS-2A (3POWER TESTS) . June-July, 1968 

PEWEE-l (2 POWER TESTS) November-December, 1968 

XE (28 STARTS) December, 1968-August,1969 

NF-1 (4 POWER TESTS) June-July, 1972 
~ h mrs t nn . ,~"."'-_._""_ 
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NERVA CORES CONSISTED OF AN ARRAY OF EXTRUDED GRAPHITE HEXAGONAL BLOCKS. 
0.75 INCHES ACROSS THE FLATS AND EACH CONTAINING 19 HOLES FOR COOLANT FLOW. 
CONTROL PROVISIONS INCLUDED INSERTABLE RODS.PREPOISONING AND ROTATING 
Be REFLECTOR DRUMS. 
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WHILE THE NERVA CORES USED SINGLE LAYERED FUEL BEADS IN THE ELEMENTS, THE 
PRESENT BEAD STATE-OF-THE-ART PROVIDES MULTIPLE BARRIERS FOR FISSION 
PRODUCT RETENTION. TRISO BEADS HAVE BEEN THOROUGHLY DEMONSTRATED IN HTGR'S. 
WEST GERMANY HAS OPERATED PEBBLE BED CORES WITH THESE BEADS WHILE, IN THE 
U.S., THE FORT ST. VRAIN PLANT USES THEM IN FUEL STICKS IN GRAPHITE MODERATOR 
BLOCKS. 
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THIS CHART CONTRASTS THE OPERATING CONDITIONS OF THREE KINOS OF GAS COOLED 
REACTORS. LIGHT WEIGHT NUCLEAR PLANTS (LWNP) HAVE BEEN DESIGNED RECENTLY 
BY WESTINGHOUSE FOR POTENTIAL NAVAL APPLICATIONS. SPACE REACTORS COOLED 
BY HELIUM ARE EXPECTED TO HAVE A GREAT DEAL OF R&D COMMONALITY WITH THE 
LWNP DESIGNS. 
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~ .. GRAPHITE FUEL ELEMENT REQUIREMENTS 

LWNP HTGR NERVA 

;-=' 

COOLANT HELIUM HELJUM HYDROGEN 

COATING NONE NONE CARBIDE 

j H 
< 
I 

o&a 
OPERATING TEMP., of 850 TO 1950 600 TO 2460 ·200 TO 4100 I 

~ 
w 

TEMP. GRADIENT, of/IN. 270 1240 7470 

POWER DENSITY, KW/L 300 40 2140 

MAX. BURN UP, "- 50 75 <0.1 

FISSION PRODUCT RETENTION ~.9999 ~.9999 NOT REQ'D. 

OPERATING TIME, HRS. 10,000 28,000 10 
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THIS FIGURE ILLUSTRATES A CUTAWAY OF ONE SPACE REACTOR DESIGN CONCEPT. 
COOLED BY HELIUM AND REFLECTOR DRUM CONTROL SUPPLEMENTED BY BURNABLE 
POISONS. THIS APPROACH TO SPACE REACTOR CONTROL WAS DEMONSTRATED BY 
THE UNITED STATES IN 1965 WITH THE SNAP-lOA SYSTEM (NAK COOLED) IN 
POLAR ORBIT WHILE A COMPANION GROUND DEMONSTRATION SYSTEM OPERATED 
FOR ONE YEAR WITHOUT ACTIVE CONTROL . 
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GAS COOLED SPACE REACTORS CAN BE BUILT IN THE NEXT FEW YEARS AND THEIR 
PERFORMANCE CAPABILITIES EXCEED THOSE OF THE POWER CONVERSION SYSTEMS 
(PCS) THAT THE REACTORS WILL DRIVE. FOR SPACE APPLICATIONS REQUIRING MW(e), 
THE CLOSED CYCLE BRAYTON CYCLE IS A STRONG CANDIDATE FOR THE PCS. FOR THESE 
HIGH POWER LEVELS, WASTE HEAT REJECTION TO SPACE BY RADIATORS TENDS TO DRIVE 
SYSTEMS TO HIGH OPERATING TEMPERATURES SO THAT REASONABLY SIZED SYSTEM 
ENVELOPE DIMENSIONS CAN BE ATTAINED. THUS, COMPACT, HIGH POWER DENSITY, HIGH 
TEMPERATURE, HIGH BURNUP REACTORS WILL BE NEEDED. THE TECHNOLOGY BASE FOR 
THESE REACTORS IS WELL ESTABLISHED. 
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NEAR TERM ENHANCED 
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GW(t) LEVEL 

I LIFE CONSIDERATIONS 50% FlMA TO 751 FIMA 
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THIS CHART SHOWS CANDIDATE MATERIALS THAT HAVE BEEN IDENTIFIED FOR ALL OF 
THE REACTOR COMPONENTS. WHILE MANY OF THESE MATERIALS WERE USED IN THE ROVER 
PROGRAM. THOSE TESTS WERE SHORT IN DURATION AND APPROPRIATE RDTlE WILL BE 
NEEDED TO QUALIFY MATERIAlS FOR THE EXPECTED LONG DURATION OPERATION OF 
SPACE REACTORS. 
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COMPONENT 

Pressure Vessel 

Core Support Plate 
(uncooled) 

Core Support Plate 
(cooled) 

Reflector 

I nternal Shield 

lateral Support Springs 

structural Rings & Tubes 

CANOl DATE REACTOR ASSEMBLY MATERIALS 

TEMP. STRESS 
(oF) (psi) MATERIALS 

800 30,000 Inconel718 - Yield strength >100 ksi at 800°F 
• SA -533 - 56.5 ksi Yield strength at 8O()OF 

S~ - 30 ksi at 8000F 

1700 2,500 M-22 - 1000 hr. rupture life at 17000F - 28 ksi . 
I 

1250 15, (XX) I nconel 718 - ~tress rU$u re life at 15 ksi - 12500F 
2.8 x 1 hrs. 

800 Nominal Beryllium - swelling <1" at < 9000F and 1022 nvt 

I 

i, 

I 
I 
I 

800 Nominal Tungsten - pressed and sintered powder and 2.6% 
Ni~ Cu, and Fe (Kennertium W-2) 

800 . 30,000 Inconel 718 - Yield strength >100 ksi at SOOOF 
Relaxation in 1022 nvt fluence may be a problem 

800 Nominal I nconel 718 - Yield strength.> 100 ksi at SOOOF 
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THIS CHART SUMMARIZES MAJOR AREAS WHERE RDT&E WILL BE NEEDED BEFORE 
ADVANCED REACTORS CAN BE FLIGHT RATED FOR LONG TIME OPERATION. NONE 
OF THESE AREAS REQUIRE BREAKTHROUGHS BUT RATHER A SERIES OF 
RIGOROUS R&D TESTS AND ANALYSIS TO SUPPORT DESIGN CHOICES AND MATERIALS 
QUALIFICATIONS • 
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RESEARCH & DEVELOPMENT ACTIVITIES NEEDED 

• MATERIALS 

Radiation Effects 
Long Tenn Creep 
Helium (with impurities) Compatibility 

• FUEL BEADS AND ELEMENTS 

Fission Product Retention 
Temperature Limits 
Radiation Effects 

• RELIABILITY 

Instrumentation and Control 
Auxiliary Components 
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COMPACT, HIGH-POWER NUCLEAR REACTOR SYSTEMS BASED ON SNALL
DIAMETER PARTICULATE FUEL

J.R. Powell and T.E. Botts
Department of Nuclear Energy

Brookhaven National Laboratory
Upton, New York 11973

Two compact, high-power nuclear reactor concepts are discussed. Both are
gas-cooled cavity-type reactors which utilize particulate fuel of the type now
used in HTGR reactors. Unshielded reactor volumes ,re on the order of one
cubic meter. The Fixed Bed Reactor (FBR) operatin& temperature is limited to
-2500 K and the output power to 250 N1(e). In the Rotating Bed Reactor (RR),
fuel is held within a rotating porous metal drum as a rotating fluidized bed.
Rotating Bed Reactor outlet temperatures up to -3000 K and output power levels
up to -1000 M1(e) are achievable. Both reactors can be brought up from stand
by to full power in times on the order of a few seconds, due primarily to
the short thermal time constant for the fuel particles which have a character-
istic dimension of 400 p.

Turbine and MID Brayton are the power conversion cycles of choice. Open-
cycle operation is generally favored for applications operating at less than
-1000 sec of equivalent integrated full power. At power levels above 1 MW(e),
the liquid droplet radiator is the favored means of heat rejection. Power
system specific power levels of 10 kW(e)/kg (not including shield) appears to
be quite feasible.

Areas of research interest are materials performance and compatibility;
experimental verification of generic neutronic and thermal hydraulic designs;
and demonstration of fuel performance in the RBR.
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VIEWGRAPH SYNOPSES

1. Both FBR and RBR utilize particulate fuel. The FBR can use existing
HTGR fuel due to its lower outlet temperature. At low-power levels, turbines
are preferred while MHD offers advantages at power levels of hundreds of mega-
watts. Output power levels as low as 100 kW(e) to as high as 1000 MW(e) (with
power densities up to 3000 MW(th)/m 3) appear to be feasible. These very high
peak temperatures allow heat rejection at fairly high temperatures, which is
compatible with radiant heat rejection. Both reactors can be brought from
alert to full power in times on the order of a couple of seconds, due to the
excellent resistance of particle bed cores to thermal shock.

2. The TRISO particle (b) is a currently produced fuel particulate fuel
element which has demonstrated excellent fission product retention to high
burnup at temperatures consistent with FBR/turbine operation. Zirconium carbide
coatings should be used for higher temperature operation.

3. The RBR (shown here as a direct thrust rocket engine) is an externally
moderated cavity-type reactor. Fuel is held in a rotating porous metal drum
and coolant flows through the drum and fuel bed. No structural elements ex-
cept the nozzle and top plate are exposed to hot gas. Control is accomplished
in the reflector via rotating drums with a poison on one side. The reactor is
thermalized, affording excellent control.

4. The FBR contains the fuel bed with an internal high-temperature porous
drum. By trading off some peak temperature, there is no need to maintain rota-
tion. Furthermore, it is possible to place a moderator in the center of the
cavity and smooth out axial and radial power profiles. In both reactors, hydro-
gen is the favored coolant for open-cycle operation and helium is favored for
closed-cycle operation.

5. Fixed Bed Reactor fuel is fully-enriched HTGR fuel identical to that in
use currently in the Fort St. Vrain HTGR. This same fuel with ZrC coating,
would be used for a RBR. Critical masses of ,40 kg of 235U have been calculated
for the RBR.

Extensive discrete ordinate neutron transport calculations as well as
critical experiments on cavity-type reactors indicate that the neutronic be-
havior of both the FBR and RBR are well understood. Kinetics and control still
require further study. No problems are anticipated in these areas based on
initial investigation.

Thermal hydraulics of the fixed bed are well understood and have been
studied extensively. Half-scale cold flow rotating bed experiments have been
carried out. Experiments must still be carried out in a volume heated fluidized
bed.

6. For very low power applications, (<1 MW(e)) turbine or thermoelectric
power conversion with heat pipe radiators and a FBR is the configuration of
choice. Only long operating lifetime, closed-cycle missions are considered
to be of interest.
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For intermediate power levels, (I to 50 MW(e)) turbine power conversion
is preferred. For closed-cycle (long time) applications, a liquid droplet
radiator is chosen.

High power (>50 MW(e)) applications would either be turbine or MHD.
Magnetohydrodynamic is only considered for open cycle due to its very high
operating temperatures.

Total power system weight is the figure of merit at any given power level
used in choosing the preferred configuration.

7. At very low power levels, the radiator weight is relatively small, and the
choice of liquid drop material is not as critical. Oil is preferred as the liquid
droplet radiator medium. Ease of handling and density are the chief factors in-
fluencing this choice. However, vapor pressure and resultant evaporative losses,
place an upper operating limit on all of these materials.

Turbines are relatively light, small, and simple at power levels below
^l00 MW(e). At high power levels (>100 MW(e)), MHD becomes attractive for the
same reasons. Generally, the FBR matches turbines and the RBR, MHD.

8. Criticality considerations leave reactor size and weight constant over a
very wide range of power levels. By 50 MW(e), the reactor is dwarfed by other
components. At power levels above 1-50 MW(e), specific power is "'10 kW(e)/kg.

9. Remaining technical issues pertaining to the FBR pertain chiefly to
characterizing the high-temperature reactor materials. An inner, high-tempera-
ture porous frit for very high temperatures (i.e., >1500 K) would be of interest
and should be investigated. Liquid droplet radiators are vital to all closed-
cycle, high-power systems and must be verified. Finally, full-scale thermal
hydraulic and critical experiments must be carried out to demonstrate reactor
performance.

Remaining technical issues pertaining to the RBR relate primarily to
thermal hydraulics and materials concerned. Further cold flow, as well as
volume heated rotating fluidized bed experiments are required to map out bed
performance more completely. STudy of particle fuel performance pertaining to
hydrogen compatibility, agglomeration, sintering, and erosion is required to
more closely determine the core lifetime limist. Full-scale thermal hydraulic
and critical experiments must be carried out in order to demonstrate reactor
performance.

I
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FEATURES OF BNL COMPACT NUCLEAR POWER SOURCES

I FINE PARTICULATE FUEL (MAY BE IDENTICAL TO HTGR).

I GAS-COOLED (H2, HE, ..

I OUTLET TEPPERATURES UP TO 3000 K.

I OPEN- AND CLOSED-CYCLE OPTIONS.

I FIXED AND FLUIDIZED BED OPTIONS.

I TURBINE OR MHD BRAYTON CYCLES.

I OUTPUT POWER LEVELS RANGE FROM .1 TO 1000 M(E).

6 REACTOR POWER DENSITIES AS HIGHI AS 3000 MW(TH)/M3.

I HIGH REACTOR IILET TEMPERATURES ARE COMPATIBLE WITH

RADIANT HEAT REJECTION.

I VERY FAST STARTUP.
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FEATURES OF BNL CO~iPACT NUCLEAR PQ\o/ER SOURCES 

. . 
• FINE PARTICULATE FUEL (rAY BE IDENTICAL TO HTGR). 

• GAS-COOLED (H2~ HE~ ... ). 

• OUTLET TH'~ERATURES UP TO 3000 K. 

• OPEN- AND CLOSED-CYCLE OPTIONS. 

• FIXED AND FLUIDIZED BED OPTIONS. 

• TURBINE OR MHD BRAYTON CYCLES. 

• OUTPUT Po\lER LEVELS RANGE FROM .1 TO 1000 M'tl{E). 

• REACTOR PO'~ER DENSITIES AS HIGH AS 3000 MW(TH)/M
3• 

• HIGH REACTOR HILET TEMPERATURES ARE CO~PATIBLE WITH 

RADIANT HEAT REJECTION. 

• VERY FAST STARTUP. 
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CHARACTERISTICS OF COMMTERCIAL HTGR FUEL:

- CAN OPERATE UP TO 1600 ',- (FBR REGIME).
- HIGH BURNUP OF FISSILE INVENTORY (>75%).
- EXCELLENT FISSION PRODUCT RETENTION.

- IMMUNE TO THERMVAL SHOCK AND FATIGUE.

- FUEL FOR HIGH-TEtMPERATURE H2-COOLED SYSTEMS.
CAN USE ZRC COATINGS.
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CHARACTERISTICS OF Cor·1r'.ERCIAL HTGR FUEL: 

- CAN OPERATE UP TO 1600 :< CFBR REG I ME) • 
- HIGH BURNUP. OF FISSILE INVENTORY (>75%). 
- EXCELLENT FISSION PRODUCT RETENTION. 
- I~"UNE TO THERrAL SHOCK AND FATIGUE. 
- FUEL FOR HIGH-TEMPERATURE H2-COOLED SYSTEMS. 

CAN USE ZRC COATINGS. 
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FIXED BED REACTOR (EBR)
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TECHNOLOGY STATUS

* FUEL DEVELOPED FOR FBR AND VIRTUALLY DEVELOPED

FOR RBR.

* GOOD NEUTRONICS DATA BASE.

o FIXED BED*REACTOR THERMAL HYDRAULICS WELL UNDER-

STOOD.

* THERMAL HYDRAULICS STUDIED HALF-SCALE COLD FLOW

EXPERIMENTS HAVE DEMONSTRATED THE FEASIBILITY

OF THE RBR.

BROOMIAVN NATIONAL LABORATORYj) j
1V68 ~ASSOCLATED UNIvsMITs. INC.U
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TECHNOLOGY STATUS 

• FUEL DEVELOPED FOR FBR AND VIRTUALLY DEVELOPED 
FOR RBR. 

• GOOD NEUTRONICS DATA BASE. 

• FIXED BED "REACTOR THERrAL HYDRAULICS WELL UNDER
STOOD. 

• THERMAL HYDRAULICS STUDIED HALF-SCALE COLD FLOW 
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OF THE RBR. 
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PRIME POWER-SYSTEM OPTIONS

I LOW POWER (i < 1 MW(E))
o CONVENTIONAL HEAT PIPE RADIATORS

o TURBINE OR THERMOELEZTRIC POWER CONVERSION

* LONG OPERATING LIFETIME

I INTERMEDIATE POWER (1 < < 50 MW(E))

o TURBINE

* CLOSED-CYCLE, LIQUID DROPLET RADIATOR

* OPEN CYCLE FOR SHORT OPERATIONAL LIFETIME

I HIGH POWER ( > 50 MW(E))

o TURBINE OR MHD

s CLOSED-CYCLE, LIQUID DROPLET RADIATOR

* OPEN CYCLE FOR SHORT OPERATIONAL LIFETIME

BROOOIAV9 NAIA WAOZATORYI) I
SOv-6-9 C AcT UNIERSImS wc[.If 

PRIME pmlERSYSTEM OPTIONS 

• LOW POWER (w < 1 MWCE)} 

• CONVENTIONAL HEAT PIPE RADIATORS 
• TURBINE OR THERMOELECTRIC POWER CONVERSION 
• LONG OPERATING LlFETIf"f 

• INTER~fDIATE POWER (1 ~ W < 50 MW(E» 

• TURBINE 
• CLOSED-CYCLEJ LiQUID DROPLET RADIATOR 
• OPEN CYCLE FOR SHORT OPERATIONAL LIFETI~~ 

• HIG~ POr/ER (w ~ 50 MW(E» 

• TURBINE OR flJiD 
• CLOSED-CYCLEJ LIQUID DROPLET RADIATOR 
• OPEN CYCLE FOR SHORT OPERATIONAL LIFETIME 
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PRIMM POWER CYCLE OPTIONS-cont'd
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TECHNICAL ISSUES

FBR

I CHARACTERIZATION OF HIGH TEMPERATURE MATERIALS (E.G.,

FRIT).

I DEMQNSTRATION OF RADIANT HEAT REJECTION VIA STREAMS
OF LIQUID DROPLETS.

5 VERIFICATION OF GENERIC NEUTRONIC AND THERMAL HYDRAULIC

DESIGN.

RBR

I THERMAL HYDRAULIC STUDIES OF VOLUME HEATED ROTATING

FLUIDIZED BEDS.

I EXTENSION OF COLD FLOW EXPERIMENTS TO MORE FULLY MAP

POTENTIAL OPERATING REGIMES.

I MATERIALS COMPATIBILITY (E.G., FUEL-H2 INTERACTIONS

AT HIGH TEMPERATURE).
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I AGGLOMERATION, SINTERING, AND EROSION STUDIES.
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Q & A - J. R. Powell

From: A. Andrews, Rockwell International

If the rotating bed reactor (RBR) utilizing hydrogen as
the working media to drive a turbine is exhausted to space
(since it will be used in open-cycle mode only), what is
maximum operating time assuming a reasonable tank size?

A.
Acceptable operating times depend on efficiency and mis-

sion parameters. For turbines operating at N 25% cycle
efficiency and a minimal 100 Mw(e), operating times of 1000
to 3000 seconds can be visualized. This would require H2
tankage of 8 to 24 tons in orbit.

From: P. J. Turchi, R & D Associates

How much migration of fuel particles out of the bed into
the flow loop will occur?

A.
None in the Fixed Bed Reactor (FBR) option , since the

fuel temperature is low enough (i.e., comparable to HTGR operat-
ing temperatures) that mass transport by volatilization is
negligible. A small amount will probably occur in the
Rotating Bed Reactor (RBR) due to reaction of H2 with the
ZrC coatings on the fuel particle. However, the RBR will
only be used in the open cycle mode, with exhaust directly
to space.
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CLOSED-CYCLE FBR/TURBOGENERATOR SPACE POWER SYSTEM CONCEPT
WITH INTEGRATED ELECTRIC THRUSTERS FOR ORBITAL TRANSPORT

Leik Myrabo
The BDM Corporation
McLean, VA 22209

Figure lA portrays an integrated vehicle concept utilizing shared power
for propulsion and mission payload. This concept ,was developed in an on-going
study under support by AFWL/AFRPL to examine space nuclear-electric systems
with power levels in the range of 10 to hundreds of MW(e).

The concept in Figure 1A utilizes a Fixed Bed Reactor configuration in a
closed-cycle turbogenerator system which rejects heat with triangular Hertzberg
liquid droplet radiators. Power system component technologies are being identi-
fied which hold promise of yielding total power system densities in the range of
0.3 to 0.7 kg/kW(e).

A special set of pressing research needs arise out of integrated space
vehicle systems which share nuclear prime power between propulsion and mission.
For the first time in history, the performance of electric propulsion engines
can be assessed without suffering the weight penalty of a massive power supply.
In the mission treated here, the power supply is part of the payload. This situ-
ation leads to greatly different optimum thruster specific impulses from past
scenarios. Also, because of the large amounts of electrical power available,
new "high-thrust" electric engines which produce hundreds to thousands of new-
tons of thrust must be developed--to keep the total number of engines to a rea-
sonable number. At present thrust levels of ion and MPD engines (e.g., 10 to
20 nt), hundreds of engines would be required to raise the orbit to 100-ton
payloads. Furthermore, since the vehicle cross-sectional area available for
mounting these engines is limited, the thrust/unit exhaust area becomes an
important design parameter.

Other potential areas of propulsion/power-related research involve power
conditioning elements which are shared between mission and propulsion components.
Perhaps new electric engines can be developed to operate directly on the very
high voltages required by certain mission payloads. Alternatively, if the mis-
sion payload requires the generation of large amounts of rf power, efficient,
new electric engines might be designed to use this rf power to significant ad-
vantage, e.g., to ionize or otherwise process the propellant prior to electro-
magnetic acceleration.

Finally, whereas electric engines could potentially operate in a high
vibration environment, mission payloads may need superior levels of vibration
isolation from nuclear-electric power systems.
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CLOSED-CYCLE FBR/TURBOGENERATOR SPACE POWER SYSTEM CONCEPT 
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Figure lA portrays an integrated vehicle concept utilizing shared power 
for propulsion and mission payload. This concept ,~s developed in an on-going 
study under support by AFWL/AFRPL to examine space nuclear-electric systems 
with power levels in the range of 10 to hundreds of MW(e). 

The concept in Figure lA utilizes a Fixed Bed Reactor configuration in a 
closed-cycle turbo generator system which rejects heat with triangular Hertzberg 
liquid droplet radiators. Power system component technologies are being identi
fied which hold promise of yielding total power system densities in the range of 
0.3 to 0.7 kg/kY(e). 

A special set of pressing research needs arise out of integrated space 
vehicle systems which share nuclear prime power between propulsion and mission. 
For the first time in history. the performance of electric propulsion engines 
can be assessed without suffering the weight penalty of a massive power supply. 
In the mission treated here. the power supply is part of the payload. This situ
ation leads to greatly different optimum thruster specific impulses from past 
scenarios. Also. because of the large amounts of electrical power available. 
new "high-thrust" electric engines which produce hundreds to thousands of new
tons of thrust must be developed--to keep the total number of engines to a rea
sonable number. At present thrust levels of ion and MPD engines (e.g •• 10 to 
20 nt). hundreds of engines would be required to raise the orbit to lOO-ton 
payloads. Furthermore. since the vehicle cross-sectional area available for 
mounting these engines is limited. the thrust/unit exhaust area becomes an 
important design parameter. 

Other potential areas of propulsion/power-related research involve power 
conditioning elements which are shared between mission and propulsion components. 
Perhaps new electric engines can be developed to operate directly on the very 
high voltages required by certain mission payloads. Alternatively. if the mis
sion payload requires the generation of large amounts of rf power, efficient, 
new electric engines might be designed to use this rf power to Significant ad
vantage. e.g •• to ionize or otherwise process the propellant prior to electro
magnetic acceleration. 

Finally, whereas electric engines could potentially operate in a high 
vibration environment, mission payloads may need superior levels of vibration 
isolation from nuclear-electric power systems. 
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Figure 2A illustrates another integrated vehicle concept for sharing
power between propulsion and mission payloads requiring 10 to 100 MW(e). The
concept is designed around, the high-temperature (e.g., 3000 K) rotating bed
reactor (REBR) prime power source and open-cycle MRD generation. Orbital trans-
fer is accomplished with direct nuclear rocket propulsion. Reactor afterheat
and auxiliary power for station keeping are handled with a small (e.g., 10%
peak MHD generator power level) closed-cycle turbogenerator system utilizing
a droplet radiator for heat rejection.

As with the previous concept, a number of research issues arise from the
need for power sharing between mission payload and propulsion. In this case,
the development of high-temperature materials are a key research issue, especial-
ly in areas of cooled nozzles and valves which can direct the reactor exhaust
flow alternately to-the MHD generator, bell nozzle (rocket thruster), or closed-
cycle auxiliary turbogenerator system.

Because of the large quantity of H2 fuel carried for o/c MHD generation
which must be stored for long periods, cryogenic reliquefaction systems will
be required to minimize tankage insulation penalties. Vibration isolation of
the mission payload from the power system and refrigerators will be necessary,
and poses an additional research issue.
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the development of high-temperature materials are a key research issue, especial
ly in areas of cooled nozzles and valves which can direct the reactor exhaust 
flow alternately .tothe MilD generator, bell nozzle (rocket thruster), or closed
cycle auxiliary turbogenerator system. 

Because of the large quantity of R2 fuel carried for olc MHO generation 
which must be stored for long periods, cryogenic reliquefaction systems will 
be required to minimize tankage insulation penalties. Vibration isolation of 
the mission payload from the power system and refrigerators will be necessary, 
and poses an additional research issue. 
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Abstract

This paper addresses key philosophical and technical issues associated with
"licensing" reactors to fly in space. First, a short review is presented that
emphasizes organizations and study requirements involved in approval of nuclear
materials in space. The design objectives of previous safety analysis studies are
discussed as well as the key role of the Interagency Nuclear Safety Review Panel
(INSRP). The major question of public intervention in the approval procedure is
also discussed. Second, the paper offers some new ideas on how safety philosophy
and procedures must change to address the realities of the Post-TMI environment.
Third, technical areas needing more research are presented with emphasis on new
questions raised by needed changes in analysis philosophy. Finally, several
challenges are offered to the space power community in the area of safety analysis
for reactors in space.
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SAFETY I.SSUES FOR REACTORS IN SPACE

Good morninq. I am Jim Lee from the Air Force Weapons Lab, Kirtland AFR,

New Mexico. For a few moments, I would like to address what I see as key

issues facing this communityi as we plan for larqe reactors in space. This

discussion will necessarily ignore many important details and concentrate on a

few major items.of particular interest. I will first spend a few moments reviewinq

where we are now in reqards to space nuclear safety analysis to include the

present 'licensing" procedures. I will then offer my ideas on some new philo-

sophies of safety analysis for reactors in space and, finally, discuss some

major technology questions that we must begin to address now.

I
I
I
i
I
I
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WHERE ARE WE NOW?

The plain truth is that the United States has been Jn the space nuclear

business since 1961. We have, over the years, launched 2 spacecraft with

nuclear power sources in the 9.7 W(e) to 500 W(e) range.1 Future RTG

missions, such as Galileo and JSPM, are also planned. As a consequence, we

have been involved in a nuclear safety analysis program. Since its inception,

this program for the safe use of nuclear power in space has involved hundreds

of people and many organizations. Every aspect of this-.oroqram has been dedi-

cated to safety of the public. Throughout these twenty years we have insisted

on stringent design and operational flight safety measures. The primary

safety design objective has been to minimize the potential interaction of

radioactive materials with people and the environment so that any exposure

would be within limits established by international standards. To this end,

design of reactors has emphasized maintaining suhcriticality in all credible

accident environments so that fission products are not generated or released

with core damage. Operational procedures have also required obtaining of a

long enough orbital lifetime to insure decay of the fission product inventory

to background prior to reentry.1
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The procedures and organizations involved In fTfght approval for nuclear

sources are shown in this viewqrach. The key player Is the Interagency

Nuclear Safety Review Panel (INSRP). Its major resoonsibilities are to per-

form safety reviews and develop a safety risk index to compare with mission

benefits. This safety risk index provides the means for establishing flight

approval criteria. Its members are DOE, NASA and DOD, with the NRC, EPA and

NOAA participatinq in the review process. The safety review process beqinsI

with the contractor Issuance of the Safety Analysis Report (SAR). The INSRP

is assisted in its review by scientists and engineers from various government

aqencies to include the Air Force Weapons Lab. After review, the INSRP issues

its Safety Evaluation Report on risk assessment and potential human exposures.

The environment impact is addressed separately. Its fLnal report is sent to

the President with its recomendation about one year prior to the expected

launch date.
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The required safety analysJs documents are outlined in this viewqraoh.

Time does not permit a detailed discussion, but several items are key. First,

there are same similarities in the required documents for space applications

and for civilian power applications. There is one notable exception that will

be addressed later. Second, safety analysis is supposed to begin at the ini-

tiation of the design concept and continue throuqh final launch aporoval. Are

we following our own rules for SPAR? Finally, safety analysis will only be as

good as the quality of the safety analysis-done in support of the INSRP by

agencies not involved as contractors. Do we now have that independent exper-

tise needed to support the INSRP for space reactors?

I
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The above procedures do not properly address the question of public inter-

vention as a leqitimate part of the review system. I know what you are

thinking. For DOD missions, does the public really have a right to comment on

space reactor use plans? My conclusion is that they will intervene anyway! T

have personally faced the same issue In our technoloqy develoment efforts for

the M-X missile system. Who could have foreseen massive intervention hY the

public in a small Air Force soil compressibility test on government land?

Yet, my officers had to go to Federal District Court to qet permission to do

the test. We must plan.for direct or indirect public intervention in our

review process when we consider reactors for space.

I
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WHERE MUST WE GO?

We must first address some Philosophical issues related to safety

' analysis. Some of these issues relate to technical questions, such as, do we

design the reactor to disoerse upon reentry or reenter as larae pieces that

I could be recovered? While these questions are of great interest, they must

wait for future discussions. Other issues are related to manaqement functions

and procedures. Of key importance is, who within the qovernment should do the

safety reviews in support of the INSRP? In order to separate advocacy and

oversiqht, I recomend tat a center of safety analysis expertise be

established within DOD to support the INSRP. While DOE should retain its

I safety responsibility mission, I do not think the safety reviews should be

done within the same organization that Is advocating particular reactor

I desiqns. A logical place for this center in DOn would be the Air Force

i Weapons Lab. Whenever this center is formed, it should beqin, at once, to

develop the tools and personnel capabilities to support safety analysis of

I reactors in sace.

I
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established within DOD to support the I"SRP. While DOE should retain its 

safety responsibility mission. t do not think the safety reviews should be 

done within the same organization that is advocating particular reactor 

desiqns. A logical place for this center in DOn would be the Air Force 

Weapons lab. Whenev~r this center is formed, it should beqin. at once, to 

develop the tools and personnel capabilities to SUPDort safetv analySis of 

reactors in SDace. . 
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Secondly,, our philosophy of safety analysis has heen too narrow in scope.

I n'the past and must be'expanded to address the new realities of larqe reactor

sources in-space. We must not only protect the biosphere from radiation, but

we must design safety features so the plant can protect itself. Consider TMI

for a ,nment.2  The design protected the people and the environment, but GPU

lost the ranch. We, the Air Force, cannot afford to b,,lif a hillinn dnllar

"Death Star" and not insure that power plant safety/protection desiqn

is adequate to prevent loss of that expensive resource. It is not simply a

question of reliability; it goes well beyond that. Resource protection as a

safety concept would prevent adverse public perceptions due to the loss of one

of our major space resources. I)estruction of a large reactor might mean that,

not only the plant was lost, but the application may not he recoverable. For

example, it might be possible to on-orbit replace a dead power source and

reuse the weapons platform if it were not destroyed or contaminated by the

power source failure. This is especially important due to the prolected costs

J and lead times to replace these-cmolex weapons systems. Finally, radiation

released during an on-orbit accident might not affect the biosphere hut deny

us use of certain key terrain (orbits) in space. As the role of man in soace

increases, especially in military operations, such considerations will become

increasingly more important.

We must, therefore, expand our safety analysis such that protection of the

reactor itself shares the spotlight with safety to the public. We must

expand our consideration of on-orbit operations to better understand the set

3 of credible design basis events. The safety analvis tasks of today have at

once become more crucial and more complex.
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TECHNOLOGY QUESTIONS

In this forum, we cannot address detailed technical safety questions that

must be answered if we are to use reactors in space. We can only sumarize

them here by general category.

First, we need to better understand the environments associated with

Dostulated safety related events. This is especially true for the space

shuttle system. As an exaple, consider that the overpressure enviroment'on

the first shuttle launch was 2.5 psi on the structure instead of the expected

0.5 psi. Uncertainties obviously &bound. Careful definition of environments

associated with explosion overpressures, projectile impact, land or water

impact, or propellant fires is an essential first steo in safety analvsis.i

Second, as specific Air Force applications evolve, we must develop our

capability to perform mission characterization. Dave Ruden has made a first

steo in this characterization by Identifying five mission classes based on

orbit altitude and operatinq scenqro.3 This characterization will help us

identify potential problem areas and lay the foundation for determininq the desiqn

basis events.

Third, even with accurate enviroment definition and identification of

oroper design hasis accidents, the-safety analyst must have the proper analy-

tical and experimental tools. A key concern is develoment of a good tool to

perform shock-induced criticality studies. 4 Wiile bomb oodes may offer a startinq

point, they must at least be tailored and modified tohandle our special reac-

tor cases. In the POST-TNi enyironment, critical safety analysis may have to

be backed uo with extensive experimental results. We should heqin now develop-

ment of HE simulators to model material behavior under shock loading

conditions.

3 Finally, since safety analysis Oor reactors in space is not a cnmon event

in this country, a detailed review of the state-of-the-art is required. This

study should Identify analytical and experimental tools as well as data that

are applicable to our task. It should also lay out a technolnov roadway to

bring safety analysis for space into the POST-ThI age.
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SUMARY

In closing, we will only be iscessful in meeting large space Dower

requirements with reactors if we do our safety jobs correctly. I challenge

the community to action in the following areas:

a. Plan now for public intervention.

b. Establish a center of safety analysis expertise--! recommend AFWL.

c. Expand our philosophy of safety analysis to include Resource Protection.

d. Begin now to answer the technolog.y questions associated with the

safety of reactors in space..

II

n

IV-7-18 IT

-----~--~. ,.-..-..-.-.._-----------------

SlNtARY 

In closing, we will onlv be IICcessful in meeting larqe space Dower 

requirements with reactors if we do our safety jobs correctly. t challenge 

the community to actfon fn the following areas: 

a. Plan now for public intervention. 

b. Establish a center of safetv, an~lys1s expert1se--t recommend AFWL. 

c. Expand our philosoph.v of safety analysts to include Resource Protection. 

d. Begin now to answer the technolog,Y questions associated with the 

safety of reactors in space., 

I~'-7-18 

-, - -- -.----

.I 
II 
n 



LU 
0

zz

I- 
Z

(A
 

0
0

z 
L

U

k6 
I.

IV-7-1

H 
<: 

------ CHALLENGES 

.. 

. ADDRESS THE ISSUE OF PUBLIC INTERVENTION 

FORM A CENTER OF SAFETY ANALYSIS EXPERTISE 

'_TE RESOURCE 
PttLOSOPHY 

1 BEGIN NOW TO ADDRESS QUESTIONS I-' 
\D 

• 
• 

.~ 



Q & A - J. H. LEE

From: Roy Pettis

How can we best present the use of nuclear power, when
technically justified, to maximize public acceptance?

A.
I feel there are two keys. First, I suspect we will

only be able to sell reactors in space if we can convince
the public that there is no other way to do it (No one likes
nuc weapons but all realize we can't do without them.)
Second, acceptability will only follow if the public has
total confidence in our safety program - again I point to
the safety of nuclear weapons as an example.

From: P. J. Turchi, R & D Associates

Please list some research tools needed for space nuclear
safety analysis center.

A.
A "partial" list

1. Shock induced criticality codes - adapt hydro codes
if possible

2. System analyses codes applied to complex space
reactors

3. Better atmospheric dispersion codes and analyze
reentry events

4. Pressure volume relationships for reactor materials
under shock loading conditions - material properties and
models at high loading rates.

5. 2- and 3-D radiation transport codes--vectorized for
Cray.
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AREAS FOR RESEARCH EMPHASIS IN DESIGN OF THE
SPACE POWER ADVANCED REACTOR

Mohamed S. El-Genk
David M. Woodall

Department of Chemical and Nuclear Engineering
The University of New Mexico

Albuquerque, New Mexico 87131

ABSTRACT

The extension of the current planetary exploration program

beyond Saturn depends on the availability of a primary power

source that could provide a large amount of electricity over an

ex;ended period of time (e.g., 7 to 10 years). For such a pur-

pose, nuclear reactors are superior to other power options such

as chemical, radioisotopic, and solar energy. Nuclear reactors

unlock limitations on energy production for various space appli-

cations. Examples are ion thrusters to transfer satellites from

low earth orbit to geosynchronous orbit, laser and particle beam

guns, space stations, lunar settlements, high power radars, and

large satellites for deep space exploration. Of all the present

designs of space nuclear reactors, the Space Power Advanced Reac-
tor (SPAR) appears to be the most complete design. However,

additional research is needed before a prototype unit (100 kW(e))

could be built. The purpose of this paper is to identify andI!
discuss some of the areas for research emphasis which are likely

to expedite the development of the current SPAR technology.
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ABSTRACT 

-

The extension of the current planetary exploration program 
beyond Saturn depends on the availability of a primary power 
source that could provide a large amount of electricity over an 
ex;ended period of time (e.g., 7 to 10 years). For such a pur
pose, nuclear reactors are superior to other power options such 
as chemical, radioisotopic, and solar energy. Nuclear reactors 
unlock limitations on energy production for various space appli
cations. Examples are ion thrusters to transfer satellites from 
low earth orbit to geosynchronous orbit, laser and particle beam 
guns. space stations. lunar settlements. high power ~adars. and 
large satellites for deep space exploration. Of all the present 
designs of space nuclear reactors. the Space Power Advanced Reac
tor (SPAR) appears to be the most complete design. However,. 
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could be built. The purpose of this paper is to identify and 
discuss some of the areas for research emphasis which are likely 
to expedite the development of the current SPAR technology. 
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1 1. INTRODUCTION

Based on the present technology, the primary power sources

available for use in space satellites are either chemical, solar,

radioisotopic, or nuclear reactors [1,2]. Figure 1 displays the
(length and level of power generation the above-mentioned technol-

ogies are capable of producing [1]. As shown in Figure 1, chemi-

cal combustion is capable of producing very high power due to the
high combustion rate of the fuel used. Nevertheless, such a'mode

of power generation is only feasible for very short missions

because of the large mass and volume of the fuel. Radioisotopic
units are usually fueled with Pu-238 (half-life of -87.2 years)
to provide long operational time. This lowers the specific power

and limits the sensible power level of such units to approximate-
j ly 1 kW(e). Solar arrays and nuclear reactors are both capable

of providing power for extended missions of several years. Table
1 compares solar to nuclear power at three levels of electrical

power output [1]. For low power requirements (less than 10
kW(e)) solar and nuclear technologies are comparable. For large
power requirements, however, nuclear reactors are superior to

solar arrays.
Present designs of space reactors are either aimed at under

100 kW(e) or over the 10 MW(e) ranges [1-7]. Of all the designs,

3the Space Power Advanced Reactor (SPAR) appear to be the most
complete and prevalent design. The basic concepts on which the
reference SPAR design (100 kW(e)) is based are sound and reason-

able. However, only through further advancement in present tech-
nology can a prototype unit be built. The objective of this

5paper is to identify and discuss areas for research emphasis
which are most likely to expedite the development of SPAR tech-

3 nology. The design characteristics of the current SPAR design

are sunmarized in the following section. Research areas suitableI
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Table 1. Comparison Between Solar Array and Nuclear Reactors

Based on Projected Technology

10 kWe 50 kWe 100 kWe

Solar Nuclear Solar Nuclear Solar Nuclear

W/kg 24 14 24 41 22 55

Cost ($M) 8 7 32 10 63 14

Shuttle
Compatible
(-1910 kg) Yes Yes Difficult Yes No Yes

Space Flight Demon- Possible Possible Possible Doubtful Possible

strated

Feature

Orientation Sunward None - No power transfer slip rings,
array deployment, tracking disturbances,
or battery cycle problem

Location Shadowed by large Minimize shielding
antennas

Maneuverability Difficult fold-up No problem
arrays

Radiation

Natural Degrades No effects

Induced None Shielding necessary

Reliability 70-90% 95%

Safety & Handling None Flight-tested on SNAP 1OA

j Disposal None Long-term earth or sun orbit

Maintainability Large structure Manned shielding
Interference

I
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for future investigation relative to the development of the SPAR

design are discussed in Section III. Summary and conclusions are

presented in Section IV. References are listed in Section V.
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2. SPACE POWER ADVANCED REACTOR

The Space Power Advanced Reactor is currently being investi-

gated at both the Los Alamos National Laboratory (LANL) and the

Jet Propulsion Laboratory. The SPAR program is an effort ini-

tiated by the Department of Energy to bring the technology re-

quired to develop such a reactor to the point where a working

model is built and operated successfully. SPAR is a 100 kW(e)

fast reactor, designed to produce about 1400 kW of thermal energy

at a core operating temperature of 1400 K. An overall view of

the SPAR system is shown in Figure 2, and a cutaway view is pre-

sented in Figure 3. The reactor core shown in Figure 4 consists

of 115 layers of 2 mm thick, 93 percent enriched U02 tiles sand-

wiched between 0.5 on thick molybdenum (Mo) sheets. The Mo

sheets function as fins to transfer the heat from the fuel tiles

to the core heat pipes, which is the primary core cooling system.

In the reference SPAR design, the core heat pipes are made

of Mo with liquid sodium as the working fluid. A Mo-13% Rh alloy

which is more ductile than Mo at room temperature is being inves-

tigated to better accept the ground handling and launch mechani-

cal loads. A total of 93 heat pipes are spaced in the reactor

core so that all pipes receive equal heat loading.

The thermal energy from the reactor core is transferred via

the core heat pipes to silicon-germanium thermoelectric modules,

where the heat is partially converted into electric power. The

conversion efficiency of these modules is about 9 percent; thus,

for a 1200 kW(th) reactor unit (-100 kW(e)), the waste hee

would be in the order of 1100 kW thermal. Waste heat is trans-

ferred from the thermoelectric modules to the radiator panel

where it Is radiated into space.

The radiator panel consists of 360 titanium-potassium heat

pipes, each of which is 5.3 m long, and dissipates up to 3 kW of

8
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conversion efficiency of these modules is about 9 percent; thus, 
for a 1200 kW{th) reactor unit (-100 kW(e}), the waste h~~~ 
would be in the order of 1100 kW thermal. Waste heat is trans
ferred from the thermoelectric modules to the radiator panel 
where it is radiated into space. 

The radiator panel consists of 360 titanium-potassium heat 
pipes, each of which is 5.3 m long, and dissipates up to 3 kW of 
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power into space. The radiator temperature is approximately

equal to the cold side temperature of thermoelectric modules

(-775 K). At such a low temperature, a large surface area for

the radiator is required. As a result, the radiator becomes the

largest and most massive component of the SPAR power system.

Above the core, there is a 100 mm thick beryllium oxide

(BeO) neutron reflector. The reflector and core are contained in

a Mo can, which is wrapped in a ZrO insulator to insure that Mo

does not react chemically with the BeO reflector. The reactor

core is controlled by twelve rotating control drums. Each drum

contains an absorber segment of B4C that sets in a Be body. The

radiation shield around the reactor core protects radiation sen-

sitive instruments, and other parts of the spacecraft from

nuclear radiation.

The reference SPAR will weigh about 1700 kg and is designed

to operate for seven years with no maintenance, thus requiring a

minimum of single-failure points. Much research has been done to

identify the single-failure points of SPAR and compare them to

those for gas- and liquid-cooled reactors [5-8]. It was con-

cluded that a heat pipe reactor with thermoelectric power conver-

sion inherently avoids single-failure points E1-3]. Furthermore,

heat pipes are more attractive as heat transport devices than

gas- and liquid-cooled systems with respect to reactor emergency

cool down.

To provide emergency cooldown of the reactor core, gas- and

liquid-cooled systems require large fluid storage systems, an

alternate power source to drive the coolant through the core, a

heat exchanger to the radiator, valves and a complex hydraulic

control system. The heat pipe reactor offers a better alterna-

tive to an emergency cooldown accumulator and fluid system that

is reliable, simple, and lightweight. The core heat pipes are

extended beyond the converter heat transfer system to a high
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temperature radiator which is designed to operate at 1275 K.

Heat pipe design for emergency cooldown is delineated in Figure

5. During normal operation, the gas in the reservoir acts to

prevent heat from reaching the emergency cooldown radiator.

During an emergency shutdown, the heat not removed from the

converter would compress the gas and thus allow the heat to be

transferred to the emergency cooldown radiator.

The basic concepts on which the SPAR design is based are

sound and reasonable. However, further research is needed before

a prototype unit could be built and successfully operated.

Research areas of concern for the development of the SPAR design

are discussed in the following section.
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3. AREAS FOR RESEARCH EMPHASIS IN THE SPAR DESIGN

Research areas of concern at the current time include: U02

fuel behavior (e.g., fuel swelling and sublimation); transport

process of U02 fuel vapor and gaseous volatile fission products,

reactor core design, radiator heat pipes, and thermoelectric con-

verters. These areas are discussed with some detail in the fol-

lowing subsection. Table 2 summarizes some of the research ideas

suitable for future investigation [9].

3.1 U02 Fuel Swelling and Potential Failure of the Core Heat

The predominant concern with regard to U02 fuel behavior and

transport are fuel swelling and fuel sublimation. Fuel swelling

could cause impingement on the core heat pipes if sufficient

clearance is not provided. The inpingement of swollen U02 tiles

on core heat pipes could rupture the pipe walls. The accumula-

tion of impurities in the wick of the heat pipes could impair

their performance, and eventually induce hot spots causing the

pipes to fail due to the wall melting. Other modes of heat pipe

failures are: embrittlement failure of Mo wall due to chemical

reaction with gaseous and volatile fission products, and stress-

corrosion cracking due to the absorption of fission products such

as cesium, iodine, and hydrogen.

The failure of a single heat pipe in the core could induce

local overheating and might eventually induce subsequent failure

of additional heat pipes. At present, there is a need to develop

analytical models to assess the potential causes of a heat pipe

failure, and to describe the different modes of failure propaga-

tion in the core.

3.2 U02 Fuel Sublimation

The sublimation of solid U02 fuel does not represent a prob-

lem as long as it remains within the reactor core space. In
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Table 2. Research Ideas Relative to the Design of the Space
Power Advanced Reactor

1. DESIGN OF HEAT PIPE REACTORS

(a) Fuel Swelling Models for Unconfined U02 Wafers

(b) Thermal-Stress Redeposition Models

(c) Temperature Brazes Below Heat Pipe Recrystallization
Temperature

(d) Fission Products Transport Model

2. HIGH-TEMPERATURE HEAT PIPES

(a) Thermal-Hydraulic-Chemical Model of Heat Pipe

(b) Enhancement of Current Theoretical Model

(c) Emissivity Coatings at 1500 K

3. THERMAL COUPLING DEVICES

(a) Good Thermal Contact on Clamped Solids

(b) Heat Pipe-to-Heat Pipe Coupling Devices

4. Electrical Conversion

(a) Thermoelectric Theory on Carrier Charge Mobility

(b) High-Temperature Insulators (>1500 K)

(c) High-Temperature, High-Efficiency Thermoelectric
Materials

(d) Long-Life, High-Temperature Turbines (1500 K)

(e) Long-Life, High-Temperature Electromagnetic Pumps
(1500 K)

5. REJECT HEAT SYSTEMS

(a) Hypervelocity Devices for Meteoroid Impact Simulation
at Elevated Temperatures

(b) Innovative Radiator Designs for Megawatt-Level Rejection
System
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fact, the sublimation of UOZ fuel provides means to prevent local

overheating in the core by transporting U02 vapor from the hot to

the cold spots within the core. Nevertheless, difficulties might

arise as a result of the deposit, and solidification of U02 vapor

on the walls of the core container. Such deposition could cause

the can to be tightly sealed and eventually induce pressurization

of the core. This would also increase the residency time of fis-

sion products, and in turn, their chemical reaction with core

components. On the other hand, the leakage of U02 vapor into

space might result in a change in core criticality, thus impair-

ing the overall system operation. Better understanding of these

transport processes of U02 vapor and gaseous fission products

could be obtained through the development of physical models

which would provide an accurate description of the different

transport processes within the core as well as the chemical reac-

tion of fission products with core material.

3.3 Heat Pipes Peformance

A concern in the development of longer core heat pipes (more

than 2 m long) is to improve the heat pipe model to correlate

more closely with experimental data. Another area of investiga-

tion is increasing the emissivity of the radiator heat pipes. At

present, two of the limiting factors on heat transfer in the core

are the conductive heat transfer to the heat pipes from the Mo
sheets; and the heat transfer to the thermoelectric modules from

core heat pipes. Of interest would be bonding techniques which

could reduce the resistivity of these junctions.

3.4 Thermoelectric Converters

Investigation of theory as well as the development of

improved thermoelectric materials is desired. However, for

future scaling up of the reactor power, liquid-metal dynamic
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systems would be superior. Supportive of these interests would

be investigation into reliable turbine and electromagnetic

pumps. A study to use an MHD system would also be of interest.

3.5 Heat Rejection Systems

Further research Is also needed to determine the effect of

meteroid impact on the radiating panels. To facilitate such

investigation, a device capable of discharging high-velocity par-

ticles is desired. Because of the large mass and volume of the

radiator in the present SPAR system, innovative methods of waste

heat disposal are of particular interest. Especially with regard

to the scale up of SPAR technology to higher powers. Of particu-

lar interest is the power range from 1 to 10 MW(e). This would

provide self-sufficiency for large satellites, for use as defense

stations and for deep space exploration missions.

The key for building a higher power nuclear reactor, utiliz-

ing the SPAR technology is twofold: (a) to increase the oper-

ating temperature of the core and that of the waste heat radia-

tor, and (b) to improve the efficiency of the energy conversion

(thermal-to-electrical conversion) process. The advantage of

increasing the conversion efficiency is to reduce the thermal

loading of the reactor core for the same electric power output,

and to reduce the amount of waste heat to be radiated into space

(which means smaller radiator size).
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4. SUMMARY AND CONCLUSIONS

The Space Power Advance Reactor design appears to be the

most complete and prevalent design at the present time. However,

additional research is required before a working model is built.

Areas for research emphasis are summarized and discussed. Of

major concern are: the U02 fuel swelling and potential failure of

core heat pipes; transport of UO2 fuel vapor, gaseous and vola-

tile fission products within the reactor core; the heat rejection

system, and the performance of the heat pipes.

Analytical models are needed: (a) to assess the potential

causes of heat pipe failure and to describe the different modes

of failure propagation in the reactor core, (b) to provide an

accurate description. of the different mass transport processes in

the core (e.g., U02 fuel vapor, gaseous, and volatile fission

products) and of the chemical reactions of fission products with

core material, and (c) to calculate the swelling of unconfined

U02 fuel in the core.

Improving the heat pipe model to correlate more closely with

the experimental data is a major concern in the development of

longer heat pipes (in excess of 2 m). Investigation of theory as

well as the development of improved thermoelectric materials is

discussed. A study to use other energy conversion systems such

as liquid-metal cooling, or an MHD system is of interest. These

systems are superior to the thermoelectric conversion units for

the future scale up of SPAR technology to higher power. Innova-

tive methods for waste heat disposal and for improving the over-

all efficiency are of equal importance, especially in reducing

the size of the reference SPAR design or upgrading the design to

higher power (e.g., in the range of 1 to 10 MW(e)).
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INTRODUCTION

Commercial nuclear reactors have power densities ranging from about

0.5 MW/m3 to nearly 400 MW/m3 [1] with LWR's being between 0 and

MlO0 MW/m3 , generally limited by the cooling efficiency of the working

fluid and the thermal limits of the fuels. Power densities are gener-

ally limited by the surface-to-volume ratio of the fuel, for a given

coolant. LMFBR's having the highest power densities have area densities

of the order of 100-500 M2/m3.

Attractive options for high power, high power density, low weight appli-

cations are Fixed Bed and Rotating Bed Nuclear Reactors in which the heat

transfer area densities for the fuel are increased 1-2 orders of magni-

tude. In the rotating fluidized bed (RBR) system first'described by

Hatch et al.,[2] and later by othersJ 3'83 the fuel in the form of

100-500 pm-diameter particles is contained in a porous, rotating cylin-

der. The coolant, which may be a low molecular Weight gas to provide

high specific impulse in the case of a propulsion system, would flow

radially inward through the porous cylinder and the fuel, causing the

fuel to partially or totally levitate (fluidize). The high rotational

g-fields thus allow for large flow rates with resultant efficient heat

transfer. Power densities at 100 MWt may thus easily reach 7000 MW/m
3

and potentials to 50,000 MW/m3 seem likely, even with gas cooling. With

such small fuel particles, the fi.el remains within I-IOK of the gas tem-

perature. In the fixed bed (FBR) concept the fuel is simply held fixed.

This concept seems appropriate for power levels up to 100 MW.
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and potentials to 50,000 MW/m3 seem likely. even with gas cooling. With 

such small fuel particles, the fl.t!l remains within l-lOK of the gas tern

peratur~. In the fixed bed (FBR) concept the fuel is simply held fixed • 

This concept seems appropriate for power levels up to 100 MW. 
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Because packed and fluidized beds have been used for many years in

the chemical industry, there is a wealth of information, mostly empir-

ical regarding the thermofluid mechanics of such devices. However, the

application of this technology base to high 9-field application is largely

unproven. This paper will briefly describe the thermal hydraulic be-

havior of the RBR and identify the research required to provide a firm

technological foundation for RBR design. Research required for the FBR

is also identified.

TECHNICAL DESCRIPTIO4

Pictured schematically in Figure 1, the coolant would flow axially

over the outside of a rotating porous cylinder containing spherical fuel

particles, probably in the 100-500 pm diameter range. The working fluid

would enter the cylinder through the porous wall cf the cylinder and

cause the particles to expand from the pack te due to the induced

I drag. The degree of expansion would be controlled by the rotational

speed of the cylinder which would impart an artificial gravitational

I field due to centrifugal forces. As a result, high flow rates and re-

lative velocities of the working fluid with respect to the particles

could be maintained while keeping bed expansion below the carryover limit.

3The net result of this concept is to increase the heat transfer
surface area density by a substantial amount (perhaps more than two orders

I of magnitude depending on particle sizes) from conventional heat systems

while still maintaining excellent heat transfer. For instance, typical

bed parameters at 15 and 150 times earth-normal gravity are given in

Table 1. The area densities for a bed occupying approximately 80% of
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the cylinder volume run from about 5000 m2/m
3 to well over 100,000 m /m3

for particles ranging in size from 500 microns down to 20 um. The

Archimedes numbers (Ar) and Reynolds numbers (Re) range from those typ-

ical of linear, l-g beds to values well over the range of beds encoun-

tered in the chemical industry. Nusselt numbers (Nu) are quite large

for such small spheres when gas is the coolant and, combined with the

small diameters of the particles, lead to quite high values of heat ex-

change coefficient.J33 The net result is to gain dramatically in power

density relative to currently available hardware.

For this application "up" is considered as "in" with ground being

the inside surface of the porous cylinder, the maximum radius of the

fuel bed, r=R. The drift flux is given by,

gs= (1-O)Vr (l-c)n+lv, = Cjg -(1-)js 0

where v V - v is the relative velocity between the coolant and the

solid particles, the j's are volume fluxes (superficial velocities),

c is the fuel volume fraction, and n is the exponent relating the rela-

tive velocity to the terminal settling velocity of the fuel particle,

v. , and the coolant fraction. Note that in the present case Js a 0

and Jg /7r2 Lp The coolant mass flow rate, mg. per unit local

area (nr2L) divided by the coolant density, pg, varies with position.
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______ mK hk A/VU-1

6-W Ar Re Nu h- Ar Re Nu h kW

20 565 17 5.39 120 56 2.4 3.90 87 1.2xl 05

50 8830 123 8.73 78 883 24 5.79 52 5xl0 4

100 70650 445 13.3 59 7065 106 8.37 37 2.5xl 04

500 8.83x10 6  5171 39.9 179 8.83x10 5  1635 23.3 21 5000

150 gs 15 g's

Table 1. Rotating bed parameters for beds operating at
150 times earth-normal gravity with hydrogen
at 100 bar and 10000 K.

The form of Equation (1) is especially convenient since the term in

the terminal velocity vanishes in both concentration limits, c-o and

I € -l, while the term in the volume fluxes is linear in e. As shown in

Figure 2, (plotted in terms of the coolant volume fraction ctl-c), the

Sintersectionofthe two represents the operating point for the system.

As the coolant flux is increased successively from state 1 through to

state 6, the fuel bed expands (Figure 3) until no further simultaneous

3 solution is possible at which point"flooding"occurs and fuel particles

would begin to be carried over into the exhaust.

I The terminal velocity of the fuel particles, v., may be determined

from the relation,

2 4 Qp0 4CD Re2= 2 2 )  Ar (2)
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:: the terminal vel~city vanishes in both concent~ation limits, £~ and 
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£+1, while the term in the volume fluxes is linear in E. As shown in 

Figure 2, (plotted in terms of the coolant volume fraction a-l-£), the 

intersection of the two represents the operating point for the system. 

As the coolant flux is increased successively from state 1 through to 

state 6, the fuel bed expands (Figure 3) until no further simultaneous 

solution is possible at which point"flooding"occurs and fuel particles 

would begin to be carried over into the exhaust. 

The terminal velocity of the fuel particles, ve ' may be determined 

from the relation, 

gPg 6P6
3 

Co Re! = ; (~2 ) = 4 Ar (2) 
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5

where CD is the drag coefficient, Rem the particle terminal Reynold's

number, g is the local body force, p9 and Ap are the density of the

coolant and difference in density between the coolant and the fuel par-

ticles of size 6, and )j is the coolant viscosity. The terms in paren-

theses is termed the Archimedes number, Ar. Since the drag coefficient

is uniquely dependent on the Reynolds number for smooth spheres, the

terminal velocity is uniquely determined by specifying the Archimedes

number, i.e., the fluid state and particle size.

To avoid the transcendental nature of determining Re. and thus v,

Equation (2) has been approximately inverted through the use of the

Schiller and Nauman [9] drag expressions to yield,

Ar C + 0.0487 (4 Ar) 0.452 -1 Ar < 3.227x10 5

Re. (3)

11.74 /r Ar 3.227x10 5

accurate within 6.5%. Functional continuity is provided at the cross-

over value corresponding to a Reynolds number of 989, beyond which the

drag coefficient is taken constant at CD a 0.44.

The exponent n in (1) has been taken to be that given by the cor-

relation of Richardson and Zakit 10] for an infinite field,
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where Co is the drag coefficient, Re~ the particle tenninal Reynold's 

number, g is the local body force, Pg and Ap are the density of the 

coolant and difference in density between the coolant and the fuel par

ticles of size 6, and ~ is the coolant viscosity. The tenns in paren- . 
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is uniquely dependent on the Reynolds number for smooth spheres, the 
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To avoid the transcendental nature of detennining Re~ and thus v~, 
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Schiller and Nauman[9] drag expressions to yield, 

Re .\~ [1 + 0.0487 (i Ar) 0.452]-1 

- 1. 74 .fAr-

Ar < 3.227xlOS 

- Ar > 3.227xlOS 
(3) 

accurate within 6.5S. Functional continuity is provided at the cross

over value corresponding to a Reynolds number of 989, beyond which the 

drag coefficient is taken constant at Co • 0.44. 

The exponent n in (1) has been taken to be that given by the cor

relation of Richardson and Zaki[lO] for an infinite field, 
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4.65 Re,, < 0.2

4.35 Re,, -0.03 Re. e [0.2,1.0)
45Rea 0.1 Re. e [1,200) (4)

2.39 Re, > 200

The point of minimum fluidization is found from Equation (1) where

the solid fraction c, is taken as c0 , that corresponding to the packing

fraction of the packed bed, 0.65 for the results reported herein. This

may be written in dimensionless form as,

gm(1-c )n+l
9 m f guz 0(5)

Calculations are shown for a coolant having a density of 0.8 kg/m
3

and a viscosity of 2xlO "5 kg/m-s. Fuel density, was taken to be 8500 kg/m3 .

Figure 4 shows the results for a thin bed, initial packed bed height of

ho a 0.5 M,with co a 0.65. As the gas flows through the bed it accel-

erates due to decreasing flow area, and experiences a decreasing g-field,

rG2 . (The fuel bed itself is judged to rotate as a fixed body. even

though the gas core above the fuel behaves as a potential vortex.) Since

h0is small, changes in jg and g are small and the bed expands relatively

uniformly. A reduction in g-field by a factor of 25 due to speed re-

duction.only results in a doubling of the bed height. For the thick

bed shown in Figure 6, ho/RuO.4, both the coolant volume flux and the

local g-field changes substantially through the bed and the expansion
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is much less uniform. In this case, reduction in speed by a factor of

3 yields nearly double expansion of the bed which approaches the flood-

ing limit at the inner periphery.

Figures 5 and 7 show similar calculations for the case of hydrogen

as a coolant where the density was calculated based on the ideal gas

law. It is clearly seen that the decreased density with increased tem-

perature causes steeper coolant volume fraction profits. In the thick

bed case (Figure 7) there is little heating being accomplished in the

inner third of the bed due to the reduced fuel concentration, indicating

that thinner beds may be more desirable.

RBR RESEARCH QUESTIONS

Because packed and fluidized beds have been used for many years in

the chemical industry, there is a wealth of information, mostly empirical

regarding the thermofluid mechanics of such devices, However, the appli-

cation of this technology base to high g-field application is largely

unproven. In view of this and in some areas a complete lack of infor-

mation, research topics have been identified as delineated below and in

Table 2.

Packed Bed Zone

Pressure gradients in the packed bed include gravitational, accel- J

erational and frictional effects, and must account for the variable flow

area and body forces. The former are straightforward but empirical

methods for calculating frictional losses need to be verified for the

broad range of RBR conditions. Neither global nor local fuel coolability

has been examined in the case of rotating, high g-beds. If the existing
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Steady State Transients

Packed Bed

1. Pressure gradient

2. Global fuel coolability

3. Local fuel coolability 12. Departures from steady
state values

Transition

4. Zone of incipient 13. Changes due to kin-
fluidization ematic waves

Fluidized Bed

5. Fuel expansion profiles 14. Additional acceler-
ational effect

6. Fuel bed expansion fluc- 15. Clearance of kin-
tuations ematic waves and

effects on bed expan-
7. Fuel bed stability limits sion, stability and

and bubbling intensity carryover

8. Fuel particle carryover
(elutriation) limits

9. Global fuel coolability 16. Departures from
steady values

10. Local fuel coolability

11. Fuel particle migration 17. Transient particle
and thermal cycling migration and inter-

play with thermal
gradients

Reactor Control

18. Integrated thermofluid-power dynamic behavior

Fuel Behavior

19. Fuel vapor pressure and evaporation rates

20. Mtechanical degradation

Table 2. Research questions relative to
particulate bed nuclear reactors
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correlations work in steady state there is no guarentee they will work

in transient situations. In addition, with g-fields perhaps as much as

100-150 times as large as those normally encountered, natural convection

effects could be quite large and alter the normal fixed-bed cooling re-

latlonships.

Packet-to-Fluidized Bed Transition

Since the g-field, flow area, and fluid density all decrease as the

coolant flows through the bed, the gas velocity increases and the bed

is less stable. The onset of fluidization will thus occur in stages

from the inside out as-gas flow increases or rotational speed decreases.

The packed bed would be "peeled away" in differential layers and become

fluidized. It is important to determine the point of incipient fluid-

ization in order that the bed behavior be predicted adequately. Many

empirical equations exist, which vary from each other. due to data base

scatter, and different operating conditions and geometries. None of these

empirical correlations have been tested against RBR-llke data.

Fluidized Bed Zone

Little work has been done in devising simple methods for prediction

of fluid bed gas volume fraction of fuel expansion profiles, mainly be-

cause expansion is uniform in most chemical process situations and only

carryover limits must be avoided. Extensions of drift flux methods applied

to gas-l:iquid systems seem appropriate, and a brief description of the use

of these techniques was given in the preceding section, but these methods

including the fuel particle carryover limits need to be verified under

prototypical RBR conditions.
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In the case of transients, quasi-static behavior can probably be

accepted if the clearing time for concentration (fuel volume) waves is

short relative to transient periods of the system. The speed of these

waves is determined from the same equation which describes the drift

flux behavior. Generally, as long as the transient periods are much

longer than h/Cw where h is the fuel bed height and Cw is the kinematic

wave speed, the flow can be considered quasi-static and most steady

state correlations could be utilized with some degree of assurance. It

is seen, however, that confirming the behavior of the drift flux is cen-

tral to much of the thermal hydraulic behavior of the RBR.

Reactor Control

A short remark regarding reactor control is in order. The very fac-

tors which make the RBR so attractive lead one to the need to understand

the control aspects and interactions quite well. The very high power

densities coupled with the small sizes and thermal mass of the fuel

particles leads to potentially high adiabatic ramp rates of, say,

5000K/s. Thus, the thermo-fluld-nuclear interaction dynamics must be

adequately understood and addressed in designing and reactor control

system.

Fuel Behavior

For particulate bed reactor systems, especially those operating at

high temperatures, the question of fuel sublimation must be addressed.

The best conservation estimate of fuel evaporation is shown in Figure 8.

As seen, fuel particle lifetimes could be quite limited at very high
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temperatures. But the data on which these calculations are based could

be off by 1-2 orders of magnitude and must be more accurately determined.

For fluid bed systems, the question of particulate impacts and resultant

mechanical -gradation must also be addressed.
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Q & A - 0. C. Jones

From: P. J. Turchi, R & D Associates

Is there a tendency in some flow regimes ( say, close to
optimum balancing of "weight" and flow pressure) for insta-
bility in which flow breaks through bed in spokes or columns?

A.
Definitely in 1-9, gas-solid beds!

Evidence, meager as it is, at high g's indicates flat,
layered bubbling with large particles A irregular ballooning-
like bubbles at some conditions with fines. Not much known
in general and whole question of jet.tng, channeling, bubbling,
etc., must be resolved for RBR conditions.
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Q & A - O. C. Jones 

From: P. J. Turchi, R&D Associates 

Is there a tendency in some flow reqjmes ( say, close to 
optimum balancinq of "weiqht" and flow pressure) for insta
bility in which flow breaks throuqh bed 'in spokes or columns? 

A. 
Definitely in 1-9, qas-solid beds! 

Evidence, meaqer as it is, at hiqh q's indicates flat, 
layered bubblinq with larqe particles ~ irreqular ballooninq
like bubbles at some conditions with fines. Not much known 
in qeneral and whole question of jettinq, channelinq, bubblinq, 
etc., must be resolved for RBR conditions. 
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RESEARCH CATEGORIES 

REACTOR HEAT SOURCE 

• FUEL BEHAVIOR 

• HEAT TRANSPORT 
• HEAT PIPES 
• THERMAL CONTACT RESISTANCE 
• RADIATIVE COUPLING 

• STRUCTURAL MATERIALS 
• COMPATIBILITY 
• JOINING 
• IRRADIATION BEHAVIOR 

CONVERSION METHODS 
• THERMOELECTRIC CONVERTERS 
• THERMIONIC CONVERTERS 
• LIQUID METAL RANKINE CONVERTERS 
• BRAYTON CONVERTERS 
• MAGNETOHYDRODYNAMJC CONVERTE~S 

WASTE HEAT DISSIPATION 
• EMISSIVITY COATINGS 
• DROPLET BEHAVIOR 
• ADDITIONAL INNOVATION 

-'.~' , 
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SPACE REACTOR RESEARCH 

- S(J1E G IVE~ -

SPACE APPLICATIONS TEND TO PUSH REACTOR DESIGN TOWARDS: 

• HIGH TEMPERATURE 

• MINIMUM WEIGHT EMPHASIS 

• LONG UNATTENDED LIFETIME 

• FAST SPECTRUM AT LOW POWER LEVEL 

• FAST SPECTRUM OR GRAPHITE MODERATING AT HIGH POWER 

lLoo .1ITffi<OO 
Los Alamos Nahonal Laboratory 
losAlamos.Ncw MexICo 87545 



~ii

o 
g

LU .

IC
-

-I-

cr.C
l. 

0--
w

~
 

LU 
O

 
w

z 
C

A
: 

w

L
U

 
W

L
x

0c 
u

j- 
IU

0 ~~ 
~ 

I 
w

 
D

1
=

 
-

CDC

S
U

 
M

 
S

 
0

(n Ic 
IV

-1O
-4

,..---
U Ii , ...... ~ ~ ""'~ ~ 

H 

.= .... 
o 
L 

.~ .)
" 

FUEL SWELLING 
----

• TENDS TO LIMIT REACTOR CORE TEMPERATURES TO ~ lQOQ K FOR LONG 
LIFETIMEJ SMALL SYSTEMS 

• FOR HIGH POWERS J LARGER REACTORS ARE INEVITABLE AND FUEL MODIFICA-
TIONS CAN BE CONSIDERED: 

• STRONG CLADDING 

• CERMET CONFIGURATIONS 

• GRAPHITE CLADDING/MATRIX FUELS 

• THESE MODIFICATIONS PERMIT HIGHER TEMPERATURE OPERATION 

• THE OPERATING LIMITS ARE FUZZYJ EXTRAPOLATION TO HIGH BURNUP 
UNCERTAIN 
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CORE HEAT PIPES
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FUE L BEHAVIOR RESEARCH 

GOAL: DEVELOPMENT OF A HIGH-TEMPERATURE I LOW-SWELLING I HIGH-DENSITY 
FUEL COMPATIBLE WITH STRUCTURAL/CLADDING MATERIALS (AT HIGH 
TEMPERATURES) 

NEEDS: • ISOTHERMAL I UNCONSTRAINED IRRADIATION DATA AT HIGH TEMPERATURE 

• HIGH BURNUP FUEL DATA AT HIGH TEMPERATURE 

• EXPANDED DATA BASE ON HIGH-TEMPERATURE IRRADIATION EFFECTS 
ON FUEL I CLADDING I AND STRUCTURAL MATERIALS PROPERTIES 

• EFFECT OF STOICHIOMETRY ON FUEL/CLAD INTERACTION 

• REFINEMENT OF FUEL MODELLING CODESj ADAPTABILITY TO 
NONCYLINDRICAL GEOMETRIES 
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• AVOIDANCE OF SINGLE-POINT FAILURE IN COOLANT SYSTEM 

• AVOIDANCE OF SINGLE-POINT FAILURE IN DYNAMIC CONVER
SION SYSTEM 
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THERMAL TRANSPORT 
RESEARCH NEEDS-1 

TijERMOMECHANICAL COUPLING METHODS 
(REQUIRED FOR REDUNDANCY IN DESIGN): 

• ANALYTICAL MODELING 

• INNOVATION AND EXPERIMENT 

• BRUSH STRUCTURES 

• PREFORMED FOIL STRUCTURES 

• LIQUID COUPLING 

• HIGH-TEMPERATURE NON-LIQUID-METAL-WETTABLE COATINGS 
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THERMAL TRANSPORT 
RESEARCH NEEDS - 2 

HEAT PIPE MODELING: 

• TWO-DIMENSIONAL MODELING OF VAPOR DYNAMICS AND 
VAPOR/LIQUID ENERGY EXCHANGE IN CYLINDRICAL 
GEOMETRY 

• THERMOCHEMOMECHANICAL MODEL OF LIQUID METAL HEAT PIPES 

• MATERIAL TRANSPORT MECHANISM - SOLUBILITY KINETICS 

• EFFECT OF IMPURITIES 

• PERFORMANCE EFFECTS 

• EFFECTIVENESS OF GETTERING 
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THERMAL TRANSPORT 
RESEARCH NEEDS - 3 

HIGH-TEMPERATURE STRUCTURAL MATERIALS: 

• REQUIRED FOR ALL CONVERSION SYSTEMS 

• DESIRABLE CHARACTERISTICS INCLUDE: 

• FABRICABILITY 

• WELDAB I LI TY 

• DUCTILITY - AFTER HIGH-TEMPERATURE 
OPERATION 

• HIGH-TEMPERATURE STRENGTH 

• COMPATIBILITY WITH FUEL 
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THERMAL TRANSPORT 
RESEARCH NEEDS - 4 

FUEL/HEAT PIPE COMPATIBILITY: 

• 02 DIFFUSION COEFFICIENTS IN MOLYBDENUM} TUNGSTEN} 
RHENIUM} AND ALLOYS THEREOF 

• 02 SOLUBILITY} IMPURITY EFFECTS 
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CONVERTER RESEARCH 

HIGH-TEMPERATURE THERMOELECTRICS 

THERMIONIC AND MAGNETOHYDRODYNAMIC 

CERAMIC AND INSULATOR ELECTROLYSIS 

• ION MOBILITY MECHANISMS 

• DETERMINATION OF ELECTRIC FIELD) 
TEMPERATURE} LIFETIME LIMITS OF 
PROMISING MATERIALS 

• EFFECT OF METALLIC CONTACTS AS 
ION SINKS 
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Photomicrographs (loox) o~ the teat sample (ft) be~ore and (b) aner thermal 
stAbility testing for 5313 bours at 1230 ~ 200 c with a 100 V DC potential 
epp11ed across t.he a1 .. 1n .. layer. 
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THERMOELECTR I CS 

• EXTEND THERMOELECTRIC MATERIALS THEORY TO 
GIVE IT PREDICTIVE CAPABILITX 

• INVESTIGATE DECOUPLING OF SAND P TERMS IN 
~ THERMOELECTRIC FIGURE OF MERIT , 
..... 
~ 2 
~ Z = L 

pK 

• INVESTIGATE METHODS OF REDUCING K WITH 
MINIMAL P, S REDUCTION 

• INVESTIGATE BONDING OF CONDUCTORS TO THERMO
ELECTRIC MATERIALS 

[L(Q)~ ~~lJlfil<OO 
Los Alamos Nahonal Laboratory 
los Alamos.New MexICO 87545 
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THERMIONIC CONVERSION 

WHAT'S THE MATTER WITH THE BARRIER INDEX? 

WHY WON'T IT COME DOWN? 

Wi 
1 

BARRIER INDEX = ARC DROP + COLLECTOR WORK FUNCTION 

ARC DROP =ON GENERATION + PLASMA RESISTANCE NO.4-0.S V 

COLLECTOR WORK FUNCTION: 1.0 - 1.6 V 

........... -
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74 
YEAR 

81 

SURFACE PHYSICS + PLASMA PHYSICS -+ BASIC UNDERSTANDING 

• PLASMA PROBING - PARTICLE AND ELECTROMATIC BEAMS - PLASMA DENSITIES
6 POTENTIALS 6 CROSS SECTIONS 

• ION LOSS MECHANISMS 

• UNIFIED6 CONSISTENT TEe THEORY 

• ORDERING OF SHOPPING LISTS 
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HEAT DISSIPATION· AND 
RADIATION HEAT TRANSFER (TE, TEe) 

• HIGH-TEMPERATURE EMISSIVITY COATINGS 

• 600-1000 K - RADIATOR 

• 1400-1600 K - RADIATION HEAT TRANSFER 

• BLACKENING OF LIQUID METAL DROPLETS 

• DROPLET EXPERIMENTS - COLLECTION MECHANISMS 1 

CHARGE EFFECTS 

• HEAT TRANSFER TO ROTATING DRUMS 

• STUDY OF OTHER CONCEPTS FOR LOW-TEMPERATURE 
RADIATORS TO DUMP JOULE HEAT FROM POWER
USING SYSTEMS 

·COMMON TO ALL CLOSED SYSTEMS 

lLoo~~ 
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SHIELD 
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MISCELLANEOUS 

• STUDY OF INERTIAL EFFECTS OF ROTATING MACHINERY 
IN SPACECRAFT - STARTUP AND STEADY STATE 

• STUDY OF ZERO-THRUST WORKING FLUID DISPOSAL 
IN OPEN CYCLE SYSTEMS 

• REDUCTION OF SHIELDING REQUIREMENTS BY 
HARDENING SIGNAL-PROCESSING ELECTRONICS 
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SHIELDING CONSIDERATIONS FOR SPACE POWER REACTORS*

D. E. Bartine
W. W. Engle, Jr. is~ o .cile .c

U.S. Gc&mn~t's rIft to
Engineering Physics Division r, txlam, . r-.

Oak Ridge National Laboratory .

(Prepared for the Special Conference on Prime Power for High-Energy
Space Systems)

Shielding design considerations are important for space power

reactor systems. Shielding is required to meet radiation level con-

straints for payload and reactor electronic components and perhaps for

other materials. Material selection and shield weight and size are

important design considerations, requiring careful analysis and veri-

fication, but shield design is complicated by radiation streaming paths

caused by shield penetrations for coolant and control systems. Resources

are available to meet these requirements as a result of previous shield-

ing programs, most notably the NASA SNAP program, the DOD weapons

effects program, and the DOE LMFBR program. Available analytic tech-

niques include 1-D and 2-D discrete ordinates and 3-D Monte Carlo for

radiation transport, and associated size and shape optimization capa-

bility. Facilities available for experimental measurements at Oak Ridge

National Laboratory include the Tower Shielding Facility (TSF) reactor

and a modified SNAP-2 reactor. The TSF reactor is a 1 MW(th) research

facility used to verify cross-section data and calculational techniques

for dose attenuation, which could also be used to verify radiation

streaming through penetrations, and shield weight and shape optimization.

The modified SNAP reactor is a 10 KW(th) system with high-enriched ZrH

fuel, Be reflector, NaK coolant, and a LiH shield. The core and re-

flector assembly are SNAP-10A design, with a SNAP2 shield which could be

replaced with other experimental shields to verify prototypic shield

designs.

In summary, a shielding technology program is necessary to support

space power reactor development. Payload and reactor electronic compo-

nents must be protected; and shield composition, weight, and shape

*Work performed at Oak Ridge National Labtatory for Union Carbide
Corporation under contract with the Department of Energy.
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Shielding design considerat10ns are important for space power 
reactor systems. Shielding is required to meet radiation level con
straints for payload and reactor electronic components and perhaps for 
other materials. Material selection and shield weight and size are 
important design considerations, requiring careful analysis and veri
fication, but shield design is complicated by radiation streaming paths 
caused by shield penetrations for coolant and control systems. Resources 
are available to meet these requirements as a result of previous shield
ing programs, most notably the NASA SNAP program, the DOD weapons 
effects program, and the DOE LMFBR program. Available analytic tech
niques include 1-0 and 2-D discrete ordinates and 3-D Monte Carlo for 
radiation transport, and associated size and shape optimization capa
bility. Facilities available for experimental measurements at Oak Ridge 
National Laboratory include the Tower Shielding Facility (TSF) reactor 
and a modified SNAP-2 reactor. The TSF reactor is a 1 MW(th) research 
facility ~sed to verify cross-section data and calculational techniques 
for dose attenuation, which could also be used to verify radiation 
streaming through penetrations, and shield weight and shape optimization. 
The modified SNAP reactor is a 10 KW(th) system with high-enriched ZrH 
fuel, Be reflector, NaK coolant, and a LiH shield. The core and re
flector assembly are SNAP-lOA deSign, with a SNAP2 shield which could be 
replaced with other experimental shields to verify prototypic shield 
designs. 

In summary, a shielding technology program is necessary to support 
space power reactor development. Payload and reactor electronic compo
nents must be protected; and shield composition, weight, and shape 

'Work performed at Oak Ridge National Lab~~atory for Union Carbide 
Corporation under contract with the Department of Energy. 
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are important design considerations. Techniques are available for

design analysis and optimization, and experimental facilities are

available for design verification. Shielding analysis should proceed

concurrently with reactor design, and experimental verification should

follow the analysis closely.
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SHIELDING CONSIDERATIONS FOR SPACE POWER REACTORS

by D. E. Bartine

The paper starts by indicating why shielding considerations are
important for space power reactors and continues to describe analysis
and verification requirements, and the techniques and facilities
available to meet these requirements.

The analytical tools for optimizing shield design are presented with
illustrations of problems solved in the SNAP program. For 1-D shield
optimization, the first figure shows optimized thicknesses for multi-
layer tungsten-lithium hydride shields and the second shows a simpler
shield with lower dose constraints. For 2-0 shield shaping, the
figures present the original shield design, neutron and gamma isodose
contours, and the optimized design.

The rationale for experimental verification is presented next, followed
by some specifications and photographic or schematic views for the
Tower Shielding Facility (TSF) reactor and for a modified SNAP reactor,
both of which could be available for shielding research at Oak Ridge
National Laboratory. Finally, a summary rationale is given for a
shielding technology program.
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SHIELDING CONSIDERATIONS FOR SPACE POWER REACTORS 

by D. E. Bartine 

The paper starts by indicating why shielding considerations are 
important for space power reactors and continues to describe analysis 
and verification requirements, and the techniques and facilities 
available to meet these requirements. 

The analytical tools for optimizing shield design are presented with 
illustrations of problems solved in the SNAP program. For 1-0 shield 
optimization, the first figure shows optimized thicknesses for multi
layer tungsten-lithium hydride shields and the second shows a simpler 
shield with lower dose constraints. For 2-D shield shaping, the 
figures present the ori9ina1 shield design, neutron and gamma isodose 
contours, and the optimized design. 

The rationale for experimental verification is presented next, followed 
by some specifications and photographic or schematic views for the 
Tower Shielding Facility (TSF) reactor and for a modified SNAP reactor, 
both of which could be available for shielding research at Oak Ridge 
National Laboratory. Finally, a summary rationale is given for a 
shielding technology program. 
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SHIELDING DESIGN CONSIDERATIONS ARE IMPORTANT FOR

SPACE POWER REACTOR SYSTEMS

" Shielding is required to meet radiation level

constraints for payload and reactor electronic

components and perhaps for other materials

" Minimum weight is a primary consideration

" Shape optimizatlon (minimum size) may be

important

" Materials choice is determined by combination

of weight, environment, and attenuation

characteristics

* Shield penetrations for coolant and control

systems create radiation streaming paths and

complicate design

IV-11-4

SHIELDING DESIGN CONSIDERATIONS ARE IMPORTANT FOR 
SPACE POWER REACTOR SYSTEMS 

• Shielding is required to meet radiation level 
constraints for payload and reactor electronic 
components and perhaps for other materials 

• Minimum weight is a primary consideration 

• Shape optimization (minimum size) may be 
important 

• Materials choice is determined by combination 
of weight~ environment~ and attenuation 
characteristics 

• Shield penetrations for coolant and control 
systems create rad1ation stream1ng paths and 
complicate deslgn 
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A SHIELDING PROGRAM FOR SPACE REACTORS REQUIRES

DESIGN ANALYSIS AND VERIFICATION

" Design analysis techniques are available

" 1-D and 2-D discrete ordinates, 3-D Monte

Carlo radiation transport

* Size and shape optimization techniques

" Facilities are available for experimental

measurements

" Tower Shielding Facility reactor

" Modified SNAP* reactor

*SNAP 10-A reactor, 10-A reflector assembly, SNAP 2

shield

I
I
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A SHIELDING PROGRAM FOR SPACE REACTORS REQUIRES 
DESIGN ANALYSIS AND VERIFICATION 

• Design analysis techniques are available 

• I-D and 2-D discrete ordlnates~ 3-D Monte 
Carlo radiation transport 

• Size and shape optimization techniques 

• Facilities are available for experimental 
measurements 

• Tower Shielding Facility reactor 

• Modified SNAp· reactor 

·SNAP lO-A reactor~ lO-A reflector assembly~ SNAP 2 
shield 
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ORNL DEVELOPED SEVERAL SHIELD DESIGN/OPTIMIZATION

TECHNIQUES FOR SNAP PROGRAM

• One dimensional weight/thickness optimization

Shield shaping using two dimensional calculations

Discrete ordinates-Monte Carlo coupling for 3-D

effects

Iv-11 -

ORNL DEVELOPED SEVERAL SHIELD DESIGN/OPTH1JZATION 

TECHNIQUES FOR SNAP PROGRAM 

• One dimensional weight/thickness optimization 

--- -.. ~ .-"'-"'-~ . 

• Shield shaping using two dimensional calculations 

• Discrete ordinates-Monte Carlo coupling for 3-D 
effects 
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ORNL 1-D OPTIMIZATION INCLUDES TRANSPORT CALCULATION

DIRECTLY IN OPTIMIZATION PROCESS

* Properly describes spectrum shifts at material

boundaries

Properly accounts for secondary gamma ray

production

Does not require complex analytical function to

describe transport

Removes uncertainty due to evaluation of

coefficients for complex functions

Optimization process is simple and has resulted

In 30-50% weight savings

IV-11-7

ORNL I-D OPTIMIZATION INCLUDES TRANSPORT CALCULATION 
DIRECTLY IN OPTIMIZATION PROCESS 

• Properly describes spectrum shifts at material 
boundaries 

• Properly accounts for secondary gamma ray 
production 

• Does not require complex analytical function to 
describe transport 

• Removes uncertainty due to evaluation of 
coefficients for complex functions 

• Optimization process is simple and has resulted 
in 30-50% weight savings 
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a function of dose rate at a distance of 200 ft (450 kWt).
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SHIELD SHAPING USING TWO DIMENSIONAL ISODOSE CONTOURS

IS FIRST STEP IN 2-D OPTIMIZATION

N eutron shield material is shaped to follow neutron

isodose contour

• GcTLa rjy shield material is shaped to follow

gai ra ray isodose contour

* New configuration is calculated to check shaping

* Tachnique has resulted in 10-20% weight savings

! -1-1

SHIELD SHAPING USING TWO DIMENSIONAL ISODOSE CONTOURS 

IS FIRST STEP IN 2-D OPTIMIZATION 

• Neutron shield material is shaped to follow neutron 

isodose contour 

• GG~mCl rJY shield material is shaped to follow 

gcmma ray 1 sodose contour 

• New configuration Is calculated to check ~haping 

• Tachnique has resulted In 10-20% weight savings 
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INTEGRAL EXPERIMENTS SHOULD BE USED TO VERIFY

THE SHIELD DESIGN AND THE ANALYTIC

METHODS AND DATA

The Tower Shielding Facility reactor can

provide verification of analytic methods

and data

0 Determine adequacy of cross-section data

for neutron and gamma attenuation and

for secondary gamma-ray production

a Verify calculational techniques for

radiation stream!ng through Penetrations

and for shield weight and shape optimization

" The modified SNAP* reactor can provide

verification of prototypic shield designs

*SNAP 10-A reactor, 10-A reflector assembly, SNAP 2

shield

rv-11-15

INTEGR~L EXPERIMENTS SHOULD BE USED TO VERIFY 
THE SHIELD DESIGN AND THE ANALYTIC 

METHODS AND DATA 

• The Tower Shielding Facility reactor can 
provide verification of analytic methods 
and data 

• Determine adequacy of cross-section data 
fOi neutron and gamma attenuation and 
for secondary gamma-ray production 

• Verify calculational techniques for 
radiation streaming through penetrations 
and for shield weight and shape optimization 

• The modified SNAP* reactor can provide 
verification of prototypic shield designs 

*SNAP lO-A reactorJ 10-A reflector assemblYJ SNAP 2 
shield 
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THE ORNL TOW, ER SHIELDING FACILITY REPRESENTS:

1 1 MW(th) spherical reactor .

* Large experimental area in remote site

* We-.est.blished staff and Instrumentatlon

* Coordination with state-of-the-art analysis

capabi I Ities

Z111-16

THE ORNL TO\'!ER SHIELDING FACILITY REPRESENTS: 

• . 1 MW(th) spherical reactor 

• La~ge experimental area 1n remote site 

• Vie ll··estab 1 ished staff and instru;nentation 

• Coord1nation with state-of-the-art analysis 

capabIlities 
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TSF SNAP* REACTOR SPECS

1 10 KW(t.h)

* High-enriched ZrH fuel

* Be reflector

- four control drum cutouts

* NaK coclo.-,t

- top plenum with fin tubes for

cooling

* LIH shield

- internal struts for stability

* High-temperature operating switches

and wiring

*SNAP 10-A reactor, 10-A reflector

assembly, SNAP 2 shield
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TSF SNAp· REACTO~ SPECS 

• 10 KW(th) 

• High-enriched ZrH fuel 

• Be reflector 
- four control drum cutouts 

• NaK cOC!O,'it 

- top Plenum with fin tubes for 
cooling 

• UH shield 
- internal struts for stability 

• High-temperature operating switches 
and w1ring 

·SNAP lO-A reactorl lO-A reflector 
assemblYI SNAP 2 shield 
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A SHIELDING TECHNOLOGY PROGRAM IS NECESSARY TO SUPPORT

SPACE POWER REACTOR DEVELOPMENT

" Shielding is required to protect payload and reactor

electronic components

" Shield composition, weight, and shape are important

design considerations

* Techniques are available for design analysis and

optimization

" Experimental facilities are available for design

verification

" Analysis should proceed concurrently with reactor

design

" Verification should follow analysis closely

I
I IV-I1-21
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A SHIELDING TECHNOLOGY PROGRAM IS NECESSARY TO SUPPORT 
SPACE POWER REACTOR DEVELOPMENT 

o Shielding is required to protect payload and reactor 
electronic components 

• Shield com~os1tionJ weightJ and shape are important 
design considciations 

• Techniques are available for design analysis and 
optimization 

• Experimental fac~litles are available for design 
verification 

• Analysis should proceed concurrently with reactor 
design 

• Verification should follow analysis closely 
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Q & A - D. Bartine

From: R. Pettis -

Are new difficulties introduced into the shielding
design by using a reactor where fission products are present
in the fl;iid loop, like the rotating bed reactor, or gas-
core.reactors? Are radiation safety constraints likely to
prevent the use of open-cycle dynamic conversion (for example,
MHD) with some reactor systems?

A.
1. The presence of fission products in the fluid loop

definitely introduces problems, not only during operation,
when shielding would be protecting the payload, but also
during shutdown conditions, especially for maintenance/
repair operations.

2. Again, the impacts on operation and maintenance will
be large. Additional shielding would probably be required
behind the conversion mechanism, and safety constraints would
certainly be more severe since release probabilities are
greater.

From: S. Wax, Air Force Office of Scientific Research

Do you have any ideas for new shielding materials that
might offer weight advantages?

A.
Certainly B4C, graphite, and borated graphite (% 15%)

should be considered, along with various metals to provide
gamma shielding.

Both different materials and different material combina-
tions should be considered. A-ational approach would be to
compile a list of potential shielding materials (currently
used and hypothetical) and examine them for a trade-off of
shielding effectiveness, size and weight requirements, and
cost, including both r & d requirements for material quali-
fications and shield fabrication.
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Q & A-D. Bartine 

From: R. Pettis 

Are new difficulties introduced into the shielding 

, .. , 

design by using a reactor where fission products are present 
in the f~yi~-100p, like the rotating bed reactor, or gas
cor~. reactors? Are radiation safety constraints likely to 
prevent the use of open-cycle dynamic conversio,n (for example, 
MHO) with some reactor systems? 

A. 
1. The presence of fission products in the fluid loop 

definitely introduces problems, not only during operation, 
when shielding would be protecting the payload, but also 
during shutdown conditions, especially for maintenance/ 
repair operations. 

2. Again, the impacts on operation and maintenance will 
be large. Additional shielding would probably be required 
behind the conversion mechanism, and safety constraints would 
certainly be more severe since release probabilities are 
greater. 

From: S. Wax, Air Force Office of Scientific Research 

00 you have any'ideas for new shielding materials that 
might offer weight advantages? 

A •. 
Certainly B4C, graphite, and borated graphite t~ 15%) 

should be considered, along with various metals to provide 
gamma shielding. 

Both different materials and different material combina
tions should be considered. x-rational approach would be to 
ampile a list of potential sliielding materials (currently 
used and hypothetical) and examine them for a trade-off of 
shielding effectiveness, size and weight requirements, and 
cost, including both r , d requirements for material quali
fications and shield fabrication. 
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As a spinoff from Jet engine technologYI closed gas turbine (Brayton) 

cycles also have a strong technology bose. A wealth of design and 

testing experience exists for all critical components. COmPact con

figurations ranging from a few kW(e) (DOE sponsored) to tens of MW(e) 
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CLOSED BRAYTON TECHNOLOGY BASE 

A Mature Technology Ready for Application 

More Than 35 Years of Gas Turbine Development 

All Crltlcal Components Demonstrated 

Turbomachlnery 
Heat Exchangers 
Bearings and Seals 

Compact Hl Perfonmance Configurations Defined· 
Multi kW Space Systems Evaluated Since 1960's - NASA/AFf. 
Small Solar and Fossil Systems Being Developed for DOE/DOD 
50 MW(e) Unit Designed for ONR 

• Materials Advancements Will Permlt Increases In CYcle Temperature 
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This figure Illustrates the layout drawing for the schematic 

shown on the previous page. At 52 MW(e)1 Its envelope dimensions 

are comparable to' a VW van and Its weighs about 47 tons. This 

corresponds to a 1.8 Ib/kW specific weight for the DOckage. 

While large space Systems will not require such compact packaging 

because the radiators will dominate system slze l the axial flow 

turbomachlnery shown here typifies the rotating machinery for 

multi MW(e) systems. Operated at 17000F turbine Inlet temperature l 

state-of-the-art materials are used without blade cooling. 
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Smaller Brayton systems will likely use a radial flow combined 

rotating unit (CRU) such as the state-of-the-art AIResearch 

design shown here. In the range of 500 kW to 1 MW~ the radial 

flow CRU offers substantial advantages when on Inert gas mixture 

(e.g. helium/xenon) I~ used as the working fluid. 
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This configuration of a gas cooled reactor driving a closed cycle 

Brayton system Indicates the expected eQuiPment arrangement for 

space applications. Because the cycle's waste heat rejection Is 

governed by the Stefan-Boltzman law~ the cycle temperature ratio 

tends toward 0.75 with Intentional sacrifices In cycle efficiency 

In order to minimize radiator area. 
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The heat pipe radiator design (AIResearch) shown here provides 

a reference point for space radiator design for Brayton systems. 

Multiple heat pipes and armored manifolds for the cycle's working 

gas provide meteoroid protection. For multi MW systems~ the 

radiator's size and weight dominance on the system may dictate 

assembly on-orbit • 
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THE ABILITY OF HIGH TEMPERATURE MATERIALS TO FUNCTION 

RELIABLY WILL LARGELY DETERMINE THE SELECTION OF CYCLE 

PEAK TEMPERATURES IN FUTURE SYSTEMS. CLASSES OF 

MATERIALS AND THEIR EXPECTED OATES OF AVAILABILITY 

FOR USE ARE SHOWN IN THIS TABLE. 
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EARLY 90's CERAMICS 25000F 
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Several of the considerations that we have discussed herein lead 

to the conclusIon that Increased operating temperaturesl both at 

the turbine Inlet and Compressor Inletl will enhance the potential 

for closed cycle Brayton space systems In the multi MW range. 

Our ability to obtain temperatures approaching or exceeding 

2500
0
F will be DOced by the development and Qualification of 

advor,~ed refractories and ceramics. 
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CRITICAL PATH R&D NEEDS 

• Development and Quallflcatlon of Hlgh TemPerature Materlals 
For Turbomochlnery and HX/s. 

• Multi MW(e) Systems Need High (>10000F) Space Heat Rejection 
To Minimize Radiator Area and Weight 

Heat Pipe Configurations 

Advanced Concepts 
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INDICATED TRENDS IN MATERIALS USE 

; 
CLASS I Superalloys ~1echan I ca I A II Oy MA-754 ~ 

l Oxide Dispersion Strengthened t 
~ 
; 

Powder Met IN-IOO 
f Rapid Solidification j 
J 

< 
I . Advanced Superalloys Mechanical Alloy (ODS) MA-600E .... 
I 

Directional Solidification MAR-M-247 (Mod) .... 
\Q 

Single Crystal MAR-M-247 (Mod) 

Refractory Metals Niobium Alloys B881 B89 
Moly Alloys TZM 

Advanced Refractory Composite - Tungsten Wire 
Reinforced Matrix 

Cenotcs Silicon Carbide 
Silicon Carbide 
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RANKINE POWER CONVERSION OVERVIEW

by

J. R. Peterson
General Electric Company

SPECIAL CONFERENCE ON PRINE POWER FOR HIGH ENERGY SPACE POWER SYSTEMS

ABSTRACT

Extensive work was conducted in the 1960's and early 1970's toward the
development of Rankine cycle space power systems, using organics, mercury and
potassium as boiling/condensing working fluids. The mercury and potassium
development sponsored by NASA stopped in the early 1970's, whereas organic
Rankine cycle work directed towards isotope heat sources continued to the late
70's. This presentation summarizes the general status of Rankine space power
conversion technology. The potassium Rankine cycle is projected to be most
attractive for high energy space power systems, above one megawatt; the technical
status of this system is discussed in more detail.

The potassium Rankine cycle offers the potential for the smallest radiator
and lowest specific weight of any dynamic space power conversion system for
large (megawatt) power levels. The cycle is a close approximation to the ideal
Carnot cycle, and the potassium working fluid has thermodynamic characteristics
such as to permit optimization of radiator temperature for lowest system specific
weight. The specific weight projected for a potassium system providing 300kWa
to the user is 59 lb./kWe - lower values are anticipated for higher power levels.
The most recent development work on the potassium Rankine system, sponsored by
NASA, was directed towards component and materials technology. A good technology
base was established, and development had proceeded to the level of subscale
component endurance testing. Further fundamental development in the direction
of direct condensing radiators and direct boiling/heat-pipe reactors would lead
to lower system specific weight. A strong materials effort is also needed.
Full scale component development and testing followed by a ground system test
are required to fully establish the technology.
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development of Rankine cycle space power systems, using organics, mercury and 
potassium as boiling/condensing working fluids. The mercury and potas.ium 
development sponsored by NASA stopped in the early 1970's. whereas organiC 
lankine cycle work directed towards isotope heat sources continued to the late 
70's. This presentation summarizes the general status of Rankine space power 
conversion technology. The potassium Rankine cycle is projected to be most 
attractive for high energy space power systems. above one megawatt; the technical 
atatus of thissyste. is discussed in more detail. 

The potassium Rankine cycle offers the potential for the smalleat radiator 
and lowftst specific weight of any dynamic space power conversion system for 
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large (megawatt) power levels. The cycle is a close approximation to the ideal 
Camot cycle. and the potassium working fluid has thermodynamic characteristics 
such as to permit optimization of radiator temperature for lowest system specific 
weight. The specific weight projected for a potassium system providing 300kW. 
to the user is 59 Ib./kWe -- lower values are anticipated for higher power levels. 
The most recent development work on the potassium Rankine system, sponsored by 
RASA. was directed towards component and materials technology. A good technology 
base was established. and development had proceeded to the level of sub scale 
component endurance teseing. Further fundamental development in the direction 
of direct condensing radiators and direct boiling/heat-pipe reactors would lead 
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Pull scale component development and testing followed by a ground system test 
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ABSTRACT 

Organic Rankine Cycle (ORC) experience and Its technology base are briefly discussed. 
The Dynamic Isotope POwer System (DIPS) and Its current status Is reviewed. The 
characteristics and attributes of the ORC system are presented along with a dlscuaalon on 
the compatibility with different heat sources. System weights are given for Isotope and 
reactor systems. System reliability Is enhanced by redundant power conversion systems 
and a heat pipe radiator. 
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Presentation Outline 

• Dynamic Isotope Power System (DIPS) Status 
• Organic Rankine Cycle Characteristics 

• Nuclear Space Power Systems 

.• Summary 
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Considerable experience has been obtained In ORC systems with several types of heat 

source. Initial hardware experience was obtained with solar powered systems. However, 

starting In the mid 19608 a technology program was ~rted, aimed at solving component 

technology problems for space power systems. This led to the DOE funded DIPS program 

In which a ground demonstration system was built and tested. In parallel with this effort 

were several programs for terrestrial power, starting with a fossil-fueled system, and 

moving towards was. heat ,recovery as fuel cost~ escalated. Currently six 600 KWe and 

750 KWew88te heat reel, :,et'J systems are being field tested, and a 200 KWe solar Dft1IMIWd 

system Is In dally use for irrigation purposes. 
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This .howo an artI .. •• concept of a dealgn for a 22 KWe point focuaaIng aolar-powered 
program. Th,.,. one of many ORe system. that Sundstrand has designed In over 21 years 
of development of thl. type of .ystem. E"ven different .ystems have been built with 
different heat sources. fluids and at different power .. v .... fluid Investigation. have been 
ongoing and over 50,000 hours have been accumulated on both Dowthenn A and Toluene 
ayatema. 
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Sundstrand's 
Technology Base 

• Over 21 years 
- Multiple Heat Sources 
- Power Levels (0.5 To 750 kWe) 

• Hardware 
- 11 Different Systems 
- CRU's (Over 28,000 Hrs) 

• Fluid Analysis 
- Multiple Working Fluids 
- Toluene (Over 50,000 Hrs) 
- Dowtherm (Over 50,000 Hrs) 

• Boiler Development 
- 10 Different Systems. 
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The DIPS contract was InHlated In 1975 and Included a flight Conceptual DeSign and the 
building and testing of a prototypic ground demonstration system. This program was 
funded by the Department of Energy and concluded at the end of 1980. 
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This shows a simplified schematic of an Isotope powered ORC system. An isotope heat 
source (1) Is used to vaporize the working fluid (the entectlc mixture of biphenyl and 
biphenyl ether), which Is then expanded across an axial flow turbine. The turbine Is an 
Integral part of the turboaltemator pump (2), which generates electricity. The 
turboaltemator motor Is supported on working fluid lubricated hydrodynamic bearings (3) 
and drives a centrifugal pump (4) to pressurize the working fluid. When the working fluid 
leaves the pump the flow splits, part going to the regenerative heat exchanger In the power 
conversion system (5). and the remainder passing to the radiator (8) where system waste 
heat Is rejected. From here the cold fluid flows to the jet condenser (6) where the vapor 
leaving the regenerator Is condensed. The accumulator (7) Is used to maintain and control 
system pressure levels and the electronic controller (9) rectifies the alternator output and 
controls speed and voltage. 
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The DIPS comprises a Rankine power conversion system, 3 MHw or 2 GPHS heat sources and a cylindrical radiator. The system packaging concept shown Is one for a non-Integrated spacecraft, but the system Is very flexible In terms of location of the major components. This shows the final assembly of the ground demonstration system In a clean room prior to Installation In a vacuum chamber for testing. 
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ATTRIBUTES 

• Improved Efficiency 
• High Reliability 
• Conventional Materials 
• Power Level Flexibility 

• '-
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SYSTEM 
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A full size radiator was bulH and tested hydraulically. Although H was not coupled to the 
system, thermal testa were performed on full size panels. The thermal control coating was 
Z93. 
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The design specification called for a design point of 1,300 watts electrical, with the 
capability of operation from 500 to 2,000 watts. The system power level could be extended 
to 5 KW without major modifications. Radiator and heat source sizes would be adjusted to 
match power level. 

The ground demonstration system was designed to deliver 38V DC, but could deliver AC 
moreefflclently. Projected system efficiencies for a Right System are 18% for DC, and 19% 
for AC power. 

The u .. of redundancy In design has resulted In system reliability of .95 for a .. ven year 
ml .. lon. 

The projected Right System weight Is 4SO pounds for a 1 ,300 watt mission white the volume 
and configuration are adaptable to tilt mission requirements. 
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System Summary Data 

• RATED OUTPUT POWER 
GOUND DEMONSTRATION SYSTEM ••.•••••••••••••.•••••••••• 1,300 W(e) 
FUGHT SY~·fEM •••••....••.•••••....••.•.••• 500-2,000 W(e) AND HIGHER 

• OUTPUT VOLTAGE 
GROUND DEMONSTRATION SYSTEM •••••••••••••••••••••••••••• 28v D.C. 
FUGHT SYSTEM •••••••••••••••.•••.••••••••••••••••••••••••• D.C. or A.C. 

• SYSTEM EFFICIENCY 
D.C. POWER 28v ••••••.••••••••••••••••••••••••••••••••••.•••••••••• 18°" 
A.C. POWER •••••••••.••••••• " ..................... "................. 1 rio 

• SYSTEM RELIABILITY ••••••••••••••••.••••••.••••••• 95+ 

• LIFE •••••••••••••••••.•••••••••.•••••• 7 YEARS MINIMUM 

• FLIGHT SYSTEM WEIGHT - 1,300 W(e) ••••••• 450 POUNDS 
MAXIMUM 

• SYSTEM CONFIGURATIONNOLUME ••.•••••• ADAPTABLE 

Sundstrand Energy Systems e 
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The technology verification phase of the DIPS program was completed In December 1980 
after a 2,000 hour endurance test on the final ground demonstration system. A total time of 
more than 11,000 hours was accumulated with no component failures. At completion, the 
system hOld demonstrated a DC efficiency of 16.6%, and an AC efficiency of 18.5%, to be 
compared with design goals of 18% and 1 go", respectively. 
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DIPS Program Status 

• Technology Development Phase Complete 

• 11,000 Hours Operating Time Accumulated On 
Ground Qemonstration System With No 
Component Failures 

• 16.6% System DC Efficiency (28V) 

18.50/0 System AC Efficielncy 

Sundstrand Energy ~r~tems 



a:

V
-3-20

m
 

I-IC
,,

.S

I.,

C

V
- 3

-2
0

< 
I 

w 
I 

N 
o 

Organic Rankine Cycle, 
Characteristics 

Sundstrand Energy Systems A -
, I . . 

"i'--' ~ .• 



o 
M

E
 

c

a 
*Z

C
 

4
S

 
c

 
0

U
..

a 
= c 
.1

C
 

0
c 

c 
c

c 
c

S
te

 
22 

-0
 

c

0 
.

0 
0 

, 
c

E
~~ 

-02E
c~~ 

~ 
-0

 
0.C

.C
~ 

C
 

5;

.E
 E

 
C

 
-.

a
 

a. 0
:

S
O

 C
 

S
 

0
C

i. 
E

*E
 

c 
4 

U
..C

a 
S

C
4

"0
 

E
 -cE

.2Z
 

E
'j 

C
a a.

C
- 

E
 

0

E
 B

 e 
0 2. 

C
 L

V
- 3

-2
1

<: 
I 

W 
f 

I\J ..... 

The ORC Is a low temperature system, with a maximum fluid temperature determined by the 
thermal stability of the fluid. The low temperatures typically about 7000F Inherent to the 
system allow the use of conventional materials In the system without recourse to exotics 
such as refractory metals. 

The characteristics of the organic working fluids lead to superheating of the turbine 
exhaust on expansion. The use of a regenerative heat exchanger allows a closer approach 
to the Ideal Carnot efficiency resulting In relatively high cycle efficiencies for a given Inlet 
temperature. Thermoelectric converters can be Inserted between a high temperature heat 
source and the organic system. In this case the heat rejection device for the 
thermoelectrlcs becomes the heat addition device for the organic. Although the 
thermoelectric device operates at relatively low efficiency the combination of the two 
systems results In a large performance Improvement. 

High system reliability Is a direct fall-out from the low system temperatures, low system 
pressures, and low turbine tip speeds, combined with redundancy of critical Items where 
required. 

The ORC employs state-of-the-art technology, which has been demonstrated In many 
different systems. 

A pumped loop radiator, such as employed on DIPS, Is Inherently resistant to nuclear and 
laser threats. 
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System Characteristics 

LOW TEMPERATURE SYSTEM . 

• Low Temperature Heat Sources 

• Conventional Materials 

EFFICIENT 
• High Efficiency At Low Temperature 
• Improvement Potential With RTG Topping 

HIGH RELIABILITY 

• Low Temperature 
• Low Stresses 

STATE-OF-THE-ART TECHNOLOGY 

HARDENABLE AGAINST NUCLEAR AND LASER 
THREATS 

Sundstrand Energy Systems A 
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The low temperature characteristics of the ORC make It adaptable to most available heat 
sources. Nuclear heat sources provide greatest versatility for the ORC In space. Studies 
have shown that for power levels up to about 10 KWe the Isotope source, based on 
Platonlum 238 In oxide form, Is lightest weight. The MultI-Hundred Watt (MHW) heat source 
represents existing technology, while the General Purpose Heat Source (GPHS) Is under 
development at los Alamos. 

A reactor would be used at higher power levels. The low temperature ZrH was developed on 
the SNAP program .nd flight tested as SNAPIOA. Th,ls reactor type Is limited to 1,3000F, 
which Is fully compatible with the low temperature organic system. A high temperature 
reactor, SPAR, Is under development at los Alamos with temperatures In the region of 
2,2CJ01F. This could be coupled directly to an organic system, but a thermoelectric 
Intermediate system would make best use of the high temperatures and greatly enhance 
system performance. 

Solar Insolation could be used at lower power levels using a parabolic mirror with a thermal 
storage device. The low temperature of the organic system greatly reduces the accuracy 
requirements of the mirror. 

Hybrid heat sources have been proposed for ultra-high altitude terrestrial systems 
employing solar or nuclear heal sources for station keeping, with fossil fuel or hydrogen 
for short-Ierm high-power level requirements. 
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Heat Source Compatibility 

NUCLEAR 
• Isotope - Low Power Level 

- MHW - Existing Technology 

- GPHS - Under Development 

• Reactor - High Power Level 
_ Low Temperature - ZRH - Existing Technology 

_ High Temperature - SPAR - Under Development 

SOLAR INSOLATION 
• Parabolic Mirror With Thermal Storage 

HYBRID SYSTEMS 
• Solar Or Nuclear With Fossil Fuel Or Hydrogen 

Sundstrand Energy Systems 9 
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It 'a anticipated that requirements for space power wmlncrea .. dramatically In the coming 
decadea. Commercia' and military requirements will be In the 1 to 10 KWe region In the 
1980a and therefore within the generally accepted range of Isotopes. Military requirements 
In the 1990a will be In the hundreds of kilowatts and even up to a mega watt. The .. power 
Ievela for military applications are best supplied by reactors. 
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The nuclear source provides significant advantages over other power sources. The reactor 
operates continuously and Is Insensitive to orbU and attitude. The system size Is relatively 
small leading to high maneuverability and low visibility. The system Is relatively Insensitive 
to nuclear or laser threats, especially with a pumped loop radiator. 
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Spacecraft Nuclear Power 
Advantages 

• Continuous Power Availability 

• Orbit & Attitude Insensitive 

• Inherent Resistance To Weapon Effects 

• Low Optical/Radar Signature 

• Maneuverability 

• High Power Density 
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System weight Is shown plotted versus power IeYel for Isotope systems at low powe, , and 
reactor systems at power levels greater than 10 KWe. System reliability Is enhanced by 
Increasing the number of power conversion systems sharing a common heat source and 
radiator at the expense of weight. The shield weight for the .... actor system was based on a 5 

year mission with a dose of 107 Rads and 1013 nvt at the payload and pressures 100 ft. 

separation. 
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For space operation the radiator panels are deployed telescopically, providing the 

nece_ry separation between reactor and payload. Shield weight can be reduced by 

Increasing the separation from reactor to ORC, with the constraint being the length of the 

Space Shuttle cargo bay. 
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System reliability can be enhanced by having multiple channel power conversion systems 
sharing common heat source and radiator. 

Heat pipe radiators can be used In place of the pumped loop radiator and Increase radiator 
reliability considerably or reduce Its weight for a given reliability. The loss of a radiator tube 
due to mlcro-meteorold puncture results In a system failure while the puncture of a heat 
.plpe reBuRs In a very small degradation in heat relection capability. 
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Reliability Enhancement 

MULTIPLE SYSTEMS 

• Shared Heat Source 

• Shared Radiator 

HEAT PIPE RADIATOR 

• Parallel Plumbing 

• Copper/Water Pipes 

Sundstrand Energy Systems e 
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Cylindrical or flat plat radiators can be configured to employ heat pipes for heat rejection by 
conductivity coupling the working fluid tubes to the heat pipes, which In turn are attached 
to the radiator shin. 
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The DIPS program demonstrated that a flight prototypic ground demonstration system 
could be operated successfully for thousands of hours. This system was designed for low 
power level and therefore represents a sca.e model of that required for high-energy 
systems. Terrestrial systems have, however, demonstrated the viability of the organiC 
systems at high power levels with over 25,000 hours operation on 600-750 KWe systems. 

The ORC system Is a state-of-tha-art system that can be matched to an existing technology 
low temperature reactor or the high temperature reactor under development • 

The use of tharmalelectrlc devices located between reactor and ORC can Increase power 
conversion efficiencies dramatically. 
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Summary 

• DIPS Program Demonstrated System Capability At Low 
Power Levels 

• High Power Level Systems Have Been Demonstrated In 
Terrestrial Systems 

• Organic Rankine System Can Be Matched To Low 
Temperature Or High Temperature Reactor 

• Thermoelectric Topping Can Increase Power 
Conversion Efficiency By 30-40°A, 

Sundstrand Energy Systems e 
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TI ERMOEECTRIC COVERSIO "

G. Stapfer

C. Wood

Jet Propulsion Laboratory

ABSTRACT

The Conversion of Thermal Energy into electrical

power for Space Application by the thermoelectric pro-

case is being discussed on this paper. It includes an

overview of the present state-of-the art in thermoelec-

tric conversion and revie the prospects for potential

improvements particularly for large power applications

(M.Okve). The paper examines and identifies in detail

the basic research areas which auat be pursued to realize

the full potential. of thermoelectric conversion.
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OVERVIEW 
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~ WHY THERMOELECTRIC? 

• Fl\GHT QUALIFIED TECHNOLOGY EXISTS: 
- BASEUNE REFERENCE 

- FAll BACK OPTION 

• POl£NTIAl FOR IMPROVEMENTS ARE REAl: 

I 
- PERFORMANCE (Z) 

< ! 
I I - TEMPERATURE ~ 

\ 

J 
w 

• ADVANCES IN TECHNOLOGY ARE USEAJl: 
- EASilY INCORPORATED , 
- COMENSURATE WITH REACTOR LIMITS 
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FIGURE OF MERIT ~ 
MAXIMUM EffiCIENCY t) • ELECTRICAL ENERGY DELIVERED TO EXTERNAL CIRCUIT 

ENERGY CONSUMED FROM HEAT SOURCE 

I: 
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.a.AA 
yy. 

Rl 

(
TI-

1
0) X 

• T . o 
TO 
r- ' 
THE RMODYNAM\ C 
EFFICIENCY OF A 
REVERSIBLE ENG\NE 

WHEREM • Jl+1I2Z(T1+TO) 

AND AGURE Of MERIT Z • a 
2 

a 
K 

INCREASE IN T 1 INCREASES BOTH TERMS 

TYPICAL Z VALUES (AT 300~) 
METALS 3 X 10-

6o
C-

1 

SEMICONDUCTOR 2 X 10-
3 

°C-
1 

INSULATORS 5 X 1017 
°C-

1 

F 

( M-~ ) 
M+~ 

Tl 
", , 

REDUCTION OF 
EFFICIENCY DUE TO 
IRREVERSIBLE LOSSES 

, 1 
' I ht rt .,... ......,., t=2 Q: ;=a r-- I W'~-' r-;-" t ~" ~--- u __ 
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.~ LIMITATION ON MAXIMUM 2T 

RITlNER (1959) 

DONAHOE (1960) 

SIMON (1962) 

ONE CARRIER SYSTEM 

RlllNER & NEUMARK 119631 l TWO CARRIER SYSTEM 

URE (1971) 

GOLDSMI D ET AL (1975) 

KELLY & SZEGO (1964) 

RADIATIVE TRANSFER 
CORRECTION 

240 

17 

NO LIMIT 

70 

1.9 - 3.6 

ZT OF 3.5 REDUCED TO 1 AT 2000
0
K 

NO REDUCTION UP TO 2500
0
K 

FOR TYPICAL MATERIALS 
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FIGURE-Of-MERIT OF 
SELECTED THERMOELECTRIC MATERIALS 

Bi 2Te3 - 755 b2Te3 
(p-TYPE) 
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Z = L x 10-3 0c -1 
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(n-TYPE) 
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RUSSIA 

FRANCE 

BORON CARBIDE 

BORON COMPOUN OS 
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~ RUSSIAN WORK 

THERMOELECTRIC EFFICIENCIES OF, 
COMPOUNDS BETWEEN 600 AND 18000 K 

MATERIAL T, oK 600 800 1000 1200 1400 1600 

BORON Z· 103, deg-1 - 0.17 0.24 0.28 0.29 0.32 

BORON CARBIDE Z' 103, deg - 1 - 0.03 0.06 0.10 0.15 0.13 

a -A1B12 Z' 103, deg-1 - 0.02 0.04 0.07 0.14 0.30 

Zmox' 
NO. COMPOUNDS T, OK deg- 1 

n-TYPE 

1 RARE EARTH CHAlCOGENIDES 1550 0, 9 • 10-3 

2 CARBIDES OF GROUP IV AND V TRANSIT. MET. 1400 0, 01 • 10-3 

3 METALS 1800 0, 06 .' 10-3 

p-TYPE 

.. BORON 1600 0, 32 • 10-3 

5 a -A1B12 1750 0, 62 • 10-3 
6 SllICIDES OF 3d TRANSITION METALS 1500 0, JO. 10-3 

- --

1750 1800 

0.29 0.27 

- -
0.62 -

(ZT)max 

I, 4 (18) 
0, 01 (19] 
0, 11 (20) 

0, 51 [21] 
I, 09 [22] 
1, 15 [23] , 
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~ FRENCH WORK 
FIGURE OF MERIT OF B14Si COMPOUND 
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-1 

o • 300 S em 
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-1 

ONE Will DEDUCE: 
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FIGURE OF 
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THERMOELECTRIC 
CONVERSION TECHNOLOGY 

ADVANCED MATERIALS: 
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POWER FROM RADIANT-ENERGY SOURCES: AN OVERVIEW
by Robert E. English and Henry W. Brandhorst, Jr.
National Aeronautics and Space Administration, Lewis Research Center

ABSTRACT

Radiations from the Sun, from microwaves and from lasers are assessed as
energy sources for electric power in space. Recent advances in photovoltaic
technology have improved the radiation resistance of silicon solar cells and
substantially reduced their annealing temperature. Advances in GaAs arrays
include the featherweight CLEFT cell and lightweight blankets based on this
cell. Use of the lOOX miniature cassegranian concentrator is compatible
with silicon, GaAs and advanced solar cells and not only reduces array cost
but also raises efficiency and increases radiation tolerance. Advanced
concepts to raise efficiency above 0.3 are also discussed.

Parabolic mirrors could focus &od collect either sunlight or laser radiation
at high efficiency. From such heat sources at 1700-2200 K, se eral competitive
concepts can generate electric power. Power can reach 30 kW/m of radiator
area or, alternatively, efficiency can exceed 50 percent. For microwave
power transmission over geostationary distances, wavelength must be reduced
to 0.1 mm (by a factor of 1000) if collector area is to improve substantially
over that of sunlit photovoltaic arrays. Lasers matched in wavelength to GaAs
photovoltaic arrays appear capable of providing electric power exceeding
1 kW/kg of array mass.

Vi-1-2

POWER FROM RADIANT-ENERGY SOURCES: AN OVERVIEW 
by Robert E. English and Henry W. ~randhorst, Jr. 
National Aeronautics and Space Administration, Lewis Research Center 

ABSTRACT 

Radiations from the Sun, from microwaves and from lasers are assessed as 
energy sources for electric power in space. Recent advances in photovoltaic 
technology have improved the radiation resistance of silicon solar cells and 
substantially reduced their annealing temperature. Advances in GaAs arrays 
include the featherweight CLEFT cell and lightweight blankets based on this 
cell. Use of the 100X miniature cassegranian concentrator is compatible 
with silicon, GaAs and advanced solar cells and not only reduces array cost 
but also raises efficiency and increases radiation tolerance. Advanced 
concepts to raise efficiency above 0.3 are also discussed. 

Parabolic mirrors could focus ~~d collect either sunlight or laser radiation 
at high efficiency. From such heat sources at 1700-2200 K, se~eral competitive 
concepts can generate electric power. Power can reach 30 kW/m of radiator 
area or, alternatively, efficiency can exceed 50 percent. For microwave 
power transmission over geostationary distances, wavelength must be reduced 
to 0.1 mm (by a factor of 1000) if collector area is to improve substantially 
over that of sunlit photovoltafc arrays. Lasers matched in wavelength to GaAs 
photovoltaic arrays appear capable of providing electric power exceeding 
1 kW/kg of array mass. 
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SPACE PHOTOVOLTAIC RESEARCH AND TECHNOLOGY PROGRAM

The research programs of the NASA Lewis Research Center are aimed at
increasing the efficiency and radiation tolerance of solar cell arrays while
also reducing their weight and cost. The payoffs include enabling heretofore
impossible long life LED habitats and ultralightweight, radiation resistant
and annealable solar arrays for GEO applications. Primary thrust of the
silicon solar cell research is to reduce radiation sensitivity and annealing
temperature; gallium arsenide research seeks to reduce cost and weight with
increased operation temperature ability advanced concepts are aimed at
efficiencies 30 percent and above while welding seeks long life, threat
resistant arrays. Miniature concentrators seek to combine the best advantages
of all the rest of the research.
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SPACE PHOTOVOLTAIC RESEARCH & TECHNOLOGY 
PROGRAM 
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REDUCED ANNEALING TEMPERATURES IN
RADIATION DAMAGED SILICON SOLAR CELLS

Research has shown only three defects as a result of 1 MeV electron radiation
damage are significant in reducing cell output. Two of them contain the
unwanted impurities carbon and oxygen. Theory predicts lower radiation damage
and reduced annealing temperature if these impurities are reduced. In high
purity 0.1 ohm cm silicon, processed by ion implantation which did not
introduce further carbon and oxygen annealing temperatures as low as 200°C
have been measured. This temperature is within the capability of present
arrays.
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REDUCED ANNEALING TEMPERA lURES IN 
RADIATION DAMAGED SILICON SOLAR CELLS 

THEORETICAL PAEDICTIONI 

" CURRENT 
RECOYERY 

CALCULATED 
WITHOUT aoooY,' 

DEfECT _, ,---
I , 

MEASURED 

I ...- CALCULATED 

10' , • , , I 

o 100 200 300 400 500 
TEMPERATURE. DC 

- THEORY PREDICTS REDUCED ANNEALING 

TEMPERATURE WITH REDUCED OXYGEN 

EXPERIMENTAL DATA 
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100 200 300 400 &00 100 
TEMPERATURE. cae 

- REDUCED ANNEALING TEMPERATURE DEMONSTRATED 

IN ION IMPLANTED. LOW C AND 0 SILICON CELLS 

o. NEARLY COMPLETE ANNEALING DEMON8TRATED AT 2000 C 

o °moO C OR LESS REQUIRED TO '''IVI"T A""A Y DAMAGI 

o GOAL 18 TO REDUCE DAMAGE TO <1." IN 10 YEA'" GIO 
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ULTRALIGHTWEIGHT GALLIUM ARSENIDE
SOLAR CELL DEVELOPMENT

Lincoln Laboratory has developed a process for producing single crystal
gallium arsenide solar cells less than 10 VM thick. The chemical vapor
deposition process employs a reusable substrate, and is not area limited. The
cell junction and top contacts are fabricated while the layer is on the host
substrate. It is then attached to a coverglass, cleaved from the substrate
and cell fabrication completed. This is the first example of an ultrathin,
single crystral solar cell.
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UL TRALIGHTWEIGHT, GALLIUM ARSENIDE 
SOLAR CELL DEVELOPMENT 

PLANE 01 
WUKNESS 

CELL GROWTH 

CELL CLEAVAGE 

~ CELL SPECIFIC POWER ACHIEVED 2.5 KW/KG 
(lOX CURRENT FLIGHT CELLS) 

\) CELL THICKNESS 10 I'M 

o EFFICIENCY 12.8% TO DATE 

LINCOLN LABORATORY CLEFT PROCESS 

o POTENTIAL LOW COST 

o REUSABLE SUBSTRATE 

Il HIGH SPECIFIC POWER 

FINISHED CELL ASSEMBLY 

FRONT 
CONTACT 
FINGER 

GLASS [ 

EPOXY $ Ill,; , .S) ~&~~R CELL 

BACK 
CONTACT 



LIGHTWEIGHT BLANKET TECHNOLOGY

Using the ultralightweight CLEFT cell, new lightweight blanket design becomes
possible. A design producing 1000 W/kg is projected for a 20 percent cell
with 25 pM substrates and covers. This design also requires significant
advances in interconnect design and technology. Conservative values of losses
are included.

p
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1990 PERIOD 2000 + PERIOD 
SUBSTRATE 50.". KAPTON 0.072 25~M FUSED SI02 EQUIV 0.Cl56 
ADHESIVE 25lJ11 93-500 0.049 

CELL 10~M GAAs (CLEFT) 0.036 5~M GAAs 0.018 
. CONTACTS 4~M GAAs EQUIV 0.014 lf~M GAAs EQUIV 0.014 

COVER 50~ FUSED SI02 EQ 0.112 25~M FUSED SI02 EQUIV. 0.056 
INTERCONNECT 10~M COPPER 0.024 5IJM COPPER 0.012 
MISCELLANEOUS PADD'G, STIFF, ETC. 0.040 PADD'G, STIFF, ETC • 0.030 
TOTAL (KG/M2) 0.3lf7 0.186 
CELL EFFIC. 17% 20% 
POWER (W/M2) 232 274 

EOL SPECIFIC 
POWER-(w/KG) 412 1008 

-LOSSES - PKG FACTOR 0.8, ASSL'Y & PWR MISMATCH 0.1, 550C 0.05, RAD. DAM. 0.1 (1990) 0(2000) 
125 M2 WING, SEPS BLANKET = 107 W/KG 
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GaAs CONCENTRATOR CELLS

A gallium arsenide cell having an efficiency of 13 percent at 200"C has.been
developed. At the same temperature, a silicon solar cell would only have a 4.
percent efficiency. Also, contact stability has been demonstrated. The
available data projects a five year lifetime at 200*C with only 4 percent loss
in power. Of course, more power would be delivered if the array were operated
at a reduced temperature then periodically raised to 200 C for annealing.
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MINIATURE CASSEGRAINIAN CONCENTRATOR

The miniature cassegrainian concentrator uses a 4 mm diameter cell in a 125X
concentrator about 2" square. The cell temperature under full operational
conditions is projected to be only 809C. The structure offers many
significant advantages including its compatibility with the high efficiency
cascade cells being developed.
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MINIATURE CASSEGRAINIAN CONCENT~ATOR 

• PROTECTS CELL FROM UNWANTED PARTICULATE AND OPTICAL RADIATION 

7 • ACHIEVES BOoC OPERATING TEMPERATURE WITH FULL-AREA RADIATOR 
~ 
I 

~ • CAN PRODUCE 200°C TEMPERATURES FOR IN-SITU RADIATION DAMAGE ANNEALING WITH 
APPROPRIATE THERMAL DESIGN 

• CAN ACHIEVE 19% EFFICIENCY WITH IMPROVED GAAs CELLS 

• IDEAL SYSTEM FOR SMALL AREA CASCADE CELLS (30% EFFICIENCY POTENTIAL) 

• COMPATIBLE WITH OTHER ADVANCED CELL CONCEPTS 

- ~ 



BENEFITS OF WELDED INTERCONNECTS

Present solar arrays in the U. S. have only soldered interconnects. Welding
technology offers significant advantages that enable new missions. A research
development program is underway to realize the benefits of welding technology.
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BENEFITS OF WELDED INTERCONNECTS 

• HIGH TEMPERATURE SURVIVABILITY 

• INCREASED CYCLE LIFE IN LEO 

• WIDER CHOICE OF INTERCONNECT MATERIALS (E.G. ALUMINUM) 

• LOWER PRODUCTION COSTS 



CASCADE SOLAR CELLS

Cascade solar cells offer the potential for 30 percent sunlight conversion
efficiency. The cells are made from combination of III-V elements. For
example, two promising quaternary combinations include the AlInGaAs and the
AlGaAsSb systems. These materials permit adjustment of both band gap and
lattice constant to ensure a matched, high efficiency structure.
Metallorganic chemical vapor deposition is the favored technology for
developing these cells. Significant materials work must be done to permit
this technology to reach its potential.
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CASCADE SOLAR CELLS 

Cascade solar cells offer the potential for 30 percent sunlight conversion 
efficiency. The cells are made from combination of III-V elements. For 
example, two promising quaternary combinations include the AllnGaAs and the 
A1GaAsSb systems. These materials permit adjustment of both band gap and 
lattice constant to ensure a matched, high efficiency structure. 
Metallorganic chemical vapor deposition is the favored technology for 
deve10ping these cells. Significant materials work must be done to permit 
this technology to reach its potential. 
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BETTER UTILIZATION OF SOLAR SPECTRUM FOR INCREASED EFFICIENCY 

APPROACH: ABSORB DIFFERENT PORTIONS OF SUNLIGHT SPECTRUM BY 
DIFFERENT BANDGAP CELLS STACKED ATOP ONE ANOTHER 

GOAL: 30% CONVERSION EFFICIENCY AT OPERATING TEMPERATURE 
(= DOUBLE THAT OF SILICON) 
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-PERFECT LOW RESISTANCE INTERCONNECTING JUNCTIONS 
-GROWTH OF QUALITY PHOTOVOlTAIC LAYERS BY EPITAXY 
-DESIGN FOR USE IN CONCENTRATED SUNLIGHT 
-UNKNOWN RADIATION RESISTANCE 



PARALLEL PROCESSING
WITH SURFACE PLASMA WAVES

A new concept, invented at the NASA Lewis Research Center, utilizes the wave
nature of light to convert its energy into electricity. The light can be
spread out into a spectrum and absorbed on a 'extured surface made of common
metals only a few hundred angstroms thick. The absorption is achieved by
conversion of the light wave into a relativistic surface plasmon wave.
Conversion of 85-90 percent of the light into plasmons has been demonstrated
for monochromatic light. Source coherence is not required. The surface
plasmons then transfer their energy to electrons which are converting power in
a tunnel junction. Calculations of efficiency potential are underway as are
experiments to demonstrate feasibility of the concept.
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WITH SURFACE PLASMA WAVES 

A new concept, invented at the NASA Lewis Research Center, utilizes the wave 
nature of light to convert its energy into electricity. The light can be 
spread out into a spectrum and absorbed on a "extured surface made of COnlnon 
metals only a few hundred angstroms thick. The absorption is achieved by 
conversion of the light wave into a relativistic surface plasmon wave. 
Conversion of 85-90 percent of the light into plasmons has been demonstrated 
for monochromatic light. Source coherence is not required. The surface 
plasmons then transfer their energy to electrons which are converting power in 
a tunnel junction. Calculations of efficiency potential are underway as are 
experiments to demonstrate feasibility of the concept. 
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PARALLEL PROCESSING 
WITH SURFACE PLASMA WAVES 
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HEAT COLLECTION

Paraboloidal collector focuses radiant energy from either the
Sun or a laser into a receiver. The size of the receiver's
aperture is chosen to maximize the difference between energies
collected by and reradiated from the aperture.
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HEAT COLLECTION 

Paraboloidal collector focuses radiant energy from either the Sun or a laser into a receiver. The size of the receiver's aperture is chosen to maximize the difference between energies collected by and reradiated from the aperture. 
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PARABOLOID COLLECTING SUNLIGHT

Paraboloids having surface standard errors of 1-3 arc-minute are
state of the art. The usual reflectivity of 0.96 was here degraded
to 0.9 to allow for contamination of the mirror's surface. Effi-
ciency of collecting sunlight can exceed 0.8 for temperatures up to
200OK, reradiation from the aperture being accounted for. For illu-
mination by laser, efficiency would be higher.
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Paraboloids having surface standard errors of 1-3 arc-minute are state of the art. The usual reflectivity of 0.96 was here degraded to 0.9 to allow for contamination of the mirror's surface. Efficiency of collecting sunlight can exceed 0.8 for temperatures up to 2000K, reradiation from the aperture being accounted for. For illumination by laser, efficiency would be higher. 
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ONE-PERCENT CREEP OF ASTAR-811C

On the basis of over 250,000 hours of creep testing, the data on
ASTAR-8l1C indicate that an imposed load of 69 MPa (10000 psi)
would produce 1 percent creep in the following times:

Temperature, K Time, hours

1500 40000
1700 100

Reducing this load by 2 standard deviations (to 34 MPa, or 5000
psi) provides a reasonable basis for design.

VI-1-26

11'" 

ONE-PERCENT CREEP OF ASTAR-811C 

On the basis of ~ver 250,000 hours of creep testing, the data on ASTAR-811C indicate that an imposed load of 69 MPa (10000 psi) would produce 1 percent creep in the following times: 

Temperature, K 
1500 
1700 

Time, hours 

40000 
100 

Reducing this load by 2 standard deviations (to 34 MPa. or 5000 psi) provides a reasonable basis for design. 
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ONE-PERCENT CREEP OF ASTAR-811C
26 TESTS, 116 441 hr
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BRAYTON OPTIMIZATION

Overall efficiency 2f power generation is 0.25 at radiator
areas of 0.25-0.5 m'/kWe, depending on turbine-inlet tem-
perature. Operation at 2000K requires better materials
than currently exist. Efficiencies exceeding 0.5 are
achievable by increasing radiator area.
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BRAYTON OPTIMIZATION 

Overall efficiency Of power generation is 0.25 at radiator areas of 0.25-0.5 m2/kWe, depending on turbine-inlet temperature. Operation at 2000K requires better materials than currently exist. Efficiencies exceeding 0.5 are achievable by increasing radiator area. 
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EFFICIENCY 
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TEMPERATURE ../ /\ 300/( /' 
K 2000// ./~ 
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RANKINE VS. BRAYTON

Existing thermodynamic data on the alkali metals extend to
only 165OK, but at this temperature radiator area is only
.07 m2/kWe. At 200OK, this area would be halved.
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Existing thermodynamic data on the alkali metals extend to only ~6S0K, but at this temperature radiator area is only .07 m~/kWe. At 2000K, this area would be halved. 
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PERFORMANCE OF THERMIONIC CONVERTERS
I"

High power density and high temperature boost thermionic perform-
ance. The thermionic converter LC-9 operated stably for over 5f (years at 1975K.

I
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PERFORMANCE OF THERMIONIC CONVERTERS 

High power density and high temperature boost thermionic performance. The thermionic converter LC-9 operated stably for over 5 
years at 1975K. 
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PERFORMANCE OF THERMIONIC CONVERTERS 

NO INTERELECTRODE LOSS 
10% BACK EMISSION 

f I ! MORRIS: NASA TMX-73844 
I 

\ 
EMITTER TEMPERATURE~ K 1650 1800 2000 

COLLECTOR TEMPERATURE~ K 925 925 925 < -
H 

+1 w 
CURRENT~ A/CM2 5 30 30 .. 
POWER~ W/CM2 .4.7 31.0 40.0 

EFFICIENCY .235 .302 .338 

HEAT INPUT~ W/CM2 20 103 118 



THERMIONIC PERFORMANCE

For 925K collector temperature, available data produce large
radiator areas. Half this area is required by a power proces-
sor of 0.9 efficiency and limited to 1000C. System redesign
is required in order that the potential of radiant power input
might be fully exploited.
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THERMIONIC PERFORMANCE 

For 925K collector temperature, available data produce large 
radiator areas. Half this area is required by a power proces
sor of 0.9 efficiency and limited to 100oC. System redesign 
is required in order that the potential of radiant power input 
might be fully exploited . 
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THERMIONICS WITH RADIANT INPUT

Radiant energy input eliminates the high-temperature insulator
and its temperature limitations, a factor seriously limiting
the voltage generated by nuclear thermnionic systems. In turn,
both weight and energy losses of power processing can be cut
substantially.
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THERMIONICS WITH RADIANT INPUT 

Radiant energy input eliminates the high-temperature insulator 
and its temperature limitations, a factor seriously limiting 
the voltage generated by nuclear thermionic systems. In turn, 
both weight and energy losses of power processing can be cut 
subs tanti ally. 
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OPTICS REQUIRED

The optics required by 12-cm microwaves are enormous
for GEO distances. Lasers would have much smaller
optics.
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OPTICS REQUIRED 

dD = 2 A L D"= 2d~ L = 42163 KM~ P = 20 MW I \ 

. ! 
. I I 

WAVElENGTH~ DIAMETER~ AREA .. FLUX~ 
M d.. M M2 W/Cf12 

0.122 2300 4xl06 .0005 
<: 

~ I 
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10-5 21 330 6 
~ o _ 

10-6 6.5 33 60 
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PHOTOVOLTAICS VS. MICROWAVES
i

Only by use of wavelengths of the order of 100 pm can microwaves
significantly improve on photovoltaic areas.
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PHOTOVOLTAICS VS. MICROWAVES 

Only by use of wavelengths of the order of 100 pm can microwaves 
significantly improve on photovoltaic areas. 
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I : J 

OUTPUll 10 MW 
I 

I 

I I PHOlOVOLTAICS AT 1 SUN: 

I EFFICIENCY~ 0.18 
t 200 x 200 M 
i 

<: 
H 
I 

~I MICROWAVES FOR SAME AREA: 
RANGE., 4216~ KM 
WAVELENGTH~ 1.2 MM 

MICROWAVES FOR 1/10 THE AREA: 

WAVELENGTH I 120 VM 
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FREE-ELECTRON LASERS

Free-electron lasers have three critical features: (1) Because these lasers
are tunable, the wavelength of their outputs can be matched to their receivers.
(2) The basic technology for the lasers will permit converting a received laser
beam back into electric power. (3) Conversion of electric power to laser power,
or vice versa, may ultimately exceed 50-percent efficiency.
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FREE-ELECTRON LASERS 

Free-electron lasers have three critical features: (1) Because these lasers 
are tunable, the wavelength of their outputs can be matched to their receivers. 
(2) The basic technology for the lasers will permit converting a received laser 
beam back into electric power. (3) Conversion of electric power to laser power, 
or vice versa, may ultimately exceed 50-percent efficiency. 
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ELECTRON BEAM 

LASER 
CAVITY 

WHAT WE NEED: 

FREE ELECTRON LASER 

PERIODIC 
MAGNET 

1 ELECTRON ACCELERATOR 

2 WIGG LER MAGNETS 

3 LASER CAVITY 
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AMPLIFICATION AND ENERGY CONVERSION EFFICIENCY 
AS A FUNCTION OF INPUT LASER POWER 
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GaAs ARRAYS AND LASERS

Lasers matched in wavelength (850 nm) to GaAs arrays
I would permit an exceedingly light power supply.

I
I
I
I
I
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GaAs ARRAYS AND LASERS 

Lasers matched in wavelength (850 nm) to GaAs arrays 
would permit an exceedingly light power supply. 
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GAAs PHOTOVOLTAIC ARRAYS AND LASERS 

ARRAY TEMPERATURE~ 
K 

323 

qOO 

500 

MAX 

460 

SUNLIT 
FLUX~ POWE~~ 
SUNS W/M 

1 250 

2.3 Q60 

. 5.2 760 

10 920 

SEP ARRAY (COMPLETE) = 1.5 KG/Mf 

LASER-GAAs ARRAY = 0.6 KG/KWE 

- - -

LASER LIT 
FLUX~ POWER~ 

SUNS W/M2 

1.8 1200 

3.5 2000 

6.9 2800 

10 3000 

5.3 2500 
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RESEARCH ISSUES 

1. PHOTOVOLTAICS: REDUCE WEIGHT, DURABILITY IN HOSTILE 
ENVIRONMENT, ANNEAL AT 2000CJ EFFICIENCY OVER 0.3 

2. CONSTRUCTION OF lARGE 1 EFFICIENT MIRRORS 

3. DYNAMIC POWER AT 2000K: MATERIAlSJ THERMODYNAMIC 
PROPERTIES OF ALKALI-METAL VAPORS 

q. EVALUATE THERMIONIC CONCEPT FOR 2000-2200K 

5. MICROWAVES: REDUCE WEVELENGTH BY 1000 (TO 0.1 MM) 

6. LASERS: VARIOUS CONCEPTS BUT WITH WAVELENGTH MATCHED 
TO THE COHVERTER. FREE-ELECTRON LASER MATCHED TO GAAs 
ARRAY APPEARS ESPECIALLY ATTRACTIVE 

-~ 

.. 

AlA'-A 



Q & A - English/Brandhorst

From: P. J. Turchi, R & D Associates
To: Brandhorst

What are requirements (if any) on monochromaticity, and
collimation for plasmon excitation with useful efficiency?

A.
None to slight. Device will accept broad band light.

Some collimation is beneficial to enhance excitation of
plasma waves. We've demonstrated up to 90% conversion of
monochromatic green light to plasmons.

From: P. J. Turchi
To: English

For thermionic-radiator package scheme, what insulation
is used between electrically-stacked cells? Especially in
space plasma and/or high temperature environment.

A.
None. The thermionic converters would be inside a

receiver cavity, or hnhlraum, thereby being largely protected
from space plasma. Tnermionic emission of electrons into the
cavity should be low because of work function % 4.5 eV.

From: S. Wax, AFOSR
To: Brandhorst

What is current guess of upper bound of efficiency for
surface plasma concept? Are there problems with temperature?

A.

Calculations attempting to determine upper bound effic.
are underway - key factor appears to be conversion of
plasmon to a hot electron excited across the diode. Have
demonstrated 85-90% conversion of monochromatic light to
plasmons. Reradiation losses of the plasmon seem control-
lable.

Conversion diodes will probably be adversery affected by
increasing temperature. Experiments await suitable devices.
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High Efficiency Tandem or Cascade Photovoltaic Solar Cells

for Space Application

Joseph J. Loferski
Division of Engineering

Brown University
Providence RI 02912

ABSTRACT

High efficiency solar cells are attractive for both space and terrestrial

applications because they reduce the o',erall cost of a system intended to gene-

rate a given amount of power from sunlight. This is because every PV system in-

cludes components whose cost is proportional to the area covered by the system

and this area is inversely proportional to the conversion efficiency of the

cells. For single solar cells, the limit theoretical efficiency lies between

25 and 30%. Cascade or tandem cell systems, which consist of a number of solar

cells made from photovoltaically active semiconductors (PVAS) having appropri-

ately selectei bandgaps in the range 1.0 eV to 2.2 eV have substantially higher

theoretical limit efficiencies. For an "infinite" number of cells made from

an "infinite" number of PVAS and maintained at 300 K, this flat plate limit

efficiency is 68% while the high concentration ratio (104 X) limit efficiency

is around 86%. For a cascade of twelve cells made from twelve properly selected

PVAS, the flat plate limit efficiency is around 50% for 300 K. This paper pre-

sents an outline of a research program which would result in cascade solar

cells capable of such high efficiencies. It shows how to select PVAS alloy

systems having the required range of bandgaps. It describes the optimized

"unit cell" of such a cascade stack and discusses requirements other than band-

gap which must be satisfied by the PVAS intended for cascade cells. A brief

review of the current status of research in this area is included.
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SOLAR PV CELLS IN SPACE

SOLAR ENERGY DENSITY 1.4 KW/M2

FOR 10% EFFICIENT CELLS AND 14 MW PEAK,
AREA REQUIRED 1 M2

FOR 20% EFFICIENT CELLS 5 x 103 M2

FOR 40% EFFICIENT CELLS 2.5 x 103  M2
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SOLAR PV CELLS IN SPACE 

SOLAR ENERGY DENSITY 

fOR 10% EFFICIENT CELLS AND 1.4 MW PEAK} 
AREA REQUIRED 104 M2 

FOR 20% EFFICIENT CELLS 

FOR 40% EFFICIENT CELLS 
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SINGLE PV CELLS: AMO

LIMIT EFFICIENCY

FLAT PLATE THEORY ' 25%

CONCENTRATOR 30%

OBSERVED 20% (GAAs)

TANDEM OR CASCADE PV CELLS: AMO

LIMIT EFFICIENCY (INFINITE NUMBER)

FLAT PLATE THEORY 68%

CONCENTRATOR (104) '86%

IF OBSERVED/PRACTICAL 0. 08, LIMITS WOULD BE

FLAT PLATE " 54Z

CONCENTRATOR (104) ' 68%
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LOSSES IN SINGLE SEMICONDUCTOR SOLAR CELLSj
There are two large photon energy losses in solar cells

utilizing a single photovoltaically active semiconductor (PVAS).

This bar chart shows the losses in silicon which ultimately re-

sult in 10% efficient (AMO) cells, but with respect to the losses

of photons which cannot be absorbed (about 23%) and of excess

photon energy not utilized in the conversion process (57%), the

sum of these losses is of the order of 56.5% in any single PVAS

solar cell (Ref 1)
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photon energy not utilized in the conversion process (57%), the 
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SCHEMATIC REPRESENTATION OF A TANDEM CELL SYSTEM

In a tandem or cascade PV cell system, a group of solar cells

each based on a PVAS having a different energy gap are arranged in

such a way that the light is incident on the first cell in the

stack which absorbs photons with energy greater than the energy

gap E of its PVAS; the remainder of the photons are directed

to the second cell, etc. Tandem cells can be actualized by uti-

lizing selective filters or by constructing monolithic structures

with the cells fabricated on top of each other or they can be

stacked on top of each other and connected to separate loads as

shown in the figure (Ref 2).
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SCHEMATIC REPRESENTATION OF A TANDEM CELL SYSTEM 

In a tandem or cascade PV cell syst~m, a group of solar cells 

each based on a PYAS having a different energy gap are arranged in 

such a way that the light is incident on the first cell in the 

stack which absorbs photons with energy greater than the energy 

gap EGI of its PYAS; the remainder of the photons are directed 

to the second cell, etc. Tandem cells can be actualized by uti

lizing selective filters or by constructing monolithic structures 

with the cells fabricated on top of each other or they can be 

stacked on top of each other and connected to separate loads as 

shown in the figure (Ref 2). 
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RESULTS OF EFFICIENCY CALCULATIONS

The next two figures show the results of efficiency calcula-

tions for a finite number (< 24) of cells made from different

PVAS with properly chosen EG. Both figures represent efficien-

cies for AMO calculations. The first refers toa "no concentration"

situation; the second to 10OX concentrations. Note that at 900K,

for no concentration, a six cell system is about 90% as efficient

as a 24 cell system. The efficiency of a 24 cell system (56%) is

about 82% of the efficiency of a system utilizing an infinite

number of PVAS (68%) (Ref 2)
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WHAT IS NEEED FOR MONOLITHIC TANDEM CELLS

UNIT PV CELL 5 MICRONS THICK OPTIMIZED
EFFICIENCY

UP TO TEN PV ACTIVE SEMICONDUCTORS WITH

BAND GAPS BETWEEN 9" 1.0 EV AND -- 2.0 EV
PROPERLY SELECTED

PREFERABLY DIRECT GAP SEMICONDUCTORS

THEY SHOULD HAVE SAME LATTICE CONSTANT

PROBABLY HETEROJUNCTION CELLS WITH WIDE

BAND GAP ( z 2.4 EV) WINDOW
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"IDEAL" HETEROJUNCTION PV CELLI
The next two figures show the ideal cell in which the small

fband gap PVAS is covered by a wide band gap, transparent (to

sunlight) semiconductor. Such a structure reduces or eliminates

losses which would occur on the surface of a p/n homojunction cell

made from the same small band gap PVAS. The second figure shows

the electronic energy band diagram of the cell. In this configura-

tion, the wide band gap material is more heavily doped than the

PVAS which shifts most of the space change region into the PVAS.

In the ideal cell there are no interface states in the region where

the two semiconductors meet. Interface states increase the diode

reverse saturation current 10 which leads to lowered Voc

(Ref 3).
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"IDEAL" HETEROJUNCTION PV CELL 

The next two figures show the ideal cell in which the small 

band gap PYAS is covered by a wide band gaP, transparent (to 

sunlight) semiconductor. Such a structure reduces or eliminates 

losses which would occur on the surface of a pin homojunction cell 

made from the same small band gap PYAS. The second figure shows 

the electronic energy band diagram of the cell. In this configura

tion, the wide band gap material is more heavily doped than the 

PYAS which shifts most of the space change region into the PYAS. 

In the ideal cell there are no interface states in the region where 

the two semiconductors meet. 
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CALCULATIONS OF EFFICIENCIES OF SOLAR CELLS INTENDED FOR TANDEM
CELL SYSTEMS AND FABRICATED FROM DIRECT GAP SEMICONDUCTORS EM-
PLOYING MINORITY CARRIER AND OPTICAL MIRRORS

The next figure in this pair shows the electron energy band

diagrams of two p/n homojunction structures which incorporate

minority carrier mirrors (MCM) formed in one case by n +n and

p p junctions and in the other by placing wide band gap semi-

conductors at the ends of the photovoltaically active volume.

The results can be easily adapted to a heterojunction.
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RESULTS OF CLACULATIONS OF EFFICIENCY OF OPTIMIZED INDIVIDUAL CELLS

This figure shows how the efficiency of CuInSe 2 and GaAs

cells vary with thickness for certain design parameters. The

parameter "A" represents the junction depth. Note that, for both

semiconductors, the maximum efficiency occurs for a thickness of

about 2um. These results can be applied essentially directly to

heterojunction cells by extrapolating A to zero.

VI-2-16

he h 

! e 

RESULTS OF CLACULATIONS OF EFFICIENCY OF OPTIMIZED INDIVIDUAL CELLS 

This figure shows how the efficiency of CulnSe 2 and GaAs 

cells vary with thickness for certain design parameters. The 

parameter "A" represents the junction depth. Note that, for both 

semiconductors, the maximum efficiency occurs for a thickness of 

about 2~m. These results can be applied essentially directly to 

heterojunction cells by extrapolating A to zero. 

VI-·2-16 

-. -~ - o. ___ _ 

de • 



ICu In Se.2 OOUNTO

F26

z
22w

U- = .4ZL
LL

20
NA =101 cm-3  Lp O .5iM

AMi1, 92 mWcm-2

18 111 I -I I 1
1 2 3 4 5 6

Cr'-LL THICKNESS (MLM)

25

I -~.24

GaAs HOMOJUNCTION
zN =0 is cm -3 AMI IOOmWcm

LJ

NA:ZI0O1 cm-
~23 Lp 2M

1 221
1 2 3 4 5 6

I CELL THICKNESS (MLM)

VI -2-17

I 
I 
1 

I 
I 
I 
I 
I 
I 
I 
I 

26 -
~ -
e:- 24 
>-
(,) 

Z 
l&J 

u 22. 
LL. 
LL. 
l&J 

20 

Cu In Se 2 HOMOJUNCTION 

A = .05 J.LM 

~--------______ -!A~=~O~'~f~M 

A = 0.3 J.LM 

0. = 1018 crri- 3 L. = 2..5 JLM 

NA = 1011 cm- 3 Lp = O.51p.M 

A= 0.4 p..M 

AM 1, 92 mWcm- z 

18~--~--~~----~----~----~----~--~ 
1 2 3 4 5 

C':LL THICKNESS (J.LM) 

6 

25r-----~~~~==~----------~ 

-~ o -.~ 24 

>-
u 
z 
w 
U 
\.I.. 23 
\.1..' 
w 

GoAs HOMOJUNCTION 
N = 1018 cm- 3 

o AM1 IOOmWcm-z 

NA = 1017 cm-3 

Lp = 2p.M 

Ln = 7.5fLM 

22~~~----~----~----~----~--~----~ 
1 234 5 

CELL THICKNESS (,u.M) 

VI-2-17 

... - .. , .......... ~ ..... 

6 



MONOLITHIC TANDEM CELL FABRICATED FROM OPTIMIZED UNIT CELLS

A monolithic tandem cell can be made from optimized hetero-

junctions like those shown here on the left side or from homo-

junctions as shown on the right side of the next figure. In

either case, the sequence must be n n/p p and the n and p

regions must be heavily doped to insure ohmic contacts between

cells in the stack. The materials in the cells need to have the

same lattice constant and energy gaps ranging from 1.0 to 2.0 eV.

Each optimized cell in the stack is only about 2pm thick so that

a stack of 24 such cells need only be about 50 im thick.
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HOW ALLOY SYSTEMS CAN SERVE AS THE SOURCE OF SUFFLY CF SEMICONDUC-

TORS FOR TANDEM PV CELL SYSTEMS

As shown on the left in this figure, a pseudo-binary alloy of

two III-V or two I-III-VI 2 (or other) semiconductors have lattice

constant and energy gap which vary with composition. For a given

alloy, there is a single value of lattice constant and energy gap.

As shown in the figure on tLe right, it is possible to form

quarternary and pentenary alloys by combining the pseudo-binary

alloys of these semiconductors (Ref 4)
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EXAMPLES OF ALLOY SYSTEMS WHICH ENCOMPASS SEMICONDUCTORS HAVING
CONTINUOUSLY VARYING ENERGY GAPS AT A FIXED VALUE OF LATTICE
CONSTANT

The first of the next two figures is an iso-lattice constant,

iso-energy gap map of the Cu-Ag-In-S-Se system. The dotted lines

represent constant lattice constants and the solid lines, constant

energy gap. The heavily dotted line corresponds to the lattice

constant of CdS which is a suitable wide band gap semiconductor

intended to play the role of the wide band gap window of the

"ideal" heterojunction cell. The second figure shows similar data

for the Cu-Ga-In-Se-Ts system.

Homogeneous alloys of various members of these systems as

well as of III-V semiconductors have been prepared. These sys-

tems can serve as the PVAS of tandem cells which are the high

efficiency cells of the future (Ref 4).
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AREAS REQUIRING FURTHER SUPPORT

There is a large payoff for success in fabrication tandem

solar cells since they reduce the size of PV systems in space.

The theory underlying these high efficiency cells is well under-

stood. Ways to produce the required structures are known. Reali-

zation of these very efficient solar cells requires substantial

research on the optoelectronic properties of semiconductor alloy

systems :n the III-V and I-III-VI2 semiconductor systems. Re-

search is also needed on the fabrication of cells from those

materials.
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PAPER IV-2

Question:

a) How difficult is it to make the exotic semiconductors
needed for 6 to 10 layer cascade cells with the range
of energy gap values required (1 eV to 2 eV) and the
same lattice constant?

b) How would the needed research differ from that being
done on semiconductor materials for electronic device
applications?

Answer:

a) Synthesis of the alloys in powder form is easy. At
Brown we nave made many four and five element alloys
in the AI BIII CVI (eg. CuInSe2 , AgInS2 , etc.) with
the same lattice constant and energy gaps ranging from
1.0 to about 1.6 eV. At many other institutions, re-
searchers have been making alloys of AI I I BV semicon-
ductors with the required characteristics. Making
single crystals of these materials is usually more dif-
ficult although large grained polycrystalline specimens
are readily produced. There is very little effort ex-
pended on the problem to date mainly because it is a
rather specific photovoltaic cell problem.

b) There is virtually no work underway on A
I BI N CVI

alloy systems and very little on AI I I BV alloy systems
because of the lack of significant commercial appli-
cations. There is some work on III-V alloys because
of their potential application in semiconductor lasers
where lattice matching of materials with different
energy gaps is importat.

Question: (from P.J. Turchi)

Won't tandem cells in monolithic construction degrade sig-
nificantly due to radiation (say soft x-rays)? (This is a
radiation survivability question.)

Answer:

In general, direct gap semiconductors, like those that would
be used in monolithic PV cells are much more radiation resis-
tant than silicon. As regards soft x-radiation, they would
be essentially insensitive to degradation from such a source.
The x-rays might add to the power output from the cells, but
would not cause degradation.
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THERMOPHOTOVOLTAIC POWER SOURCES

FOR SPACE APPLICATIONS

J.J. Loferski, J.G. Severnstand E. Vera*

ABSTRACT

This paper explores some aspects of solar thermophotovoltaic (TPV)

power sources for space applications. Such a TPV power supply consists of a

mirror for concentrating sunlight onto an absorber whose temperature is

raised into the l50Q*C to 2000*C range. The absorber then becomes a radiator

whose energy output is directed onto solar cells lining a chamber surrounding

the radiator. The optimum semiconductor for TPV systems depends on the temp-

erature of the absorber but since the radiator temperature is much lower than

the effective black body temperature of the sun, the band gap of the pre-

ferred photovoltaic material is closer to that of germanium (0.7 eV) than

that of silicon (1.1 eV),. The paper discusses optimum design Ge cells; cas-

cade solar cell combinations which lead to higher efficiencies than those

obtainable from Ge alone; the use of rare earth oxide coatings on the radia-

tor to shift the output to match the peak response of a Ge cell, etc. Cal-

culations show that for radiator temperatures in the 1500C to 20000C range

and power densities on the PV cells of about 25 W/cm , solar energy conversi

efficiencies in excess of 20% are possible. A preliminary design of a 10 KW

module is discussed; larger power levels are achieved by combining the appro

priate number of such modules to reach the desired power level. Among the

jadvantages of TPV systems are radiation hardness because the PV cells are
mounted inside a sturdy container and the possibility of thermal energy stor

age so that the system can continue to function even after solar energy inpu

is cut off.

* Brown University, Providence, Rhode Island

t U.S. Naval Research Laboratory, Washington, D.C.
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THERMOPHOTOVOLTAIC'POWER SOURCES 

FOR SPACE APPLICATIONS 

J.J. Loferski~ J.G. Severnstand E. Vera· 

ABSTRACT 
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10 KW MODULE CROSS SECTION

Sunlight is concentrated into an absorbing cavity, raising its temperature

to 14000C to 20000 C. Energy is reradiated thermally, illuminating a photo-

voltaic array. Efficiency is enhanced by emitting the thermal radiation from

a selective radiator, i.e., a surface which emits most of its thermal radiation

in a narrow wavelength band rather than over a broad black body spectrum. The

photovoltaic cells are then designed to respond optimally to this narrow wave-

length band. The cells are designed to operate near room temperature, which

requires careful design of the waste heat rejection heat pipes and radiator.

In order to minimize system weight, the solar concentrator will also be

used as the waste heat radiator. The sizes of some of the components for a

IOKW module are listed below.

Orbit radius - 15000 Km
Efficiency of Battery = 70%
Photovoltaic Efficiency = 20% (with selective radiator)
Concentrator = 3 meters wide x 70 meters long
Selective Radiator Temperature = 1600C
Photovoltaic Array Area = .356 m2
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THERMOPHOTOVOLTAIC CONCEPT WITH THERMAL STORAGE

Sunlight is concentrated with reflecting optics and enters the aperture

of an absorbing cavity. The walls of the cavity are'designed to be good re-

flectors, except for the blackened outer surface of a sealed thermal storage

vessel containing a material which melts at a temperature between 1400°C

and 2000°C. Energy is thus stored thermally for the eclipse portion of the

orbit. The inner surface of the thermal storage vessel is allowed to radiate

to an array of photovoltaic cells designed for use with this thermal radiation

spectrum. Efficiency can be enhanced by emitting thermal radiation to the

cells with a selective radiator; i.e., a surface which emits most of its thermal

radiation in a narrow wavelength band, instead of the broad black body spectrum.

The photovoltaic cell is then designed to respond optimally to this narrow band

radiation. The photo cells will be designed to operate near room temperature

by careful design of the waste heat rejection heat pipes and radiator. This

low operating temperature of the energy conversion device promises reliable

operation over a long service lifetime. In order to minimize system weight,
the solar concentrator will also be used as the waste heat radiator.
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the solar concentrator will also be used as the waste heat radiator. 
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THERMOPHOTOVOL TAlC CONCEPT 

MULTILAYER INSULATION 

BLACK 
ABSORBER 

MIRROR 
SURFACE 

CONCENTRATOR 

CURRENTLY UNAVAILABLE COMPONENTS 
HIGH TEMPERATURE THERMAL STORAGE 
HIGH DENSITY HEAT PIPE 

-----

THERMAL STORAGE 

PHOTO CELLS 

FLEXIBLE HEAT PIPES 

SELECTIVE RADIATOR 

EFFICIENT PUOTOVOLTAIC MATCHED TO SELECTIVE RADIATOR 
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MODULAR CONCEPT

To service the very large loads contemplated with a thermophotovoltaic

system, a modular approach is required. The concept shown in the viewgraph

involves tracking the sun in azimuth by rotation of the spacecraft, and tracking

in elevation by rotating the horizontal mounting, rod to which the modules are

attached. A convenient module size appears to be around 1OKW, which would re-

quire several hundred modules. More than six modules will be needed on one

horizontal mounting rod, and additional mounting rods can be placed above

and below the first one.
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MODULAR CONCEPT 

To service the very large loads contemplated with a thermophotovoltaic 
system, a modular approach is required. The concept shown in the viewgraph 
involves tracking the sun in azimuth by rotation of the spacecraft, ana tracking 
in elevation by rotating the horizontal mounting, rod to which the modules are 
attached. A convenient module size appears to be around lOKW. which would re
quire several hundred modules. More than six modules will be needed on one 
horizontal mounting rod, and additional mounting rods can be placed above 
and below the first one. 

VI-3-S 

---...--------...-..---------.....~-~- --



. 62

VI3-

VI-3-6 

-----



ERBIUM OXIDE SELECTIVE EMITTER

An example of a selective emitter is Er203 , which has a sharp

peak in its spectral radiancy at a wavelength of 1.55 wim. This is shown

to provide a good spectral match to a germanium photovoltaic cell (Ref. 4).
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ERBIUM OXIDE SELECTIVE EMITTER 

An example of a selective emitter is Er203, which has a sharp 
peak in its spectral radiancy at a wavelength of 1.55 lJm. This is shown 
to provide a good spectral matcn to a germanium photovoltaic cell (Ref. 4). 

VI-3-7 

, 



o o %0 --- ~

p 0

C3I

VI-3-8

o CD 
• ~ 

• 
-::t N 

• • 
r---------------------------------~r_----_r------Y_----_,------~----~~ 

.,---- ---------- - -_ .... - .,' 

------- ~ .... 
'-- ... .-. --- -------

I 
I 

/ 

I , 
I 
I 
I 
I 
I 
I , , 

I , 
I 
I 
I , 

I 
I 

---- .. , 
\ 
I , , , 

• ........ 
... ....... ... 

,I .... 
• , , 

M 

\1\ 
• 

N 

0 
• 

N 

\1\ 
• 

r-4 

---
0 
• 

r-4 

~ \1\ 
~ ____________ L_~ __________ ~ ____________ _L ____________ ~~~ ________ _J • 

o G ~ ~ N 0 
• • • • • 

r-4 

VI-3-8 

-
E 
::t -= 
~ 

0 
:z: 
r.l 

...:a 
r.l 

t> 
..: 
~ 

1 

I 

1 
J 



"IDEAL" DESIGN PHOTOVOLTAIC CELLS

The performance of PV cells can be improved by incorporating

reflecting mirrors and minority carrier mirrors (electrostatic

potential barriers into the structure as shown in the schematic

representation. (Ref 2)
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The performance of PV cells can be improved by incorporating 

reflecting mirrors and minority carrier mirrors (electrostatic 

potential barriers into the structure as shown in the schematic 

representation. (Ref 2) 
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RESULTS OF CALCULATIONS ON "IDEAL" DESIGN SOLAR CELLS

The next two slides present results of calculations of

efficiencies of germanium calls exposed to 1500"C black body

radiation as a function of total cell thickness with surface re-

combination velocities on the front and back surfaces as run-
22

ning parameters. Incident Power, 25 W/cm . Values of s , 102

are readily achievable by, for example, covering surface with a

germanium oxide (Ref 2). An s value of zero means a perfect

minority carrier morror. RF and RB are the internal reflection

coefficients of the front and back surfaces, respectively.
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The next two slides present results of calculations of 

efficiencies of germanium calls exposed to ISOO·C black body 

radiation as a function of total cell thickness with surface re

combination velocities on the front and back surfaces as run

ning parameters. Incident Power, 2S W/cm2 . Values of s ~ 10 2 

are readily achievable by, fOT example, covering surface with a 

germanium oxide (Ref 2). An s value of zero means a perfect 

minority carrier morror. RF and RS are the internal reflection 

coefficients of the front and back surfaces, respectively. 
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Calculated conversion efficiency as a function of
cell thickness with reflectivity of the front (R F)
and reflectivity of the back (RB) as parameters.
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CALCULATED EFFICIENCY OF CASCADED TPV CELLS

We have calcualted the efficiency of a cascaded pair of cells

of optimum design, one made from germanium, the other from sili-

con. The black body source temperature is 2000*C; the power den-
2

sity, 25W/cm . The efficiency of a cascade pair is calculated by

adding the efficiencies of the two cells. Example, for RF = 0.95,

RB = 0.98 for both the Si and the Ge cell, and 100 thicknesses,

the efficiency of the Ge cell is about 18%, and of the silicon

cell, 7% so that the pair has a total efficiency of 25% (Ref 3).
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We have calcualted the efficiency of a cascaded pair of cells 
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CELL THICKNESS (MiM)

Calculated conversion efficiency versus cell thickness with
reflectivity of the front (R.) and reflectivity of the backI (RB) as parameters for: (a) silicon and (b) germanium p-n
junctions.
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AREAS REQUIRING RESEARCH

Long term chemical and mechanical stability of the high temperature

absorber and selective radiator is a major consideration. Chemical breakdown

of refractory materials producing other more volatile components can cause

a serious outgassing problem. The selective radiator will most likely be

in a powdered or granular form on the emitting surface to obtain low-

emissivity away from the major emission band. If this material sinters

in operation at high temperature, reflectivity will fall, transmission

will grow, and the radiative properties of the substrate will control the

emission. Diffusion of the substrate material into the selective radiator

surface can cause a similar degradation. If high temperature thermal

storage is included, problems of chemical and mec ,ical compatibility be-

tween storage media and container materials will require attention.

Highly efficient photovoltaics, of germanium or other suitable material

will be required for optimum performance of this system. For waste heat

removal from the photovoltaics at room temperature or below, a heat pipe

with ammonia working fluid appears to be the only choice available, and at

the power densities expected (20 watts/cm2 and above) the ammonia heat

pipes available today are not adequate.
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PROBLEM AREAS 

• HIGH TEMPERATURE MATERIALS 
RADIATOR & SUBSTRATE . 

OUTGASSING 
INTEROIFFUSION 
INSERVICE SINTERING (RADIATOR) 

• HIGH EFFICIENCY PHOTOVOLTAIC 

• HEAT REJECTION 
HIGH HEAT FLUX AT LOW TEMPERATURE (25°C) 
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ABSTRACT

SOLAR ENERGY CONVERSION FOR SPACE POWER SYSTEMS

James F. Holt
Air Force Wright Aeronautical Laboratories

The Space Transportation System makes possible operating in space
various satellite systems using 50kW and above, of electrical power. These
systems will be launched and boosted into orbit by the Orbiter and such
boosters as the Inertial Upper Stage.

Solar power is especially suited for space based radar and space
communications systems. Higher power is more urgently needed in the high
altitude orbits.

Recent concepts in solar cells, batteries, and power conditioning will
enable the development and operation of up to 30kW continuous electrical
power in higher orbits well before year 2000. Before 1990 continuous power
of 10 to 15kW levels are possible operating in the higher orbits. This
forecast is based upon thin (2 mil) silicon solar cells, thin (2-mil)
gallium arsenide solar cells, nickel-hydrogen and liquid metal-sulfur high
energy density batteries, and 3 mil multi-band gap advanced solar cells, in
that time sequence.

The present power per unit weight would be increased from the present
1-2 watts/lb to 12 W/lb for the total power system.

However, in order to appreciably increase the power capability of
systems boosted into the high Lrbits, better approaches are needed. Herein
is the clear need for intensive basic research effort aimed at increasing
the Watts/lb of the solar array. The existing highly trained research
manpower available as a result of recent non-military support in the solar
cell area should be utilized in solving problems being encountered in the
advanced gallium arsenide types of solar cells, as well as in investigating
other possible high performance approaches in solar energy conversion. New
concepts for solar energy conversion should be solicited and investigated
through basic research support.

Among the basic problems being confronted in present solar energy
conversion approaches are the following:

(1) Impurities vs. radiation resistance. Means are needed for
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SOLAR ENERGY CONVERS ION FOR SPACE POWER S'(STEt1S 
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accurately determining ipurities with'in the solar cell on the order of
less than one part in 10 and beyond. Ni.thids are required for producing
crystalline cell material of purity on this order.

(2) Methods and technology are required for controlling the

formation and stability of ternary and quaternary lll-V crystals in the
formation of solar cells.

(3) The above problems relate to the fundamental problem of how
to maintain high end-of-life efficiency of the solar cell after natural and
man-made exposure to space radiations.

(4) An ultra thin cell must be accompanied by ultra light, ultra
durable metallization and interconnects. Present technology will not
suffice, since the cell-to-metal interactions and thin films are not well
enough understood or well enough controlled.
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accurately determining i§purities within the solar cellon the order of 
less than one part in 10 and beyond. M~thJds are required for producing 
crystalline cell material of purity on thi~ order. 

(2) Methods and technology are required for controlling the 
fOi"mation and stability of ternary and quaternary III-V crystals in the 
formation of solar cells. 

(3) The above problems relate to the fundamental problem of how 
to maintain high end-of-life efficiency of the solar cell after natural and 
man-made exposure to space radiations. 

(4) An ultra thin cell must be accompanied by ultra light, ultra 
durable metallization and interconnects. Present technology will not 
suffice, since the cell-to-metal interactions and thin films are not well 
enough understood or well enough controlled. 
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SOLAR ARRA Y SUBSYSTEM REQUIREMENTS 

• WEIGHT REQUIREMENT MOST SIGNIFICANT IN ARRAY DESIGN 

• IMPORTANT CONSIDERATIONS AFFECTING WEIGHT 

HIGH EFFICIENCY TUiN CELLS 

- RADIATION HARDENED CELLS 
LOW MASS COVERSLIDES 
LOW MASS BLANKET SUBSTRATES 

- LOW MASS STRUCTURAL COMPONENTS 

- ASPECT RAT 10 
- SOLAR ARRAY STIFFNESS REQUIREMENTS 

• ARRAY SIZED BY END OF LIFE LOAD POWER REQUIREMENT 

• CONCEPTUAL DESIGN - SPLIT BLANKET. V-STIFFENED 

FOLDOUT ARRAY 

- V-STIFFENED DESIGN RESULTS IN LOWER MAST WEIGHT 
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SOLAR ARRA Y SUBSYSTEM REQUIREMENTS 

• WEIGHT REQUIREMENT MOST SIGNIFICANT IN ARRAY DESIGN 
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• IMPORTANT CONSIDERATIONS AFFECTING WEIGHT 

- HIGH EFFICIENCY THIN CELLS 
- RADIATION HARDENED CELLS 

LOW MASS COVERSLIDES 
- LOW MASS BLANKET SUBSTRATES 
- LOW MASS STRUCTURAL COMPONENTS 
- ASPECT RATIO 
- SOLAR ARRAY STIFFNESS REQUIREMENTS 

• ARRAY SIZED BY END OF LIFE LOAD POWER REQUIREMENT ==== 
• CONCEPTUAL DESIGN - SPLIT BLANKET. V-STIFFENED 

FOLDOUT ARRAY 

- V-STIFFENED DESIGN RESULTS IN LOWER MAST WEIGHT 
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SILICON SOLAR ARRAY WEIGHT BREAKDOWN 

FOR 2SI(W POWER SYSTEM UW4 ........ _C.. ....,..... _____ .... _ _ __ _ 

5600 NM, 2 x 2 CM, 2 MIL, 11 = 13.5 PERCENT 
'I MIL MICROSHEET COVERSLIDE 

- -

SUBSYSTEM UNIT MASS (LB) QUANTITY 
TOTAL MASS 

(LB) 

BLANKET 444.62 2 902.2 
SUBSTRATE 29.22 _4 2 6 50.4'1 
CELLS 1.41 x 10 1. 6537 x 106 

233.4 
COVERS 2.36 x 10-" 1. 6537 x 10 390.0 

I COVER TO CELL ADHESIVE - - 39.3 , 

CELL TO BLANKET - - 36.'16 
ADHESIVE -5 6 

INTERCONNECTS 6.88 x 10 1. 6537 x 10 113.74 
HINGES 0.024 205 4.94 
HARNESS 12.93 2 25.06 

I 

I 

STRUCTURE 397.3 
COVER 39.2 2 70." 
CONTAINER 42.8 2 85.6 
SUPPORT STRUTS 'I 4 16.0 
CONTAINER DEPLOYMENT 10 2 20.0 
BOOM 43.2 2 86." 
CANISTER '14.4 2 CO.O 
TENSIONERS 2.'1 II 9.6 
GUIDE WIRES 2.13 " 8.52 
LATCHING MECHANISMS 1.9'1 2 3.88 
MID-TENSION 0.03 2 0.06 

ARRAY TOTAL 1300.0 
------- -- --- -- --
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BLANI(ET WEIGl-IT VS SHIELDING - 5600 NM 

18.0 kW/WING. EOL AT ARRAY (1/2 OF 25 kW SYSTEM) 

1800· I i I S - ItS MIL rr=================-===========~===~~----------~~~~~~---------;~ ,10.0 
CELL: 2 MIL 51 I F n 2 

1600 

11100 
I..) 
Z 

~ 
~ 1200 

l-
X 
I..) 

iii 1000 
~ 

I-
w 
~ 
z 800 
:5 
III 

600 

'1:: 13.5 PERCENT '" :: 2 x 10 e/em yr 
5

F 
= FRONT COVERGLAS5 THICKNESS 

GIVEN IN MILS OF MICROStfEET 

\f) :: FRONT PLUS BACK FLUENCE PER 
YEAR 

SF = t. 3 MIL 

FRONT SHIE~'NG I EQU~L SHIELDING 
LESS THAN • FRONT AND BACK 
BACK SHIELDING 

17 2 (/) = 3.63 x 10 e/em -yr 

SF = 3 MIL 
16 2 

(/) = 2.896 x 10 e/em -yr 

SF = II MIL 

(/) = 1.832 x 1016 e/em2yr-----.;:::' 

SF = 8.8MIL 

'" = 2.0 x 1015 elcm
2
yr 

SF = 5.6 MIL 
151 2 

'" = 5." x 10 e/em -yr 

11. 2 

-·12.9 

W 
15.0 [8 

18.0 

22.5 

30.0 

1100 " T - 1"5.0 
10- 2 10- 1 

TOTAL SHIELDING (FRONT + BACK) g/em2 

---. ~- -----~ ~ 
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BLANKET WEIGHT / WING VS CELL TYPE - 5600 NM 

18 kW/WING. EOL AT ARRAY (112 OF 25 kW SYSTEM) 
r---------------------------------------------------~----------------I 12.8 

WATTS 
LB 

13.8 

15.0 

16.3 

18.0 

20.0 

22.5 

25.7 

30.0 

36.0 

115.0 
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BLANKET WEIGHT /WING VS CELL TYPE - GEO 
17.2" kW/WING. EOL AT ARRAY (112 OF 25 kW SYSTEM) 
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· .; 
.) ~ .. , . .. 

~ :' \oJ ~~ -
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, :X GaAs ! . 
i ": SI 8 MIL 6 Mil Ii '? . " lJ = 111.9 1) = 16% 

:.;1,' 
e" ~ e 
,~ ( . -· · . · · 

SI 2 Mil , . ~ 
11 = 10.2 . <'. ' · .. : > . '" . 'I:' 

, 
· , · , " . .. :" ,: ' f ~ t~~~»~~: ' , ". .. ~ . , . ~,: SI 2 Mil l .~ GaAs" oX" 'h\', -· : ll- 13.5 ' 2 MIL X , 1 
I · , ::' . " 16'l. GaAs I, MBG:,W,»iX@:~' · , . . , . ~ 2 Mil ~ 3 Mil GALACON , .? . 

' 1) 18% " 2U 2.6MIL · · ' . · '1 - 18 ':. 
~ '. "~~ ·(>NIN,,'hX'l.f.t.'1: , , , 

PRESENT NEAR TERM FAR TERM 

CELL 

57.5 

69.0 

86.2 

11".9 

172 ... 

3 ..... 8 

WATTS 
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CONCLUSIONS 
_ ,.cw ............ · tao .... "'"IIL1IIOiIiWK'""~r .... w; J •• :c>.~ ... t: .... WJ Jeaswxo;ae;;a.. .'ICIAi.".S:a;:c;arSiilM' ..... :szC" •• 

• IN IIiGIl RADIATION ENVIRONMENTS TIlE RADIATION TOLERANCE AND WEIGIH OF SOLAR CELLS ARE 
TUE DRIVING FACTORS IN SOLAR ARRAY WEIGHT 

• IN LOW RADIATION ENVIRONMENTS THE WEIGIH AND EFFICIENCY OF SOLAR CELLS ARE THE DRIVING 
FACTORS IN SOLAR ARRAY WEIGHT 

• NEAR TERM 

- IIiGH RADIATION ORBIT: TUIN SILICON SOLAR CELLS (2 MIL) RESULT IN A BLANKET WEIGIIT 
APPROXIMATELY 16 PERCENT LIGHTER T~IAN A BLAr~KET OF TIlE SAME POWER USING 7 MIL 
GaAs CELLS, BUT THE BLANKET USING GaAs CELLS HAS LESS THAN HALF AS MANY CELLS AND 
IS LESS THAN HALF AS LARGE AS THE BLANKET USING SILICON CELLS 

- LOW RADIATION ORBIT: DUE TO THE FACT TUAT SOLAR ARRAY BLANKET WEIGHT IS SUCII A 
STRONG FUNCTION OF SOLAR CELL WEIGHT, GaAs SOLAR CELLS MUST BE PRODUCED 2 MILS 
THICK TO COMPETE ON A WEIGHT BASIS WITH ARRAYS UTILIZING THIN SILICON 

• FAR TERM 

- SOLAR ARRAY BLANKETS USING SOLAR CELLS DERIVED FROM GaAs TECHNOLOGY ARE HIE 
LlGIITEST AND SMALLEST FOR BOTH mGH AND LOW RADIATION ENVIRONMENTS 

• GaAs TECHNOLOGY IS TUE MOST VERSATILE IN TERMS OF BEING ABLE TO MEET LOW WEIGIIT REQUmE
MENTS FOR A NUMBER OF DIFFERENT MISSIONS AND ORBITS 

- SILICON SOLAR CELLS ARE PRACTICALLY LIMITED TO TUiCKNESSES OF 2 MILS OR MORE, WIIEREAS 
GaAs CELLS CAN BE MADE AS THIN AS 10,..m WITHOUT A SUBSTANTIAL EFFECT ON EFfiCIENCY. 
nus ALLOWS ONE TO TAILOR TIlE FRONT AND BACK SI·IIELDING OF THE 'TI·IIN FILM' GaAs CELL 
TO THE RADIATION FLUENCE LEVEL OF THE GIVEN ORBIT 

TTi: > t c. d .. ~~......-. ... __ ... --......~_~,_.~ • r« 
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DEVELOPMENT AREAS 

• DEVELOPMENT OF LOW MASS COMPOSITE STRUCTURAL COMPONENTS WOULD 
RESULT IN FURTHER WEIGHT SAVINGS 

• DEVELOPMENT OF THIN WRAPAROUND CONTACT TECHNOLOGY WOULD RESULT 
IN WEIGHT AND COST SAVINGS. 

• DEVELOPMENT OF THIN COVERGLASSES WHICH DEMONSTRATE HIGHER UV 
STABILITY IS ESSENTIAL FOR GEO ORBITS. (Si02 OR IMPROVED THIN PLASTIC 
ENCAPSULANTS) 

• DEVELOPMENT OF RADIATION HARDENED SOLAR CELLS IS OF PRIME IMPORTANCE 
IN HIGH RADIATION ORBITS 

• TEST PROGRAM TO OBTAIN SOLAR CELL DATA FOR ANALYSIS OF NATURAL AND 
ARTIFICIAL ENVIRONMENT EFFECTS 

- GaAs SOLAR CELL DAMAGE COEFFICIENTS 

- REARS IDE IRRADIATION DAMAGE COEFFICIENTS FOR BOTH GaAs 
AND Si SOLAR CELLS 

- OPTICAL PROPERTIES OF GaAs SOLAR CELLS 

~ "--' ~' .... - ~. . ..,.-" 
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SILICON - RESEARCH 

STARTING r1ATERIAL PURITY 

o HOLD CARBON Arm OXYGEN AS LO\" AS POSSIBLE 

o DIAGNOSTIC SENSITIVITY ESPECIALLY FOR C AND O~ 

IMPROVE MORE TJIAN ONE ORDER OF MAGNITUDE 

o BAS I C RESEARCH ON DEFECT FORr1AT I art I NTERACT IONS AND ANNEALI NG 

MECHAN I SMS FOR Lo\~ T ANNEAL «2000 

o COMPARE BAND GA DOPANTS FOR UIGH PURITY SI 
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SILICON - RESEARCH (CONT'D) 

CELL DES I GN/GEor1ETRY 

o THIN CELL RESEARCH 

o VERTICAL JUNCTION RESEARCH 

o THE P- I -N DEV I CE - RAD I AT I ON DA~1AGE EFFECTS 

CELL FABRICATION 

o RELATIVE r1ERITS OF DIFFUSION AND ION IMPLANTATION FOR FORMING 
PIN JUNCTION} NITH RESPECT TO RADIJ\TION DAMAGE 

--~ ... 
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ALGAAS CASCADE CELL SCHEf1A TIC 

~ LIGHT 

+ p -Be AIO. 9GaO.1 As, WINDOW 
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+ 
", AlO.350'0.65" n -Te TUNNEL JUNCTION 
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GALLIUM ARSENIDE - RESEARCH 

r1ATERIAL RELATED RESEARCH 

o SUBSTRATE QUALITY VS RADIATION DAMAGE 

o EFFECTS OF PURITY., CRYSTALLINITY., DOPANTS IN GRONN LAYERS ~IITH 

RESPECT TO RAD I AT I ON DAf1AGE 

o RADIATION INDUCED DEFECTS AND KIUETICS 

o INCREASED DIAGNOSTIC PURITY EVALUATIONS 

o DESCRIBE RADIATION DAMAGE AND RECOVERY VS TEMPERATURE 

o SYSTEMATICALLY STUDY ANNEALHIG; GOAL 100~ RECOVERY <200C., 
FLUENCES TO !f)16 /C~12., 1 r'1EV ELECTRONS 

o ELECTRON AND PROTON DAMAGE EQUIVALENCES., WITH VARIOUS DOPANT 
SPECIES AND CONCE~TRATIO~S 
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CELL DESIGN, GEOMETRY 
o f10DEL GAAS CELL STRUCTURES AS NEW DATA BECm1ES AVAILABLE: 

SUGGEST NEW ALTERNATE CELL DESIGNS 

CELL FAB~ICATION~ PROCESSING 
o EXAr1 i NE LPE AND MO-CVD GRONTH PROCESSES IN RELAT I ON TO ~.~D I AT I ON DAMAGE: 

PRE- AND POST IRRADIATION CHARACTERIZATION (E.1J.~ DLTS) 
o LPE AND MO-CVD PROCESSES VS DOPANT SPECIES AND LEVELS 



-'V
V

L
L

)

c-LU

LU
I 

C
d,

L
L

L
U

L
U

 
-3

L
L

L
U

-/ 
C

/U
=

n 
L
U

L
U

 
-

C
d 

/ 
C

)

Q
- 

O
f~

- ~ 
_
 

L
U

 
L
U

 
J 

-
L

Q
~

 
LU-

.. 
C

/

C
 

V
I-4-L

U

! 
\ 

I 

< 
H 
I ... 
I 

tv 
0 

~, .. q 

SUMMARY 

SOLAR CELL RESEARCH REQUIREMENTS 

1. ADVANCE DIAGNOSTIC Ir1PURITIES RESOLUTION 

2. IMPROVE PURITY OF MATERIALS 

3. CHARACTERIZE GAAS M.f\TERIALS 

It, LI GHH/E 1 GHT CELL r·1ETALLI ZAT I ON A~JD INTERCONNECTS 

5 . NEW ENERGY CONVERSION APPROACHES 
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Q & A - J. F. Holt

From: Steve Wax, AFOSR

What is meant by "new energy conversion approaches"?

A.
There is nothing new under the sun. However, once in a

great while a seemingly novel way is proposed to convert
radiant energy to electrical. This was the simplest meaning
of the expression.

Some of the papers in the Tuesday PM session described
examples of innovation aimed at solar and TR energy con-
version.

Photovoltaic and other quantum - electric converters are
able to by-pass the Carnot efficiency limit of heat engines.
These quantum devices thus have in principle very high
efficiencies; the limit ultimately dealing with practical
technology limits such as leakage currents, series resis-
tance, diode imperfections, etc.

It is thus apparently an area of great hope for the
efficiencies in the 50-70% or greater neighborhood; the
innovative new ways to directly go from quanta to electri-
cal current.

I am assuming that innovation can turn up these new
approaches.

Such new approaches, of course, include the more near
term practical advances in complex solar photovoltaic cell
technology that are certain to come about for practical
power systems, given the dollars in support--there is an
ample source of well qualified S & E in the U.S. and allied
countries to conduct the work.
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Q & A - J. F. Holt 

From: Steve Wax, AFOSR 

What is meant'by "new energy conversion approaches"? 

A. 
There is nothing new under the sun. However, once in a 

great while a seemingly novel way is proposed to convert 
radiant energy to electrical. This was the simplest meaning 
of the expression. 

Some of the papers in the Tuesday PM session described 
examples of innovation aimed at solar and JR energy con
version. 

Photovoltaic and other quantum ~ electric converters are 
able to by-pass the Camot efficiency limit of heat engines. 
These quantum devices thus have in principle very high 
efficiencies; the limit ultimately dealing with practical 
technology limits such as leakage currents, series resis
tance, diode imperfections, etc. 

It is thus apparently an area of great hope for the 
efficiencies in the 50-70% or greater neighborhood; the 
innovative new ways to directly go from quanta to electri-
cal current. -

I am assuming that innovation can turn up these new 
approaches. 

Such new approaches, of course, include the more near 
term practical advances in complex solar photovoltaic cell 
technology that are certain to come about for practical 
power systems, given the dollars in support--there is an 
ample source of well qualified S & E in the U.S. and allied 
countries to conduct the work. 
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SOLAR-PUMPED LASERS FOR SPACE POWER TRANSMISSION 

Edmund J. Conway 
NASA Langley Research Center 

Hampton, Virginia 23665 
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ABSTRACT

Solar-Pumped Lasers for Space Power Transmission
Edmund J. Conway

NASA Langley Research Center
Hampton, Virginia 23665

The concept of spacecraft-to-spacecraft laser power transmission is

being considered as a means of achieving plentiful, economical power in

space. Several direct solar-pumped laser concepts are discussed, as well

as the results of early experiments. Novel laser-to-electric power conver-

ters and a laser thermal propulsion concept are identified. Advant3ges of

the solar laser power platform for possible military requirements are

described.

VI-5-1

Solar-Pumped Lasers for Space Power Transmission 
Edmund J. frJnway 

NASA Langley Research Center 
Hampton, Virginia 23665 

The ooncept of spacecraft-to-spacecraft laser power transmission is 

beirr:l considered as a means of achievirr:l plentiful, econanical power in 

space. Several direct solar-pumped laser concepts are discuss.!d, as well 

as the results of early experiments. Novel laser-to-electric power conver

ters and a laser thermal propulsion ooncept are identified. Advant~es of 

the solar laser pcTWer platform for possible mili~ requirements are 

described. 
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DIRECT SOLAR-PUMPED LASER SATELLITE 

Space-to-space laser power transmission is Leing considered as a means fot' 

reducing the cost of electrical power and propulsion for spacecraft. In space, the 

Sun is a low-cost, natural energy source. Direct solar-pumped lasers offer the 

potential for high power, high efficiency, and no intermediate energy conversion 

steps prior to lasing. In addition, the continuous nature of solar pumping is 

suited to continuous lasing required for high average power transmission. To 

handle high average powers, fluid lasants are required for heat dissipation in 

thermal ~adiators. 
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SOLAR-PUMPED LASER EXPERIMENT 

Lasants have been tested and lasers developed u&ing flashlamp excitation. 

However, lasants must ultimately operate with solar pumping. The figure shows 

simulated sunlight transmitted through a chopper and then focussed to a line by 

reflection from the inside of a conical reflector. The line focus coincides with 
the centerline of a tube containing the lasant. 

defining a laser cavity and a detector. 
The figure also shows mirrors 
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IODINE PHOTODISSOCIATION LASER 

The first solar-pumped lasing of a gas was aChieved by photodissociating 
C3 FJ I. The energy level diagram indicates the major processes occurring within the 

laser tube. The most important are (1) pumping by sunlight at 0.27 pm~ (2) dis
sociation of excited C3F71 into excited I and the radical C3F7 ; (3) lasing based on 
atomic iodine; and (4) recombination of C3F7 with iOdine to reform C3 F7I • 
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TYPICAL LASER OUTPUT 

Th is figure shows a solar simulator pulse of approximately 3 kW exciting a 

laser pulse of 3 W. The solar eff iciency of this system is approximately 0.1%. 

The bottom curve shows a theoretically predicted :?ulse . from C3 F,I. There is 

remarkably good agreement between the numerical simulation and the measurement. 

Theoretical estimates of eff iciency for this lasant vary from 0.2% to 0.6%. One 

interesting feature of this lasant is that, flash1amp-pumped in an oscillator-

< amplifier chain, a pulse of 10 12 Watts has been reported. 
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IBr LASER KINETICS 

IBr, which is pumped by light with wavelengths near 0.5 pm, utilizes much more 

of the solar spectrum than does C3 F7 I. The figure shows the excitation, dissocia

tion, lasing at 2.7 p, and reformation of IBr. The reformation rate has a natural 

time constant of a few milliseconds. 
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IBr LASER EXPERIMENT 

In an experiment, the IBr can be purified and the pressure in the laser tube 

controlled by temperature. The figure shows a flashlamp-pumped IBr laser. This 

lasant has not yet been solar-pumped because the laser threshold requires more 

intensity over a greater length than we have achieved so far. 
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IBr LASING CHARACTERISTICS 

This figure shows IBr and C3F7I flashlamp-pumped in the same laser tube. Both 

lasants were near their optimum pressure. Here the pulse widths are limited by the 

reduction of the pumping intensity. Early versions of the IBr laser have achieved 

powers greater than 300 Watts (peak). 
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SOLAR-PUMPED SULFUR LASER 

Other potential solar-pulnped gas lasants worthy of study include sulfur, 

selenium, tellurium, and sodium. The figure indicates laser and solar e~citation 

into the vibrational manifold of the first electronically excited state of the S2 

molecule. Laser-pumped lasing of sulfur has been reported. To achieve effective 

broadband solar pumping requires relaxation of a band of vibrational states into 

the lowest level, followed by lasing from that level, as depicted in the figure. 

preliminary experiments indicate thlt this relaxation can be achieved. 
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ABSORPTION AND EMISSION OF RHODAMINE 6G 

Liquid lasers~ although heavier, offer proportionally higher energy density 

than gas lasers. Thus, two liquid lasants are being investigated for solar pump

ing: (1) Nd ion in solution, which has a broad solar absorption and could exhibit 

an efficiency of S%J and (2) solar-pumped dye lasers, which offer some advantages 
for power transmission. The figure shows the absorption bands of rhodamine 6G with 

its good match to the solar spectrum. The laser emission will be only slightly 
red-shifted from the absorption giving a high value to the ratio of the emitted 

photon energy to the absorbed photon energy. In addition, power transmission in 

the red would permit use of state-of-the-art photovoltaic converters for laser-to

electric conversion. Laser quenching arises through the formation of triplets 
which absorb emission and deplete the groundstate. Development of an efficient 

solar-pumped dye laser will rp.quire reduction of the triplet density in solution • 
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NOVEL LASER-TO-ELECTRIC CONVEkTER CONCEPTS 

A laser power transmission system not only requires an efficient laser but 

also an efficient converter. Heat engines and photovoltaic cells are often men

tioned for laser-to-electric power conversion. However, novel concepts are also 

being considered since these offer advantages in weight, power density, and effi

ciency. Three novel concepts are shown in the figure: optical diodes (which 

rectify at optical frequencY)1 laser MHO converters (which may be efficient at high 

power density) 1 and a reverse free electron laser (which couples energy from the 

laser wave to electrons in an accelerator). 
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LASER-SUPPORTED HYDROGEN RU£!!! 

In addition to "transmitting energy for electrical power, laser energy could be 

used for propulsion. At Marshall Space Flight Center, researchers are investi

gating one concept of laser t.hermal propulsion, the hydrogen rocket. The figure 

illustrates the basic concept. 
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ADVANTAGES AND APPLICATIONS 

LASER TRANSMISSION FOR ELECTRIC POWER 

Two spacecraft; one cc~lecting solar power and one consuming laser power. 

• Two laser platforms in Sun-synchronous orbit could continuously support 

several power-consuming spacecraft. 

• Power-consuming spacecraft could be smaller and possibly lighter and less 

expensive than if solar-powered. 

• May permit lower altitude, long life, low-drag reconnaissance missions. 

• Since solar-pumped laser should be more radiation resistant than solar 

cells, a laser platform may be suitable for operation in radiation belts. 

• Most laser-to-electric power converters are more radiation-resistant than 

solar cells, thus laser power-consuming spacecraft could operate more 

freely in the radiation belts. 
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